Conv+Bn+Leaky_relu

时间: 2025-04-15 12:43:59 AIGC 浏览: 93
<think>嗯,用户问的是Conv+Bn+Leaky_relu,这是一个常见的神经网络层组合。我需要先分解每个组件的作用,然后解释它们组合后的优势。首先,Conv应该是卷积层,Bn是批归一化,Leaky_relu是激活函数。 首先,卷积层(Convolutional Layer)的作用是提取空间特征,比如图像中的边缘、纹理等。卷积通过滤波器在输入数据上滑动,进行局部区域的加权求和,这样可以减少参数数量,保留空间信息。 接下来是批归一化(Batch Normalization),我记得它的主要目的是加速训练,减少内部协变量偏移。具体来说,BN会对每一层的输入进行标准化处理,使其均值0,方差1,然后通过可学习的参数γ和β进行调整。这样可以让激活值的分布更稳定,减少梯度消失或爆炸的问题,同时允许更高的学习率。 然后是Leaky ReLU,和普通的ReLU不同,当输入为负时,Leaky ReLU会有小的斜率,比如0.01,而不是直接输出0。这可以缓解神经元死亡的问题,因为负数区域也有梯度,有助于训练过程的稳定性。 组合这三个层的时候,通常的顺序是Conv后接BN,再接Leaky ReLU。不过有时候顺序可能会有变化,比如有的论文会先BN再激活函数。需要确认标准的顺序是什么。一般来说,Conv之后先做BN,然后激活函数,这样BN可以处理卷积后的输出,再进行非线性变换。 可能需要解释为什么这样的顺序更好。BN放在卷积之后,激活之前,可以确保输入到激活函数的数据是归一化的,避免激活函数的输入过大或过小,导致梯度问题。而Leaky ReLU作为激活函数,相比ReLU能更好地处理负数部分,避免信息丢失。 另外,这样的组合在训练深度网络时效果更好,因为BN加速收敛,Leaky ReLU提供更好的梯度流动。可能还需要提到实际应用中的例子,比如在YOLO或者一些GAN模型中常见这种结构。 需要检查是否有特殊情况,比如是否有时会先激活再BN,但根据主流实践,Conv-BN-Activation的顺序更常见。可能还要引用一些论文,比如原始BN论文中的建议,或者ResNet等模型的结构。 最后,总结这种组合的优势:提升训练速度,稳定训练过程,防止过拟合(BN有一定正则化效果),增强模型的非线性表达能力。同时,Leaky ReLU相比ReLU可能在某些任务中表现更好,尤其是在防止神经元死亡方面。 要确保解释清晰,步骤正确,没有技术错误,并且用中文通俗易懂地表达出来。</think>Conv+Bn+Leaky_relu 是神经网络中常见的层组合结构,主要用于特征提取和非线性变换。以下是逐层解析及其协同作用: --- ### 1. **卷积层 (Convolutional Layer, Conv)** - **功能**:通过滑动窗口提取局部特征(如边缘、纹理)。 - **数学形式**: $$ \text{输出特征图} = \text{输入} \ast \text{卷积核} + \text{偏置} $$ 其中$\ast$表示卷积操作。 - **作用**: 减少参数数量,保留空间信息,适用于图像/时序数据。 --- ### 2. **批归一化层 (Batch Normalization, Bn)** - **功能**:标准化卷积层输出,加速训练并稳定梯度。 - **数学形式**: 对每个批次数据做归一化: $$ \hat{x} = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} $$ 再缩放和平移: $$ y = \gamma \hat{x} + \beta $$ 其中$\mu$为均值,$\sigma^2$为方差,$\gamma$和$\beta$为可学习参数。 - **作用**: - 缓解梯度消失/爆炸 - 允许更高的学习率 - 轻微的正则化效果 --- ### 3. **Leaky ReLU激活函数** - **功能**:引入非线性,允许负值输入有微小梯度。 - **数学形式**: $$ f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha x & \text{if } x \leq 0 \end{cases} $$ 其中$\alpha$通常取$0.01$(如PyTorch默认值)。 - **作用**: - 避免神经元“死亡”(相比ReLU) - 保留负值信息(适合生成对抗网络等场景) --- ### 4. **组合顺序与优势** #### 典型顺序: **Conv → Bn → Leaky ReLU** - **逻辑**: 1. 卷积提取特征 2. BN标准化特征分布 3. Leaky ReLU引入非线性 #### 优势分析: | 组件 | 解决的问题 | 协同效果 | |-------------|-----------------------------|---------------------------------| | Conv | 特征提取能力不足 | 作为基础特征提取器 | | Bn | 训练不稳定、收敛慢 | 加速收敛,使后续激活输入更稳定 | | Leaky ReLU | ReLU的神经元死亡问题 | 在BN稳定输入后,安全地引入非线性 | --- ### 5. **代码示例(PyTorch)** ```python import torch.nn as nn block = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3), nn.BatchNorm2d(64), nn.LeakyReLU(negative_slope=0.01) # 默认α=0.01 ) ``` --- ### 6. **应用场景** - **目标检测**:如YOLO系列(特征提取主干网络) - **生成对抗网络(GAN)**:防止生成器/判别器梯度消失 - **图像分类**:ResNet等模型的基础单元变体 --- ### 总结 Conv+Bn+Leaky_relu 通过**特征提取→分布标准化→可控非线性**的分工,显著提升了深度网络的训练稳定性和特征表达能力,是计算机视觉任务中的经典组合。
阅读全文

