dp-sgd

时间: 2025-05-29 20:06:57 浏览: 23
### 差分隐私随机梯度下降(DP-SGD)算法及其实现 差分隐私随机梯度下降(Differentially Private Stochastic Gradient Descent, DP-SGD)是一种结合了差分隐私技术的机器学习优化算法,旨在保护训练过程中使用的敏感数据[^1]。以下是关于该算法的核心概念以及其实现的关键部分。 #### 1. 基础原理 DP-SGD 的核心思想是在传统的随机梯度下降(SGD)基础上增加噪声,从而满足差分隐私的要求。具体来说,为了确保模型不会泄露任何单个样本的信息,DP-SGD 对每一轮迭代中的梯度进行了裁剪和加噪处理。这种方法可以有效防止攻击者通过观察模型参数的变化推断出特定个体的数据是否存在训练集中[^2]。 #### 2. 实现细节 ##### (1)梯度裁剪(Gradient Clipping) 为了避免某些样本对整体梯度的影响过大,DP-SGD 需要对每个样本的梯度进行裁剪。通常会设置一个阈值 \(C\),使得如果某个样本的梯度范数超过此阈值,则将其缩放至不超过 \(C\)。这一过程可以用如下伪代码表示: ```python def clip_gradient(grad, C): norm = np.linalg.norm(grad) if norm > C: grad = (grad / norm) * C return grad ``` 此处 `clip_gradient` 函数的作用是对输入梯度向量进行裁剪,使其长度不超过指定的最大值 \(C\)[^1]。 ##### (2)添加噪声(Adding Noise) 在完成梯度裁剪之后,需要进一步向梯度中加入噪声以掩盖真实梯度的具体数值。常用的噪声形式为拉普拉斯噪声或高斯噪声。假设当前批次中有 \(m\) 个样本,则对于每一个被裁剪后的梯度 \(\nabla_i\),最终用于更新模型权重的梯度应为: \[ g' = \frac{1}{m} \sum_{i=1}^{m} (\text{clip\_gradient}(\nabla_i)) + N(0, \sigma I), \] 其中 \(N(0, \sigma I)\) 表示零均值、方差为 \(\sigma\) 的正态分布产生的噪声矩阵[^2]。 ##### (3)批量与 Lots 处理 实际应用中,DP-SGD 并不对每次单独的样本计算梯度并立即施加噪声,而是先将多个样本组合成一个小批量(batch),再由若干个小批量构成更大的集合——称为“Lot”。这样做的好处是可以减少因频繁引入噪声而导致的精度损失,同时保持较高的效率[^1]。 #### 3. 学习率的选择策略 除了上述提到的技术外,合理的学习率配置也是影响 DP-SGD 性能的重要因素之一。根据已有研究成果可知,采用固定学习率可能会因为缺乏灵活性而难以达到最佳效果;相比之下,动态调整或者自适应机制往往更加适合复杂的场景需求[^3]。 下面给出一段基于 TensorFlow Privacy 库实现的标准 Python 示例代码片段供参考: ```python from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPKerasSGDOptimizer # 定义超参 l2_norm_clip = 1.5 # 裁剪系数 noise_multiplier = 0.7 # 噪声倍增因子 num_microbatches = 8 # 微批次数量 learning_rate = 0.15 # 初始学习速率 optimizer = DPKerasSGDOptimizer( l2_norm_clip=l2_norm_clip, noise_multiplier=noise_multiplier, num_microbatches=num_microbatches, learning_rate=learning_rate) loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True, reduction=tf.losses.Reduction.NONE) model.compile(optimizer=optimizer, loss=make_private_loss(loss_fn)) ``` 以上代码展示了如何利用第三方库快速搭建支持差分隐私特性的 SGD 优化器实例[^4]。 ---
阅读全文

相关推荐

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release. Usage - Single-GPU training: $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch Usage - Multi-GPU DDP training: $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3 Models: https://github.com/ultralytics/yolov5/tree/master/models Datasets: https://github.com/ultralytics/yolov5/tree/master/data Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data """ import argparse import math import os os.environ["GIT_PYTHON_REFRESH"] = "quiet" # add there import random import sys import time from copy import deepcopy from datetime import datetime from pathlib import Path import numpy as np import torch import torch.distributed as dist import torch.nn as nn import yaml from torch.optim import lr_scheduler from tqdm import tqdm # import numpy # import torch.serialization # torch.serialization.add_safe_globals([numpy._core.multiarray._reconstruct]) FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative import val as validate # for end-of-epoch mAP from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.autobatch import check_train_batch_size from utils.callbacks import Callbacks from utils.dataloaders import create_dataloader from utils.downloads import attempt_download, is_url from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save) from utils.loggers import Loggers from utils.loggers.comet.comet_utils import check_comet_resume from utils.loss import ComputeLoss from utils.metrics import fitness from utils.plots import plot_evolve from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, smart_resume, torch_distributed_zero_first) LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) GIT_INFO = check_git_info() def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze callbacks.run('on_pretrain_routine_start') # Directories w = save_dir / 'weights' # weights dir (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir last, best = w / 'last.pt', w / 'best.pt' # Hyperparameters if isinstance(hyp, str): with open(hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) opt.hyp = hyp.copy() # for saving hyps to checkpoints # Save run settings if not evolve: yaml_save(save_dir / 'hyp.yaml', hyp) yaml_save(save_dir / 'opt.yaml', vars(opt)) # Loggers data_dict = None if RANK in {-1, 0}: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Process custom dataset artifact link data_dict = loggers.remote_dataset if resume: # If resuming runs from remote artifact weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Config plots = not evolve and not opt.noplots # create plots cuda = device.type != 'cpu' init_seeds(opt.seed + 1 + RANK, deterministic=True) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None train_path, val_path = data_dict['train'], data_dict['val'] nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset # Model check_suffix(weights, '.pt') # check weights pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location='cpu', weights_only=False) # load checkpoint to CPU to avoid CUDA memory leak model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create amp = check_amp(model) # check AMP # Freeze freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz, amp) loggers.on_params_update({"batch_size": batch_size}) # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) # Scheduler if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in {-1, 0} else None # Resume best_fitness, start_epoch = 0.0, 0 if pretrained: if resume: best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) del ckpt, csd # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()') # Trainloader train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) labels = np.concatenate(dataset.labels, 0) mlc = int(labels[:, 0].max()) # max label class assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' # Process 0 if RANK in {-1, 0}: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0] if not resume: if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor model.half().float() # pre-reduce anchor precision callbacks.run('on_pretrain_routine_end', labels, names) # DDP mode if cuda and RANK != -1: model = smart_DDP(model) # Model attributes nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) hyp['box'] *= 3 / nl # scale to layers hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nb = len(train_loader) # number of batches nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = torch.cuda.amp.GradScaler(enabled=amp) stopper, stop = EarlyStopping(patience=opt.patience), False compute_loss = ComputeLoss(model) # init loss class callbacks.run('on_train_start') LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ callbacks.run('on_train_epoch_start') model.train() # Update image weights (optional, single-GPU only) if opt.image_weights: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size')) if RANK in {-1, 0}: pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- callbacks.run('on_train_batch_start') ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward # with torch.cuda.amp.autocast(amp): with torch.amp.autocast(device_type='cuda'): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html if ni - last_opt_step >= accumulate: scaler.unscale_(optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in {-1, 0}: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%11s' * 2 + '%11.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss)) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in {-1, 0}: # mAP callbacks.run('on_train_epoch_end', epoch=epoch) ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: # Calculate mAP results, maps, _ = validate.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, half=amp, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss) # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]] stop = stopper(epoch=epoch, fitness=fi) # early stop check if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'opt': vars(opt), 'git': GIT_INFO, # {remote, branch, commit} if a git repo 'date': datetime.now().isoformat()} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if opt.save_period > 0 and epoch % opt.save_period == 0: torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) # EarlyStopping if RANK != -1: # if DDP training broadcast_list = [stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks if RANK != 0: stop = broadcast_list[0] if stop: break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in {-1, 0}: LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = validate.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=plots, callbacks=callbacks, compute_loss=compute_loss) # val best model with plots if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) callbacks.run('on_train_end', last, best, epoch, results) torch.cuda.empty_cache() return results def parse_opt(known=False): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='./weights/yolov5s.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='./models/yolov5s.yaml', help='model.yaml path') parser.add_argument('--data', type=str, default=r'C:data/AAAA.