相关推荐

# -*- coding: utf-8 -*- """ Created on Fri Aug 4 16:12:50 2023 @author: xhwch """ import torch import torch.nn as nn import torch.nn.functional as F import logging import sys from thop import profile import time import os import random class RES_Block(nn.Module): """Res Basic Block""" expansion = 1 def __init__(self, inplanes, planes, stride=1, dilation=1, previous_dilation=1): super(RES_Block, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation) self.relu = nn.LeakyReLU(0.2, True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=previous_dilation, dilation=previous_dilation) def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) out = out + residual out = self.relu(out) return out class GSA_Block(nn.Module): """Global Strip-wise Attention""" def __init__(self, inplanes, outplanes): super(GSA_Block, self).__init__() midplanes = int(outplanes//2) self.pool_1_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_1_w = nn.AdaptiveAvgPool2d((1, None)) self.conv_1_h = nn.Conv2d(inplanes, midplanes, kernel_size=(3, 1), padding=(1, 0)) self.conv_1_w = nn.Conv2d(inplanes, midplanes, kernel_size=(1, 3), padding=(0, 1)) self.fuse_conv = nn.Conv2d(midplanes, midplanes, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=False) self.conv_final = nn.Conv2d(midplanes, outplanes, kernel_size=1) self.mask_conv_1 = nn.Conv2d(outplanes, outplanes, kernel_size=3, padding=1) self.mask_relu = nn.ReLU(inplace=False) self.mask_conv_2 = nn.Conv2d(outplanes, outplanes, kernel_size=3, padding=1) def forward(self, x): _, _, h, w = x.size() x_1_h = self.pool_1_h(x) x_1_h = self.conv_1_h(x_1_h) x_1_h = x_1_h.expand(-1, -1, h, w) x_1_w = self.pool_1_w(x) x_1_w = self.conv_1_w(x_1_w) x_1_w = x_1_w.expand(-1, -1, h, w) #print("x_1_h size: ",x_1_h.shape) #print("x_1_w size: ",x_1_w.shape) hx = self.relu(self.fuse_conv(x_1_h + x_1_w)) #print("h w fuse size: ",hx.shape) mask_1 = self.conv_final(hx).sigmoid() out1 = x * mask_1 return out1 class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.RES_Block_e11 = RES_Block(32, 32) self.RES_Block_e12 = RES_Block(32, 32) self.RES_Block_e13 = RES_Block(32, 32) self.down_1 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1, bias=False) self.RES_Block_e21 = RES_Block(64, 64) self.RES_Block_e22 = RES_Block(64, 64) self.RES_Block_e23 = RES_Block(64, 64) self.down_2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False) def forward(self, x): hx = self.RES_Block_e11(x) hx = self.RES_Block_e12(hx) hx = self.RES_Block_e13(hx) residual_1 = hx hx = self.down_1(hx) hx = self.RES_Block_e21(hx) hx = self.RES_Block_e22(hx) hx = self.RES_Block_e23(hx) residual_2 = hx hx = self.down_2(hx) return hx, residual_1, residual_2 class RESU_Block(nn.Module): def __init__(self, in_size, out_size): super(RESU_Block, self).__init__() self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True) self.conv_1 = nn.Conv2d(out_size*2, out_size, 1, 1, 0) self.relu_1 = nn.LeakyReLU(0.2, True) self.conv_block1 = RES_Block(out_size, out_size) self.conv_block2 = RES_Block(out_size, out_size) self.conv_block3 = RES_Block(out_size, out_size) def forward(self, x, bridge): #print("GSUB input size: ", x.shape) # [1, 128, 64, 64] hx = self.up(x) #print("GSUB up/concat input size: ", hx.shape) # [1, 64, 128, 128] #print("GSUB input res size: ", bridge.shape) # [1, 64, 128, 128] hx = torch.cat([hx, bridge], 1) #print("GSUB concat output size: ", hx.shape) # [1, 128, 128, 128] hx = self.conv_1(hx) hx = self.relu_1(hx) #print("GSUB concat output resize: ", hx.shape) # [1, 64, 128, 128] hx = self.conv_block1(hx) hx = self.conv_block2(hx) hx = self.conv_block3(hx) #print("GSUB output size: ", hx.shape) # [1, 64, 128, 128] return hx class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.up_1 = RESU_Block(128, 64) self.up_2 = RESU_Block(64, 32) self.conv_1 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1) def forward(self, x, residual_1, residual_2): hx = self.up_1(x, residual_2) hx = self.up_2(hx, residual_1) #hx = self.up_1(torch.cat((x, residual_2), dim = 1)) #hx = self.up_2(torch.cat((hx, residual_1), dim = 1)) return hx class LPA_Block(nn.Module): """Local Pixel-wise Attention Block""" def __init__(self, kernel_size=7): super(LPA_Block, self).__init__() self.kernel_size = kernel_size assert kernel_size % 2 == 1, "Odd kernel size required" self.conv = nn.Conv2d(in_channels = 2, out_channels = 1, kernel_size = kernel_size, padding= int((kernel_size-1)/2)) # batchnorm def forward(self, x): max_pool = self.agg_channel(x, "max") avg_pool = self.agg_channel(x, "avg") pool = torch.cat([max_pool, avg_pool], dim = 1) conv = self.conv(pool) conv = conv.repeat(1,x.size()[1],1,1) att = torch.sigmoid(conv) return att def agg_channel(self, x, pool = "max"): b,c,h,w = x.size() x = x.view(b, c, h*w) x = x.permute(0,2,1) if pool == "max": x = F.max_pool1d(x,c) elif pool == "avg": x = F.avg_pool1d(x,c) x = x.permute(0,2,1) x = x.view(b,1,h,w) return x class GDA_Block(nn.Module): """Global Distribution Attention Block""" def __init__(self, in_size, out_size): super(GDA_Block, self).__init__() self.identity = nn.Conv2d(in_size, out_size, 1, 1, 0) self.conv_1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1, bias=True) self.relu_1 = nn.LeakyReLU(0.2, inplace=False) self.conv_2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1, bias=True) self.relu_2 = nn.LeakyReLU(0.2, inplace=False) self.norm = nn.InstanceNorm2d(out_size//2, affine=True) def forward(self, x): out = self.conv_1(x) out_1, out_2 = torch.chunk(out, 2, dim=1) out = torch.cat([self.norm(out_1), out_2], dim=1) out = self.relu_1(out) out = self.relu_2(self.conv_2(out)) out = out + x return out class Attention_Block(nn.Module): def __init__(self, in_size, out_size): super(Attention_Block, self).__init__() self.identity = nn.Conv2d(in_size, out_size, 1, 1, 0) self.conv_1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.relu_1 = nn.LeakyReLU(0.2, True) self.conv_2 = nn.Conv2d(192, 128, kernel_size=1, stride=1, padding=0) self.relu_2 = nn.LeakyReLU(0.2, True) self.conv_3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.relu_3 = nn.LeakyReLU(0.2, True) self.conv_4 = nn.Conv2d(128, 128, kernel_size=1, stride=1, padding=0) self.relu_4 = nn.LeakyReLU(0.2, True) self.conv_4_1 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1) self.relu_4_1 = nn.LeakyReLU(0.2, True) self.conv_4_2 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1) self.relu_4_2 = nn.LeakyReLU(0.2, True) self.conv_4_3 = nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0) self.relu_4_3 = nn.LeakyReLU(0.2, True) in_split_1, in_split_2 = in_size//4, in_size//4 out_split_1, out_split_2 = out_size//4, out_size//4 self.GSA_Block = GSA_Block(64, 64) self.LPA_Block = LPA_Block() self.GDA_Block = GDA_Block(in_size, out_size) def forward(self, x): hx = self.conv_1(x) hx = self.relu_1(hx) hx = self.conv_4(hx) hx = self.relu_4(hx) hx1 = self.conv_4_1(hx) hx1 = self.relu_4_1(hx1) hx2 = self.conv_4_2(hx) hx2 = self.relu_4_2(hx2) hx3 = self.conv_4_3(hx) hx3 = self.relu_4_3(hx3) GSA = self.GSA_Block(hx1) LPA = self.LPA_Block(hx2) #print("GSA size: ", GSA.shape) #print("LPA size: ", LPA.shape) #print("split size 3: ", hx3.shape) hx = torch.cat([GSA, LPA, hx3], dim=1) #print("f1~3 size: ", hx.shape) hx = self.conv_2(hx) hx = self.relu_2(hx) hx = self.conv_3(hx) hx = self.relu_3(hx) hx = hx + x hx = self.GDA_Block(hx) + hx hx = hx + self.identity(x) return hx class Attention(nn.Module): def __init__(self, in_size, out_size): super(Attention, self).__init__() self.Att_Block_1 = Attention_Block(in_size, out_size) self.Att_Block_2 = Attention_Block(in_size, out_size) self.Att_Block_3 = Attention_Block(in_size, out_size) self.Att_Block_4 = Attention_Block(in_size, out_size) self.Att_Block_5 = Attention_Block(in_size, out_size) self.Att_Block_6 = Attention_Block(in_size, out_size) self.Att_Block_7 = Attention_Block(in_size, out_size) self.Att_Block_8 = Attention_Block(in_size, out_size) self.Att_Block_9 = Attention_Block(in_size, out_size) self.Att_Block_10 = Attention_Block(in_size, out_size) def forward(self, x): hx = self.Att_Block_1(x) hx = self.Att_Block_2(hx) hx = self.Att_Block_3(hx) hx = self.Att_Block_4(hx) hx = self.Att_Block_5(hx) hx = self.Att_Block_6(hx) hx = self.Att_Block_7(hx) hx = self.Att_Block_8(hx) hx = self.Att_Block_9(hx) hx = self.Att_Block_10(hx) return hx class TANet(nn.Module): """TANet""" def __init__(self, in_size=3 , out_size=3): super(TANet, self).__init__() self.conv_1 = nn.Conv2d(in_size, 32, kernel_size=3, stride=1, padding=1) # input self.relu_1 = nn.LeakyReLU(0.2, True) self.conv_2 = nn.Conv2d(32, out_size, kernel_size=3, stride=1, padding=1) # output self.relu_2 = nn.LeakyReLU(0.2, True) self.encoder = Encoder() self.decoder = Decoder() self.attention = Attention(128, 128) def forward(self, x): #print("Network input size: ", x.shape) # [1, 32, 256, 256] hx = self.conv_1(x) hx = self.relu_1(hx) #print("Network input >> conv1 size: ", hx.shape) # [1, 32, 256, 256] hx, residual_1, residual_2 = self.encoder(hx) #print("Network encoder output/decoder input size: ", hx.shape) # [1, 128, 64, 64] #print("Network decoder input res_1 size: ", residual_1.shape) # [1, 32, 256, 256] #print("Network decoder input res_2 size: ", residual_2.shape) # [1, 64, 128, 128] hx = self.attention(hx) hx = self.decoder(hx, residual_1, residual_2) #print("Network decoder output size: ", hx.shape) hx = self.conv_2(hx) hx = self.relu_2(hx) hx = hx + x #print("Network conv_2 >> output size: ", hx.shape) return hx if __name__ == '__main__': # Debug logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) net = TANet().cuda() input = torch.randn(1, 3, 256, 256).cuda() with torch.no_grad(): out = net(input) flops, params = profile(net, (input,)) flops = flops / out.shape[1] print('FLOPs = ' + str(flops / 1000 ** 3) + 'G') print('Params = ' + str(params / 1000 ** 2) + 'M')

class iMobileNetV3Block(nn.Module): def __init__( self, in_channels: int, # 输入通道数 exp_channels: int, # 扩展层通道数(用于深度可分离卷积的中间扩展) out_channels: int, # 输出通道数 kernel_size: int = 3, # 卷积核大小(通常为3或5) stride: int = 1, # 步长(1或2,用于下采样) use_se: bool = False, # 是否使用 Squeeze-and-Excitation 注意力 activation: str = "relu" # 激活函数('relu'/'hswish'/'leakyrelu') ): super().__init__() self.stride = stride self.use_se = use_se self.in_channels = in_channels self.out_channels = out_channels # --------------- 构建模块核心层 --------------- # 1. 扩展层(1x1卷积,提升通道数) self.expand_conv = nn.Conv2d( in_channels, exp_channels, kernel_size=1, stride=1, bias=False ) self.expand_bn = nn.BatchNorm2d(exp_channels) self.expand_act = self._get_activation(activation) # 2. 深度可分离卷积(DWConv + BN + Activation) self.dw_conv = nn.Conv2d( exp_channels, exp_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=exp_channels, # 关键:groups=exp_channels 实现深度可分离 bias=False ) self.dw_bn = nn.BatchNorm2d(exp_channels) self.dw_act = self._get_activation(activation) # 3. Squeeze-and-Excitation 注意力(可选) if self.use_se: self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(exp_channels, exp_channels // 4, 1), nn.ReLU(inplace=True), nn.Conv2d(exp_channels // 4, exp_channels, 1), nn.Hardsigmoid() # MobileNetV3 使用 Hardsigmoid ) # 4. 投影层(1x1卷积,降回目标通道数) self.project_conv = nn.Conv2d( exp_channels, out_channels, kernel_size=1, stride=1, bias=False ) self.project_bn = nn.BatchNorm2d(out_channels) # 5. 残差连接(当输入输出通道相同且 stride=1 时启用) self.use_residual = (in_channels == out_channels) and (stride == 1) def _get_activation(self, name: str) -> nn.Module: """选择激活函数""" if name == "relu": return nn.ReLU(inplace=True) elif name == "hswish": return nn.Hardswish(inplace=True) # MobileNetV3 特色激活 elif name == "leakyrelu": return nn.LeakyReLU(0.1, inplace=True) else: raise ValueError(f"Unsupported activation: {name}") def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x # 保留原始输入用于残差连接 # 扩展层 x = self.expand_act(self.expand_bn(self.expand_conv(x))) # 深度可分离卷积 x = self.dw_act(self.dw_bn(self.dw_conv(x))) # SE注意力(若有) if self.use_se: se_weight = self.se(x) x = x * se_weight # 通道注意力加权 # 投影层 x = self.project_bn(self.project_conv(x)) # 残差连接(条件满足时) if self.use_residual: x = x + identity return x清设置正确的权重维度与输入通道数,其关键矛盾:该层期望输入有 64 64 个通道(对应权重维度 [32,64,1,1]),但实际输入只有 3 个通道,请帮我解决