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=100, help='total training epochs') parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs, -1 for autobatch') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--noval', action='store_true', help='only validate final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') parser.add_argument('--noplots', action='store_true', help='save no plot files') parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk') parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') parser.add_argument('--name', default='welding_defect_yolov5s_20241101_300', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') parser.add_argument('--save-period', type=int, default=5, help='Save checkpoint every x epochs (disabled if < 1)') parser.add_argument('--seed', type=int, default=0, help='Global training seed') parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') # Logger arguments parser.add_argument('--entity', default=None, help='Entity') parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option') parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval') parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use') return parser.parse_known_args()[0] if known else parser.parse_args() def main(opt, callbacks=Callbacks()): # Checks if RANK in {-1, 0}: print_args(vars(opt)) check_git_status() check_requirements() # Resume (from specified or most recent last.pt) if opt.resume and not check_comet_resume(opt) and not opt.evolve: last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml opt_data = opt.data # original dataset if opt_yaml.is_file(): with open(opt_yaml, errors='ignore') as f: d = yaml.safe_load(f) else: d = torch.load(last, map_location='cpu')['opt'] opt = argparse.Namespace(**d) # replace opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate if is_url(opt_data): opt.data = check_file(opt_data) # avoid HUB resume auth timeout else: opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' if opt.evolve: if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve opt.project = str(ROOT / 'runs/evolve') opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume if opt.name == 'cfg': opt.name = Path(opt.cfg).stem # use model.yaml as name opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' assert not opt.image_weights, f'--image-weights {msg}' assert not opt.evolve, f'--evolve {msg}' assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") # Train if not opt.evolve: train(opt.hyp, opt, device, callbacks) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = { 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0), # image mixup (probability) 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) with open(opt.hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict if 'anchors' not in hyp: # anchors commented in hyp.yaml hyp['anchors'] = 3 if opt.noautoanchor: del hyp['anchors'], meta['anchors'] opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' if opt.bucket: os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists for _ in range(opt.evolve): # generations to evolve if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device, callbacks) callbacks = Callbacks() # Write mutation results keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss') print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket) # Plot results plot_evolve(evolve_csv) LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' f"Results saved to {colorstr('bold', save_dir)}\n" f'Usage example: $ python train.py --hyp {evolve_yaml}') def run(**kwargs): # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') opt = parse_opt(True) for k, v in kwargs.items(): setattr(opt, k, v) main(opt) return opt if __name__ == "__main__": opt = parse_opt() main(opt) 为什么训练之后,他的runs里面并没有显示best.pt跟last.pt 请查找原因

# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import torch.nn as nn # main.py 文件头部添加以下内容 import matplotlib matplotlib.use('Agg') # 用于无图形界面环境(必须放在plt导入前) import matplotlib.pyplot as plt from pathlib import Path from pathlib import Path from timm.data import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.scheduler import create_scheduler from timm.optim import create_optimizer from timm.utils import NativeScaler, get_state_dict, ModelEma from datasets import build_dataset from engine import train_one_epoch, evaluate from losses import DistillationLoss from samplers import RASampler from augment import new_data_aug_generator from torch.optim.lr_scheduler import CosineAnnealingLR from contextlib import suppress import models_mamba import utils # log about import mlflow def get_args_parser(): parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False) parser.add_argument('--batch-size', default=128, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') #128 