可不可以写一个myyolov1把卷积模块替换为深度可分离卷积的形式,类似于mobilenetv1: class YOLOv1(nn.Module): def init(self, grid_size=7, num_boxes=2, num_classes=1): “”" YOLOv1 单类检测模型 参数: - grid_size: 特征网格大小 (默认 7x7) - num_boxes: 每个网格预测的边界框数量 (默认 2) - num_classes: 检测类别数 (单类设置为 1) """ super(YOLOv1, self).__init__() self.grid_size = grid_size self.num_boxes = num_boxes self.num_classes = num_classes # 每个网格的输出维度: [x, y, w, h, confidence] * num_boxes + num_classes self.output_dim = num_boxes * 5 + num_classes # 卷积特征提取层 (模仿 YOLOv1 的 24 层卷积结构) self.features = nn.Sequential( # 第1组卷积 nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), # 448x448 -> 224x224 nn.BatchNorm2d(64), nn.LeakyReLU(0.1), nn.MaxPool2d(kernel_size=2, stride=2), # 224x224 -> 112x112 # 第2组卷积 nn.Conv2d(64, 192, kernel_size=3, padding=1), # 112x112 nn.BatchNorm2d(192), nn.LeakyReLU(0.1), nn.MaxPool2d(kernel_size=2, stride=2), # 112x112 -> 56x56 # 第3组卷积 (1x1 + 3x3) nn.Conv2d(192, 128, kernel_size=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.1), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.1), # 第4组卷积 (1x1 + 3x3) nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.1), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.1), nn.MaxPool2d(kernel_size=2, stride=2), # 56x56 -> 28x28 # 第5-8组卷积 (4组 1x1 + 3x3) *self._make_conv_group(512, 512, 512, num_blocks=4), nn.MaxPool2d(kernel_size=2, stride=2), # 28x28 -> 14x14 # 第9-12组卷积 (4组 1x1 + 3x3) *self._make_conv_group(512, 512, 1024, num_blocks=4), # 最终卷积层 nn.Conv2d(1024, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.LeakyReLU(0.1), nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1), # 14x14 -> 7x7 nn.BatchNorm2d(1024), nn.LeakyReLU(0.1), ) # 全连接层 self.fc = nn.Sequential( nn.Flatten(), nn.Linear(1024 * grid_size * grid_size, 4096), nn.Dropout(0.5), nn.LeakyReLU(0.1), nn.Linear(4096, grid_size * grid_size * self.output_dim) ) # 初始化权重 self._initialize_weights() def _make_conv_group(self, in_channels, mid_channels, out_channels, num_blocks): """创建连续的卷积块组 (1x1 卷积 + 3x3 卷积)""" layers = [] for _ in range(num_blocks): layers += [ nn.Conv2d(in_channels, mid_channels, kernel_size=1), nn.BatchNorm2d(mid_channels), nn.LeakyReLU(0.1), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.LeakyReLU(0.1) ] in_channels = out_channels return layers def _initialize_weights(self): """初始化模型权重""" for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def forward(self, x): """前向传播 输入: - x: 输入图像张量 [batch_size, 3, 448, 448] 输出: - output: 预测张量 [batch_size, grid_size, grid_size, output_dim] """ x = self.features(x) # [batch_size, 1024, 7, 7] x = self.fc(x) # [batch_size, grid_size * grid_size * output_dim] # 重塑为最终输出格式 output = x.view(-1, self.grid_size, self.grid_size, self.output_dim) return output

下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)

再次修改下面的代码按照我的提议,1.mask生成器输入的是depth,img生成器输入的是mask,你搞错了。2.为两个生成器增加编码器和解码器之间的中间层用残差模块。3.两个生成器都需要多尺度跳接注意力,分别是基于深度(mask生成器)和mask(img生成器) 的注意力。4.去除三次迭代优化的设计,正常的一次迭代就可以了。import torch import torch.nn as nn import torch.nn.functional as F class ConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super().__init__() padding = kernel_size // 2 self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), nn.BatchNorm2d(out_channels), nn.LeakyReLU(0.1, inplace=True) ) def forward(self, x): return self.conv(x) class UpsampleConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None): super().__init__() self.upsample = upsample padding = kernel_size // 2 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.upsample: x = F.interpolate(x, scale_factor=self.upsample, mode='bilinear', align_corners=True) return self.act(self.bn(self.conv(x))) # ============= 严格使用您提供的原始模块 ============= class ResASPPB2(nn.Module): def __init__(self, inchannels, channels): super(ResASPPB2, self).__init__() self.conv_1_0 = nn.Sequential( nn.Conv2d(inchannels, channels//2, 3, 1, 1, dilation=1, bias=False), nn.LeakyReLU(0.1, inplace=True)) self.conv_1_1 = nn.Sequential( nn.Conv2d(inchannels, channels//2, 3, 1, 2, dilation=2, bias=False), nn.LeakyReLU(0.1, inplace=True)) self.conv_1_2 = nn.Sequential( nn.Conv2d(inchannels, channels//2, 3, 1, 4, dilation=4, bias=False), nn.LeakyReLU(0.1, inplace=True)) self.conv_1_3 = nn.Sequential(