parser.add_argument('--epochs', default=50, type=int, help='Total training epochs') # 延长训练周期 parser.add_argument('--bce-loss', action='store_true') parser.add_argument('--unscale-lr', action='store_true') # Model parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--input-size', default=224, type=int, help='images input size') #224 parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=0.2, metavar='PCT', help='Drop path rate (小数据集易过拟合)') # 增加DropPath率0.0-0.2 parser.add_argument('--model-ema', action='store_true') parser.add_argument('--no-model-ema', action='store_false', dest='model_ema') parser.set_defaults(model_ema=True) parser.add_argument('--model-ema-decay', type=float, default=0.99999, help='') #EMA模型平滑0.99996 parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') #parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', # help='Clip gradient norm (default: None, no clipping)') #parser.add_argument('--clip-grad', type=float, default=1.0, metavar='NORM', # help='Max gradient norm') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.15, help='weight decay (default: 0.05)') ## 增大权重衰减0.05-0.1 # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "cosine"') parser.add_argument('--lr', type=float, default=0.0001, metavar='LR', help='learning rate (default: 0.001)') #0.001 parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=20, metavar='N', help='epochs to warmup LR, if scheduler supports') # 延长warmup5-10,15 parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT', help='Color jitter factor (default: 0.3)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + \ "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.2, help='Label smoothing (default: 0.1)')#0.1 更强的标签平滑 parser.add_argument('--train-interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--repeated-aug', action='store_true') parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug') parser.set_defaults(repeated_aug=True) parser.add_argument('--train-mode', action='store_true') parser.add_argument('--no-train-mode', action='store_false', dest='train_mode') parser.set_defaults(train_mode=True) parser.add_argument('--ThreeAugment', action='store_true') #3augment parser.add_argument('--src', action='store_true') #simple random crop # * Random Erase params parser.add_argument('--reprob', type=float, default=0.0, metavar='PCT', help='Random erase prob (小数据集建议关闭)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.3, help='mixup alpha, mixup enabled if > 0. (default: 0.8)') #0.5,0.8 parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # Distillation parameters parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL', help='Name of teacher model to train (default: "regnety_160"') #regnety_160 添加教师模型配置resnet50 parser.add_argument('--teacher-path', type=str, default='') parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="") parser.add_argument('--distillation-alpha', default=0.7, type=float, help="") #0.5 教师模型配置 parser.add_argument('--distillation-tau', default=1.0, type=float, help="") # * Cosub params parser.add_argument('--cosub', action='store_true') # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--attn-only', action='store_true') # Dataset parameters parser.add_argument('--data-path', default=r'D:/ru_file/ruru_file/Desktop/cifar-10-python', type=str, help='D:/ru_file/ruru_file/Desktop/cifar-10-python') #parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'], # type=str, help='Image Net dataset path') parser.add_argument('--data-set', default='CIFAR10', choices=['CIFAR10', 'CIFAR100', 'IMNET', 'INAT', 'INAT19'], type=str, help='Dataset type (CIFAR10, CIFAR100, IMNET, etc)') parser.add_argument('--inat-category', default='name', choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'], type=str, help='semantic granularity') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation") parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--distributed', action='store_true', default=False, help='Enabling distributed training') parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') # amp about parser.add_argument('--if_amp', action='store_true', help='Enable NVIDIA Apex AMP training') parser.add_argument('--no_amp', action='store_false', dest='if_amp') parser.set_defaults(if_amp=True) # if continue with inf parser.add_argument('--if_continue_inf', action='store_true') parser.add_argument('--no_continue_inf', action='store_false', dest='if_continue_inf') parser.set_defaults(if_continue_inf=False) # if use nan to num parser.add_argument('--if_nan2num', action='store_true') parser.add_argument('--no_nan2num', action='store_false', dest='if_nan2num') parser.set_defaults(if_nan2num=False) # if use random token position #parser.add_argument('--if_random_cls_token_position', action='store_true') #parser.add_argument('--no_random_cls_token_position', action='store_false', dest='if_random_cls_token_position') #parser.set_defaults(if_random_cls_token_position=False) # if use random token rank #parser.add_argument('--if_random_token_rank', action='store_true') #parser.add_argument('--no_random_token_rank', action='store_false', dest='if_random_token_rank') #parser.set_defaults(if_random_token_rank=False) parser.add_argument('--local-rank', default=0, type=int) parser.add_argument('--use-acmix', action='store_true', help='启用ACMix模块') #加入新参数 parser.add_argument('--clip-grad', type=float, default=1.0, help='梯度裁剪阈值') #加入新参数 parser.add_argument('--acmix-kernel', type=int, default=5, help='ACMix卷积核大小') #加入新参数 parser.add_argument('--d-state', type=int, default=16, help='SSM状态维度') #加入新参数,16 parser.add_argument('--expand', type=int, default=4, help='SSM扩展因子') #加入新参数,2,1 #parser.add_argument('--input-size', type=int, default=32, help='CIFAR-10 的标准输入尺寸为 32x32') parser.add_argument('--early-stop', type=int, default=10, help='Early stopping patience')#15 return parser def plot_loss_curves(train_loss_history, val_loss_history, output_dir): """绘制训练和验证损失曲线并保存图像""" plt.figure(figsize=(10, 6)) plt.plot(train_loss_history, label='Training Loss', marker='o') plt.plot(val_loss_history, label='Validation Loss', marker='x') plt.title('Training and Validation Loss Curves') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.grid(True) # 保存图像到输出目录 loss_path = Path(output_dir) / 'loss_curves.png' plt.savefig(loss_path) plt.close() # 记录到MLflow(如果已初始化) if mlflow.active_run(): mlflow.log_artifact(str(loss_path)) def main(args): utils.init_distributed_mode(args) print(args) if args.distillation_type != 'none' and args.finetune and not args.eval: raise NotImplementedError("Finetuning with distillation not yet supported") device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True # log about run_name = args.output_dir.split("/")[-1] if args.local_rank == 0 and args.gpu == 0: mlflow.start_run(run_name=run_name) for key, value in vars(args).items(): mlflow.log_param(key, value) if args.data_set in ['CIFAR10', 'CIFAR100']: args.repeated_aug = False # 强制关闭重复增强 dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) dataset_val, _ = build_dataset(is_train=False, args=args) # 检查验证集的类别数是否与训练集一致 assert args.nb_classes == dataset_val.nb_classes, "类别数不一致:训练集 {} vs 验证集 {}".format(args.nb_classes,dataset_val.nb_classes) if args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() if args.repeated_aug: sampler_train = RASampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) else: sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if args.ThreeAugment: data_loader_train.dataset.transform = new_data_aug_generator(args) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, #batch_size=int(1.5 * args.batch_size * 20), batch_size=int(args.batch_size * 2), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) if args.data_set in ['CIFAR10', 'CIFAR100']: args.input_size = 32 # 强制输入尺寸为32 print(f"Creating model: {args.model}") # 在调用 create_model() 之前添加以下代码 model_kwargs = dict( img_size=args.input_size, # 确保 img_size 在此处定义 use_acmix=args.use_acmix, acmix_kernel=args.acmix_kernel, d_state=args.d_state, expand=args.expand, rms_norm=False, # 确保禁用RMSNorm num_classes=args.nb_classes, ) model = create_model( args.model, pretrained=False, drop_rate=args.drop, drop_path_rate=args.drop_path, drop_block_rate=None, #use_acmix=args.use_acmix, # 传递参数 #acmix_kernel=args.acmix_kernel, # 传递参数 #img_size=args.input_size ** model_kwargs # 传递所有额外参数 ) # 检查并调整分类头的输出维度 if hasattr(model, 'head') and len(model.head) > 0 and hasattr(model.head[-1], 'out_features'): if model.head[-1].out_features != args.nb_classes: print(f"Adjusting model head from {model.head[-1].out_features} to {args.nb_classes} classes") model.head[-1] = nn.Linear(model.head[-1].in_features, args.nb_classes) else: # 如果模型没有标准的分类头,直接检查输出层 if model.num_features != args.nb_classes: print(f"Adjusting model output dimension from {model.num_features} to {args.nb_classes}") model.head = nn.Linear(model.num_features, args.nb_classes) model.to(device)# 确保模型先移动到设备上 print("model_kwargs 内容检查:", model_kwargs) print(f"Model device: {next(model.parameters()).device}") # 仅当使用Vim模型时添加ACMix参数 if args.model.startswith('vim'): model_kwargs['use_acmix'] = args.use_acmix model_kwargs['acmix_kernel'] = args.acmix_kernel model = create_model(args.model, **model_kwargs) model_without_ddp = model optimizer = create_optimizer(args, model_without_ddp) # 确保 model_without_ddp 在此处赋值 # 创建模型后添加 print(f"Model output dimension: {model.head[-1].out_features}") assert model.head[-1].out_features == args.nb_classes, \ f"Output dimension mismatch! Model:{model.head[-1].out_features}, Dataset:{args.nb_classes}" # 确保模型在设备上后进行前向传播测试 #with torch.no_grad(): # test_input = torch.randn(2, 3, args.input_size, args.input_size).to(device) # print(f"Test input device: {test_input.device}") # output = model(test_input) # print(f"Test output shape: {output.shape}, should be (2, {args.nb_classes})") # 替换原有调度器 lr_scheduler = CosineAnnealingLR( optimizer, T_max=args.epochs * len(data_loader_train), eta_min=1e-6 ) if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.finetune, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.finetune, map_location='cpu') checkpoint_model = checkpoint['model'] model = model.to(device) # 再次将模型移动到 GPU state_dict = model.state_dict() for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # 移除所有分类头相关权重 #keys_to_remove = [k for k in checkpoint_model.keys() # if 'head' in k or 'cls_token' in k] #for k in keys_to_remove: # print(f"Removing key {k} from pretrained checkpoint") # del checkpoint_model[k] # 如果存在 'head' 键,删除分类头权重 #if 'head' in checkpoint_model: # del checkpoint_model['head'] # 删除分类头权重 # interpolate position embedding pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed model.load_state_dict(checkpoint_model, strict=False) if args.attn_only: for name_p,p in model.named_parameters(): if '.attn.' in name_p: p.requires_grad = True else: p.requires_grad = False try: model.head.weight.requires_grad = True model.head.bias.requires_grad = True except: model.fc.weight.requires_grad = True model.fc.bias.requires_grad = True try: model.pos_embed.requires_grad = True except: print('no position encoding') try: for p in model.patch_embed.parameters(): p.requires_grad = False except: print('no patch embed') model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model = torch.nn.DataParallel(model) model = model.to(device) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) if not args.unscale_lr: linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0 args.lr = linear_scaled_lr # 加入以下代码 if args.use_acmix: for param_group in optimizer.param_groups: param_group['lr'] *= 0.8 # 将基础学习率降低20% # amp about #amp_autocast = suppress #loss_scaler = "none" if args.if_amp: amp_autocast = torch.cuda.amp.autocast loss_scaler = NativeScaler() else: amp_autocast = suppress loss_scaler = "none" if args.data_set in ['CIFAR10', 'CIFAR100']: args.warmup_epochs = max(3, args.warmup_epochs) # CIFAR最少3个epoch预热 #lr_scheduler, _ = create_scheduler(args, optimizer) criterion = LabelSmoothingCrossEntropy() if mixup_active: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing, num_classes=args.nb_classes) #添加num_classes else: criterion = torch.nn.CrossEntropyLoss() if args.bce_loss: criterion = torch.nn.BCEWithLogitsLoss() teacher_model = None if args.distillation_type != 'none': assert args.teacher_path, 'need to specify teacher-path when using distillation' print(f"Creating teacher model: {args.teacher_model}") teacher_model = create_model( args.teacher_model, pretrained=False, num_classes=args.nb_classes, global_pool='avg', ) if args.teacher_path.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.teacher_path, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.teacher_path, map_location='cpu') teacher_model.load_state_dict(checkpoint['model']) teacher_model.to(device) teacher_model.eval() # wrap the criterion in our custom DistillationLoss, which # just dispatches to the original criterion if args.distillation_type is 'none' criterion = DistillationLoss( criterion, teacher_model, args.distillation_type, args.distillation_alpha, args.distillation_tau ) output_dir = Path(args.output_dir) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) # add ema load if args.model_ema: utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) args.start_epoch = checkpoint['epoch'] + 1 if args.model_ema: utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if 'scaler' in checkpoint and args.if_amp: # change loss_scaler if not amp loss_scaler.load_state_dict(checkpoint['scaler']) elif 'scaler' in checkpoint and not args.if_amp: loss_scaler = 'none' #lr_scheduler.step(args.start_epoch) if args.eval: test_stats = evaluate(data_loader_val, model, device, amp_autocast) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") test_stats = evaluate(data_loader_val, model_ema.ema, device, amp_autocast) print(f"Accuracy of