Reference: @inproceedings{fang2021mosaicking, title={Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data}, author={Fang, Gongfan and Bao, Yifan and Song, Jie and Wang, Xinchao and Xie, Donglin and Shen, Chengchao and Song, Mingli}, booktitle={Thirty-Fifth Conference on Neural Information Processing Systems}, year={2021} } ''' import torch import torch.nn as nn import torch.nn.functional as F class Flatten(nn.Module): def __init__(self): super(Flatten, self).__init__() def forward(self, x): return torch.flatten(x, 1) class Generator(nn.Module): def __init__(self, nz=100, ngf=64, img_size=32, nc=3): super(Generator, self).__init__() self.init_size = img_size // 4 self.l1 = nn.Sequential(nn.Linear(nz, ngf * 4 * self.init_size ** 2)) self.conv_blocks = nn.Sequential( #nn.Conv2d(ngf*8, ngf*4, 3, stride=1, padding=1), nn.BatchNorm2d(ngf * 4), nn.Upsample(scale_factor=2), nn.Conv2d(ngf*4, ngf*2, 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(ngf*2), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(ngf*2, ngf, 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ngf, nc, 3, stride=1, padding=1), nn.Sigmoid(), ) def forward(self, z): out = self.l1(z) out = out.view(out.shape[0], -1, self.init_size, self.init_size) img = self.conv_blocks(out) return img class CondGenerator(nn.Module): def __init__(self, nz=100, ngf=64, img_size=32, nc=3, num_classes=100): super(CondGenerator, self).__init__() self.num_classes = num_classes self.emb = nn.Embedding(num_classes, nz) self.init_size = img_size // 4 self.l1 = nn.Sequential(nn.Linear(2*nz, ngf * 4 * self.init_size ** 2)) self.conv_blocks = nn.Sequential( nn.BatchNorm2d(ngf * 4), nn.Upsample(scale_factor=2), nn.Conv2d(ngf*4, ngf*2, 3, stride=1, padding=1), nn.BatchNorm2d(ngf*2), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(ngf*2, ngf, 3, stride=1, padding=1), nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ngf, nc, 3, stride=1, padding=1), nn.Sigmoid(), ) def forward(self, z, y): y = self.emb(y) y = y / torch.norm(y, p=2, dim=1, keepdim=True) out = self.l1(torch.cat([z, y], dim=1)) out = out.view(out.shape[0], -1, self.init_size, self.init_size) img = self.conv_blocks(out) return img class Discriminator(nn.Module): def __init__(self, nc=3, img_size=32, ndf=64): super(Discriminator, self).__init__() def discriminator_block(in_filters, out_filters, bn=True): block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)] if bn: block.append(nn.BatchNorm2d(out_filters)) return block self.model = nn.Sequential( *discriminator_block(nc, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = img_size // 2 ** 4 self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) def forward(self, img): out = self.model(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) return validity class PatchDiscriminator(nn.Module): def __init__(self, nc=3, ndf=128, output_stride=1): super(PatchDiscriminator, self).__init__() self.output_stride = output_stride self.main = nn.Sequential( # input is (nc) x 32 x 32 nn.Conv2d(nc, ndf, 4, 2, 1), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 16 x 16 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 8 x 8 nn.Conv2d(ndf * 2, 1, 1, 1, 0, bias=False), ) def forward(self, input): return self.main(input)[:, :, ::self.output_stride, ::self.output_stride] class InceptionDiscriminator(nn.Module): def __init__(self, in_channel, hidden_channel): super(InceptionDiscriminator, self).__init__() self.model = nn.Sequential( nn.Conv2d(in_channel, hidden_channel, kernel_size=1, bias=False), nn.BatchNorm2d(hidden_channel), nn.LeakyReLU(inplace=True), nn.Conv2d(hidden_channel, 1, kernel_size=1, bias=False), ) def forward(self, img): validity = self.model(img) return validity class DeeperPatchDiscriminator(nn.Module): def __init__(self, nc=3, ndf=64): super(DeeperPatchDiscriminator, self).__init__() self.main = nn.Sequential( # input is (nc) x 224 x 224 nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 112 x 112 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*2) x 56 x 56 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # 24 x 24 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 14 x 14 nn.Conv2d(ndf * 8, 1, 1, 1, 0, bias=False), ) def forward(self, input): return self.main(input) class DeepGenerator(nn.Module): def __init__(self, nz=100, ngf=64, img_size=32, nc=3): super(DeepGenerator, self).__init__() self.init_size = img_size // 32 self.l1 = nn.Sequential(nn.Linear(nz, ngf * self.init_size ** 2)) self.conv_blocks = nn.Sequential( nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(ngf, ngf, 3, stride=1, padding=1), nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(ngf, ngf, 3, stride=1, padding=1), nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(ngf, ngf, 3, stride=1, padding=1), nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(ngf, ngf, 3, stride=1, padding=1), nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(ngf, ngf, 3, stride=1, padding=1), nn.BatchNorm2d(ngf), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ngf, nc, 3, stride=1, padding=1), nn.Sigmoid(), ) def forward(self, z): out = self.l1(z) out = out.view(out.shape[0], -1, self.init_size, self.init_size) img = self.conv_blocks(out) return img class DeepPatchDiscriminator(nn.Module): def __init__(self, nc=3, ndf=64): super(DeepPatchDiscriminator, self).__init__() self.main = nn.Sequential( # input is (nc) x 112 x 112 nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 112 x 112 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*2) x 56 x 56 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 28 x 28 nn.Conv2d(ndf * 4, 1, 1, 1, 0, bias=False), ) def forward(self, input): return self.main(input)

import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.nn.utils import weight_norm class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) def show(self, input, pool_size=(2, 2), pool_type='avg'): x = input x = F.relu_(self.bn1(self.conv1(x))) x = F.relu_(self.bn2(self.conv2(x))) return x def forward(self, input, pool_size=(2, 2), pool_type='avg'): x = input x = F.relu_(self.bn1(self.conv1(x))) x = F.relu_(self.bn2(self.conv2(x))) if pool_type == 'max': x = F.max_pool2d(x, kernel_size=pool_size) elif pool_type == 'avg': x = F.avg_pool2d(x, kernel_size=pool_size) else: raise Exception('Incorrect argument!') return x def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class TFBlock(nn.Module): def __init__(self, in_channels, out_channels): super(TFBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.alpha = nn.Parameter(torch.cuda.FloatTensor([.1, .1, .1])) self.bnx = nn.BatchNorm2d(1) self.bny = nn.BatchNorm2d(1) self.bnz = nn.BatchNorm2d(out_channels) self.bna = nn.BatchNorm2d(out_channels) self.bnb = nn.BatchNorm2d(out_channels) self.conv3 = nn.Conv2d(in_channels=out_channels, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False) self.conv4 = nn.Conv2d(in_channels=out_channels, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False) if out_channels == 64: self.globalAvgPool2 = nn.AvgPool2d((250,1), stride=1) self.globalAvgPool3 = nn.AvgPool2d((1,40), stride=1) self.globalMaxPool2 = nn.MaxPool2d((1,64), stride=1) self.globalMaxPool3 = nn.MaxPool2d((64,1), stride=1) self.fc1 = nn.Linear(in_features=40, out_features=40) self.fc2 = nn.Linear(in_features=250, out_features=250) elif out_channels == 128: self.globalAvgPool2 = nn.AvgPool2d((125,1), stride=1) self.globalAvgPool3 = nn.AvgPool2d((1,20), stride=1) self.globalMaxPool2 = nn.MaxPool2d((1,128), stride=1) self.globalMaxPool3 = nn.MaxPool2d((128,1), stride=1) self.fc1 = nn.Linear(in_features=20, out_features=20) self.fc2 = nn.Linear(in_features=125, out_features=125) elif out_channels == 256: self.globalAvgPool2 = nn.AvgPool2d((62,1), stride=1) self.globalAvgPool3 = nn.AvgPool2d((1,10), stride=1) self.globalMaxPool2 = nn.MaxPool2d((1,128), stride=1) self.globalMaxPool3 = nn.MaxPool2d((128,1), stride=1) self.fc1 = nn.Linear(in_features=10, out_features=10) self.fc2 = nn.Linear(in_features=62, out_features=62) elif out_channels == 512: self.globalAvgPool2 = nn.AvgPool2d((31,1), stride=1) self.globalAvgPool3 = nn.AvgPool2d((1,5), stride=1) self.globalMaxPool2 = nn.MaxPool2d((1,128), stride=1) self.globalMaxPool3 = nn.MaxPool2d((128,1), stride=1) self.fc1 = nn.Linear(in_features=5, out_features=5) self.fc2 = nn.Linear(in_features=31, out_features=31) self.sigmoid = nn.Sigmoid() self.sigmoid2 = nn.Sigmoid() self.downsample = conv1x1(in_channels, out_channels) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.LeakyReLU(0.2) def show(self, input, pool_size=(2, 2), pool_type='avg'): x = input x = self.bn1(self.relu(self.conv1(x))) x = self.bn2(self.relu(self.conv2(x))) out1 = x.clone() res = x.clone() y = x.clone() y = self.bnx(self.relu(self.conv3(y))) out6 = y.clone() res_2 = x.clone() z = x.clone() z = self.bny(self.relu(self.conv4(z))) res_3 = x.clone() out7 = z.clone() h = x.clone() res_2 = res_2.transpose(1,3) y = y.transpose(1,3) y = self.globalAvgPool2(y) y = y.view(y.size(0), -1) y = self.sigmoid(y) y = y.view(y.size(0), y.size(1), 1, 1) y = y * res_2 y = y.transpose(1,3) y = self.bna(y) out2=y.clone() res_3 = res_3.transpose(1,2) z = z.transpose(1,2) z = self.globalAvgPool3(z) z = z.view(z.size(0), -1) z = self.sigmoid(z) z = z.view(z.size(0), z.size(1), 1, 1) z = z * res_3 z = z.transpose(1,2) z = self.bnb(z) out3 = z.clone() so_alpha = F.softmax(self.alpha,dim=0) x = so_alpha[0]*h + so_alpha[1]*y + so_alpha[2]*z x = self.relu(x) out4 = x.clone() if pool_type == 'max': x = F.max_pool2d(x, kernel_size=pool_size) elif pool_type == 'avg': x = F.avg_pool2d(x, kernel_size=pool_size) else: raise Exception('Incorrect argument!') out5 = x.clone() out1 = torch.mean(out1, dim=1) out2 = torch.mean(out2, dim=1) out3 = torch.mean(out3, dim=1) out4 = torch.mean(out4, dim=1) out5 = torch.mean(out5, dim=1) return out1, out2, out3, out4, out5, out6, out7 def forward(self, input, pool_size=(2, 2), pool_type='avg'): x = input x = self.bn1(self.relu(self.conv1(x))) x = self.bn2(self.relu(self.conv2(x))) res = x.clone() y = x.clone() y = self.bnx(self.relu(self.conv3(y))) res_2 = x.clone() z = x.clone() z = self.bny(self.relu(self.conv4(z))) res_3 = x.clone() h = x.clone() res_2 = res_2.transpose(1,3) y = y.transpose(1,3) y = self.globalAvgPool2(y) y = y.view(y.size(0), -1) y = self.sigmoid(y) y = y.view(y.size(0), y.size(1), 1, 1) y = y * res_2 y = y.transpose(1,3) y = self.bna(y) res_3 = res_3.transpose(1,2) z = z.transpose(1,2) z = self.globalAvgPool3(z) z = z.view(z.size(0), -1) z = self.sigmoid(z) z = z.view(z.size(0), z.size(1), 1, 1) z = z * res_3 z = z.transpose(1,2) z = self.bnb(z) so_alpha = F.softmax(self.alpha,dim=0) x = so_alpha[0]*h + so_alpha[1]*y + so_alpha[2]*z x = self.relu(x) if pool_type == 'max': x = F.max_pool2d(x, kernel_size=pool_size) elif pool_type == 'avg': x = F.avg_pool2d(x, kernel_size=pool_size) else: raise Exception('Incorrect argument!') return x class TFNet(nn.Module): def __init__(self, classes_num=10, activation='logsoftmax'): super(TFNet, self).__init__() self.activation = activation self.tfblock1 = TFBlock(in_channels=1, out_channels=64) self.tfblock2 = TFBlock(in_channels=64, out_channels=128) self.tfblock3 = TFBlock(in_channels=128, out_channels=256) self.tfblock4 = TFBlock(in_channels=256, out_channels=512) self.fc = nn.Linear(512, classes_num, bias=True) def show(self, input): x = input[:,None,:,:] '''(batch_size, 1, times_steps, freq_bins)''' out1, out2, out3, out4, out5, out6, out7 = self.conv_block1.show(x) x = self.tfblock1(x, pool_size=(2, 2), pool_type='avg') x1 = torch.mean(x, dim=1) x = self.tfblock2(x, pool_size=(2, 2), pool_type='avg') x2 = torch.mean(x, dim=1) x = self.tfblock3(x, pool_size=(2, 2), pool_type='avg') x3 = torch.mean(x, dim=1) x = self.tfblock4(x, pool_size=(2, 2), pool_type='avg') x4 = torch.mean(x, dim=1) return x1, x2, x3, x4, out1, out2, out3, out4, out5, out6, out7 def forward(self, input): ''' Input: (batch_size, seq_number, times_steps, freq_bins)''' x = input[:, 0 , : , :] x = x[:, None, :, :] '''(batch_size, 1, times_steps, freq_bins)''' x = self.tfblock1(x, pool_size=(2, 2), pool_type='avg') x = self.tfblock2(x, pool_size=(2, 2), pool_type='avg') x = self.tfblock3(x, pool_size=(2, 2), pool_type='avg') x = self.tfblock4(x, pool_size=(2, 2), pool_type='avg') '''(batch_size, feature_maps, time_steps, freq_bins)''' x = torch.mean(x, dim=3) # (batch_size, feature_maps, time_stpes) (x, _) = torch.max(x, dim=2) # (batch_size, feature_maps) x = self.fc(x) if self.activation == 'logsoftmax': output = F.log_softmax(x, dim=-1) elif self.activation == 'sigmoid': output = torch.sigmoid(x) return output class Cnn(nn.Module): def __init__(self, classes_num=50, activation='logsoftmax'): super(Cnn, self).__init__() self.activation = activation self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) self.fc2 = nn.Linear(512, 512, bias=True) self.dropout = nn.Dropout(p=0.5) self.fc = nn.Linear(512, classes_num, bias=True) def forward(self, input): ''' Input: (batch_size, seq_number, times_steps, freq_bins)''' x = input[:, 0, :, :] x = x[:, None, :, :] '''(batch_size, 1, times_steps, freq_bins)''' x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg') x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg') x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg') x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg') '''(batch_size, feature_maps, time_steps, freq_bins)''' x = torch.mean(x, dim=3) # (batch_size, feature_maps, time_stpes) (x, _) = torch.max(x, dim=2) # (batch_size, feature_maps) x = self.fc(x) if self.activation == 'logsoftmax': output = F.log_softmax(x, dim=-1) elif self.activation == 'sigmoid': output = torch.sigmoid(x) return output

最新推荐

recommend-type

mmexport1757855955612.mp4

mmexport1757855955612.mp4
recommend-type

【scratch2.0少儿编程-游戏原型-动画-项目源码】魔发师的故事.zip

资源说明: 1:本资料仅用作交流学习参考,请切勿用于商业用途。更多精品资源请访问 https://blog.csdn.net/ashyyyy/article/details/146464041 2:一套精品实用scratch2.0少儿编程游戏、动画源码资源,无论是入门练手还是项目复用都超实用,省去重复开发时间,让开发少走弯路!
recommend-type

研究Matlab影响下的神经数值可复制性

### Matlab代码影响神经数值可复制性 #### 标题解读 标题为“matlab代码影响-neural-numerical-replicability:神经数值可复制性”,该标题暗示了研究的主题集中在Matlab代码对神经数值可复制性的影响。在神经科学研究中,数值可复制性指的是在不同计算环境下使用相同的算法与数据能够获得一致或相近的计算结果。这对于科学实验的可靠性和结果的可验证性至关重要。 #### 描述解读 描述中提到的“该项目”着重于提供工具来分析不同平台下由于数值不精确性导致的影响。项目以霍奇金-赫克斯利(Hodgkin-Huxley)型神经元组成的简单神经网络为例,这是生物物理神经建模中常见的模型,用于模拟动作电位的产生和传播。 描述中提及的`JCN_2019_v4.0_appendix_Eqs_Parameters.pdf`文件详细描述了仿真模型的参数与方程。这些内容对于理解模型的细节和确保其他研究者复制该研究是必不可少的。 该研究的实现工具选用了C/C++程序语言。这表明了研究的复杂性和对性能的高要求,因为C/C++在科学计算领域内以其高效性和灵活性而广受欢迎。 使用了Runge–Kutta四阶方法(RK4)求解常微分方程(ODE),这是一种广泛应用于求解初值问题的数值方法。RK4方法的精度和稳定性使其成为众多科学计算问题的首选。RK4方法的实现借助了Boost C++库中的`Boost.Numeric.Odeint`模块,这进一步表明项目对数值算法的实现和性能有较高要求。 #### 软件要求 为了能够运行该项目,需要满足一系列软件要求: - C/C++编译器:例如GCC,这是编译C/C++代码的重要工具。 - Boost C++库:一个强大的跨平台C++库,提供了许多标准库之外的组件,尤其是数值计算相关的部分。 - ODEint模块:用于求解常微分方程,是Boost库的一部分,已包含在项目提供的文件中。 #### 项目文件结构 从提供的文件列表中,我们可以推测出项目的文件结构包含以下几个部分: - **项目树源代码目录**:存放项目的主要源代码文件。 - `checkActualPrecision.h`:一个头文件,可能用于检测和评估实际的数值精度。 - `HH_BBT2017_allP.cpp`:源代码文件,包含用于模拟霍奇金-赫克斯利神经元网络的代码。 - `iappDist_allP.cpp` 和 `iappDist_allP.h`:源代码和头文件,可能用于实现某种算法或者数据的分布。 - `Makefile.win`:针对Windows系统的编译脚本文件,用于自动化编译过程。 - `SpikeTrain_allP.cpp` 和 `SpikeTrain_allP.h`:源代码和头文件,可能与动作电位的生成和传播相关。 - **人物目录**:可能包含项目成员的简介、联系方式或其他相关信息。 - **Matlab脚本文件**: - `图1_as.m`、`图2_as.m`、`图2_rp`:这些文件名中的"as"可能表示"assembled",而"rp"可能指"reproduction"。这些脚本文件很可能用于绘制图表、图形,以及对模拟结果进行后处理和复现实验。 #### 开源系统标签 标签“系统开源”指的是该项目作为一个开源项目被开发,意味着其源代码是公开的,任何个人或组织都可以自由获取、修改和重新分发。这对于科学计算来说尤为重要,因为开放代码库可以增进协作,加速科学发现,并确保实验结果的透明度和可验证性。 #### 总结 在理解了文件中提供的信息后,可以认识到本项目聚焦于通过提供准确的数值计算工具,来保证神经科学研究中模型仿真的可复制性。通过选择合适的编程语言和算法,利用开源的库和工具,研究者们可以确保其研究结果的精确性和可靠性。这不仅有助于神经科学领域的深入研究,还为其他需要高精度数值计算的科研领域提供了宝贵的经验和方法。
recommend-type

MySQL数据库索引失效案例分析与解决方案(索引失效大揭秘)

# 摘要 MySQL索引失效是数据库性能优化中的关键问题,直接影响查询效率与系统响应速度。本文系统分析了索引的基本机制与失效原理,包括B+树结构、执行计划解析及查询优化器的工作逻辑,深入探讨了索引失效的典型场景,如不规范SQL写法、复合索引设计不当以及统
recommend-type

TS语言

### TypeScript 简介 TypeScript 是一种由 Microsoft 开发的开源编程语言,它是 JavaScript 的超集,这意味着所有的 JavaScript 代码都是合法的 TypeScript 代码。TypeScript 扩展了 JavaScript 的语法,并通过类型注解提供编译时的静态类型检查,从而使得代码更易于维护、理解和调试。TypeScript 可以在任何操作系统上运行,并且可以编译出纯净、简洁的 JavaScript 代码,这些代码可以在任何浏览器上、Node.js 环境中,或者任何支持 ECMAScript 3(或更高版本)的 JavaScript 引
recommend-type

Leaflet.Graticule插件:创建经纬度网格刻度

标题“Leaflet.Graticule:经纬线网格”指向的是Leaflet.js的一个插件,它用于在地图上生成经纬度网格线,以辅助进行地图定位与参考。从描述中,我们可以提取到几个关键知识点: 1. Leaflet.Graticule插件的使用目的和功能:该插件的主要作用是在基于Leaflet.js库的地图上绘制经纬度网格线。这可以帮助用户在地图上直观地看到经纬度划分,对于地理信息系统(GIS)相关工作尤为重要。 2. 插件的构造函数和参数:`L.graticule(options)`是创建Graticule图层的JavaScript代码片段。其中`options`是一个对象,可以用来设置网格线的显示样式和间隔等属性。这表明了插件的灵活性,允许用户根据自己的需求调整网格线的显示。 3. interval参数的含义:`interval`参数决定了网格线的间隔大小,以度为单位。例如,若设置为20,则每20度间隔显示一条网格线;若设置为10,则每10度显示一条网格线。这一参数对于调节网格线密度至关重要。 4. style参数的作用:`style`参数用于定义网格线的样式。插件提供了自定义线的样式的能力,包括颜色、粗细等,使得开发者可以根据地图的整体风格和个人喜好来定制网格线的外观。 5. 实例化和添加到地图上的例子:提供了两种使用插件的方式。第一种是直接创建一个基本的网格层并将其添加到地图上,这种方式使用了插件的默认设置。第二种是创建一个自定义间隔的网格层,并同样将其添加到地图上。这展示了如何在不同的使用场景下灵活运用插件。 6. JavaScript标签的含义:标题中“JavaScript”这一标签强调了该插件是使用JavaScript语言开发的,它是前端技术栈中重要的部分,特别是在Web开发中扮演着核心角色。 7. 压缩包子文件的文件名称列表“Leaflet.Graticule-master”暗示了插件的项目文件结构。文件名表明,这是一个典型的GitHub仓库的命名方式,其中“master”可能代表主分支。通常,开发者可以在如GitHub这样的代码托管平台上找到该项目的源代码和文档,以便下载、安装和使用。 综上所述,可以得知,Leaflet.Graticule插件是一个专为Leaflet地图库设计的扩展工具,它允许用户添加自定义的经纬度网格线到地图上,以帮助进行地图的可视化分析。开发者可以根据特定需求通过参数化选项来定制网格线的属性,使其适应不同的应用场景。通过学习和使用该插件,可以增强地图的交互性和信息的传递效率。
recommend-type

【MySQL数据库性能提升秘籍】:揭秘性能下降幕后真凶及解决策略

# 摘要 MySQL性能问题在实际应用中普遍存在,但其表象复杂且易引发认知误区。本文系统分析了导致MySQL性能下降的核心原因,涵盖查询语句结构、数据库配置、表结构设计等多个技术层面,并结合性能监控工具与执行计划解析,提供了全面的问题诊断方法。在此基础上,文章深入探讨了索引优化、查询重写、分库分表等高级调优策略,并通过真实案例总结了可行的最佳实践
recommend-type

51小车循迹红外

基于51单片机的红外循迹小车的实现方法,主要涉及硬件连接、传感器模块的使用以及程序设计三个方面。 ### 红外循迹模块的选择与连接 红外循迹模块通常由多个红外发射和接收对管组成,用于检测地面上的黑线。常见的模块有四路红外循迹模块,其工作原理是通过检测红外光的反射强度来判断是否处于黑线上。红外模块的VCC和GND分别连接到51单片机的+5V和GND端,而IN1至IN4则连接到单片机的对应引脚上。红外发射接收器应安装在小车前方下端,并且离地面的距离不宜过远,以确保能够有效检测到黑线[^2]。 ### 硬件电路设计 在硬件设计方面,需要考虑电机驱动、电源管理、以及红外传感器的接口设计。51单片机
recommend-type

AMEF图像去雾技术:Matlab实现与应用

AMEF(Artificial Multi-Exposure Fusion)方法是一种用于图像去雾的技术,其核心思想是将多张曝光不足的图像融合成一张清晰无雾的图片。在讨论这个技术的Matlab实现之前,让我们先了解图像去雾和多重曝光融合的背景知识。 图像去雾技术的目标是恢复在雾中拍摄的图像的清晰度,增强图像的对比度和颜色饱和度,使得原本因雾气影响而模糊的图像变得清晰。这种技术在自动驾驶、无人机导航、视频监控、卫星图像处理等领域有着重要的应用。 多重曝光技术源自摄影领域,通过拍摄同一场景的多张照片,再将这些照片通过特定算法融合,获得一张综合了多张照片信息的图像。多重曝光融合技术在提高图像质量方面发挥着重要作用,例如增加图片的动态范围,提升细节和亮度,消除噪点等。 在介绍的AMEF去雾方法中,该技术被应用于通过人工创建的多重曝光图像进行融合,以产生清晰的无雾图像。由于单一图像在光照不均匀或天气条件不佳的情况下可能会产生图像质量低下的问题,因此使用多重曝光融合可以有效地解决这些问题。 在Matlab代码实现方面,AMEF的Matlab实现包括了一个名为amef_demo.m的演示脚本。用户可以通过修改该脚本中的图像名称来处理他们自己的图像。在该代码中,clip_range是一个重要的参数,它决定了在去雾处理过程中,对于图像像素亮度值的裁剪范围。在大多数实验中,该参数被设定为c=0.010,但用户也可以根据自己的需求进行调整。较大的clip_range值会尝试保留更多的图像细节,但同时也可能引入更多噪声,因此需要根据图像的具体情况做出适当选择。 AMEF方法的理论基础和实验过程均来自于Adrian Galdran在2018年发表于《信号处理》期刊的文章,题为“Image Dehazing by Artificial Multi-Exposure Image Fusion”。同时,该Matlab代码的融合部分的理论基础则来自于2007年Pacific Graphics会议记录中由Tom Mertens, Jan Kautz和Frank Van Reeth提出的工作,题目为“Exposure Fusion”。因此,如果读者在实际应用中使用了这段代码,适当的引用这些工作是必要的学术礼仪。 此外,标签“系统开源”表明了该项目遵循开源精神,允许研究者、开发者及用户自由地访问、使用、修改和共享源代码。这一特点使得AMEF方法具有广泛的可访问性和可扩展性,鼓励了更广泛的研究和应用。 从压缩包子文件的文件名称列表中,我们可以看到AMEF去雾方法的Matlab实现的项目名为“amef_dehazing-master”。这表明了这是一个有主分支的项目,其主分支被标识为“master”,这通常意味着它是项目维护者认可的稳定版本,也是用户在使用时应该选择的版本。 总的来说,AMEF去雾方法及其Matlab实现为图像处理领域提供了快速且有效的解决方案,能够在图像被雾气影响时恢复出高质量的清晰图像,这对于相关领域的研究和应用具有重要的意义。
recommend-type

泵浦光匹配建模全解析:MATLAB中耦合效率提升的4个关键点(实战案例)

# 摘要 泵浦光匹配建模在光纤激光器与光学系统设计中具有关键作用,直接影响光束耦合效率与系统整体性能。本文系统阐述了泵浦光匹配建模的基本概念与研究意义,深入分析其理论基础,包括光纤耦合原理、高斯光束传播特性及耦合效率的数学建模。基于MATLAB平台,介绍了光学仿真工具的使用与建模环境搭建方法,并提出四种关键建模策略以提升耦合效率。通过典型实例验证模型有效性