the ema network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") return # log about if args.local_rank == 0 and args.gpu == 0: mlflow.log_param("n_parameters", n_parameters) print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 no_improve_epochs = 0 # 添加在epoch循环前 # 新增:初始化损失记录列表 train_loss_history = [] val_loss_history = [] best_val_acc = 0.0 no_improve_epochs = 0 patience = 10 # 连续15轮无提升则停止,早停机制 15 for epoch in range(args.start_epoch, args.epochs): ''' if args.distributed: data_loader_train.sampler.set_epoch(epoch) if test_stats["acc1"] > max_accuracy: max_accuracy = test_stats["acc1"] no_improve_epochs = 0 else: no_improve_epochs += 1 if no_improve_epochs >= 10: # 连续10轮无提升停止 print(f"No improvement for {no_improve_epochs} epochs, early stopping!") break # 在 train_one_epoch 调用前添加梯度裁剪逻辑 if args.clip_grad is not None: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad) # 修改后的 train_one_epoch 调用 train_stats = train_one_epoch( model,criterion,data_loader_train, optimizer,device,epoch, loss_scaler=loss_scaler, amp_autocast=amp_autocast, # 传入混合精度上下文 max_norm=args.clip_grad, # 传入梯度裁剪阈值 model_ema=model_ema, mixup_fn=mixup_fn, set_training_mode=True, # 强制启用训练模式 args=args ) ''' train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler=loss_scaler, amp_autocast=amp_autocast, # 传入混合精度上下文 max_norm=args.clip_grad, # 传入梯度裁剪阈值 model_ema=model_ema, mixup_fn=mixup_fn, set_training_mode=True, # 强制启用训练模式 args=args, lr_scheduler=lr_scheduler ) # 修改后的梯度监控代码 if any(p.grad is not None for p in model.parameters()): grad_norm = torch.norm(torch.stack([ torch.norm(p.grad) for p in model.parameters() if p.grad is not None # 只处理有梯度的参数 ])) print(f"Gradient Norm: {grad_norm.item():.4f}") else: print("Warning: All gradients are None!") test_stats = evaluate(data_loader_val, model, device, amp_autocast) # 添加以下代码调试 if args.cosub: outputs = torch.split(outputs, outputs.shape[0] // 2, dim=0) # 检查每个分支的输出维度 assert outputs[0].shape[ 1] == args.nb_classes, f"Output dim mismatch! Model: {outputs[0].shape[1]}, Dataset: {args.nb_classes}" else: # 检查输出维度是否匹配 assert outputs.shape[ 1] == args.nb_classes, f"Output dim mismatch! Model: {outputs.shape[1]}, Dataset: {args.nb_classes}" # 每5个epoch检查一次模型输出维度 if epoch % 5 == 0: print(f"Epoch {epoch} - Model output dim: {model_without_ddp.head[-1].out_features}") # 动态调整mixup强度 if epoch > args.epochs // 2: mixup_fn = Mixup(mixup_alpha=0.5) # 后期减少mixup强度 # ============ 新增:记录损失值 ============ train_loss = train_stats['loss'] val_loss = test_stats['loss'] train_loss_history.append(train_loss) val_loss_history.append(val_loss) # ============ MLflow日志记录 ============ if args.local_rank == 0 and args.gpu == 0: mlflow.start_run(run_name=args.output_dir.split("/")[-1]) mlflow.log_metric("train_loss", train_loss, step=epoch) mlflow.log_metric("val_loss", val_loss, step=epoch) # 记录参数 for key, value in vars(args).items(): mlflow.log_param(key, value) # 记录文件(如损失曲线) #mlflow.log_artifact(os.path.join(args.output_dir, "loss_curves.png")) # 更新最大准确率和早停计数器 if test_stats["acc1"] > max_accuracy: max_accuracy = test_stats["acc1"] no_improve_epochs = 0 else: no_improve_epochs += 1 # 更新最佳准确率和早停计数器 current_val_acc = test_stats["acc1"] if current_val_acc > best_val_acc: best_val_acc = current_val_acc no_improve_epochs = 0 # 保存最佳模型 utils.save_on_master({...}, 'best_model.pth') else: no_improve_epochs += 1 if no_improve_epochs >= patience: print(f"早停在epoch {epoch},最佳准确率: {best_val_acc:.2f}%") break # 添加过拟合诊断 if val_loss != 0: # 避免除以零 overfit_index = train_loss / val_loss if overfit_index < 0.7: # 健康范围0.8-1.2 print(f"警告:过拟合风险高!指数={overfit_index:.2f}") # 早停判断 #if no_improve_epochs >= 15: # 给予更多收敛时间 # print("Early stopping!") # break #lr_scheduler.step() if args.output_dir: checkpoint_paths = [output_dir / 'checkpoint.pth'] for checkpoint_path in checkpoint_paths: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), # 保存调度器状态 'epoch': epoch, 'model_ema': get_state_dict(model_ema), 'scaler': loss_scaler.state_dict() if loss_scaler != 'none' else loss_scaler, 'args': args, }, checkpoint_path) test_stats = evaluate(data_loader_val, model, device, amp_autocast) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") # 添加过拟合诊断(在训练循环结束后) if val_loss != 0: # 避免除以零 overfit_index = train_loss / val_loss if overfit_index < 0.7: # 健康范围0.8-1.2 print(f"警告:过拟合风险高!指数={overfit_index:.2f}") if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir: checkpoint_paths = [output_dir / 'best_checkpoint.pth'] for checkpoint_path in checkpoint_paths: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'model_ema': get_state_dict(model_ema), 'scaler': loss_scaler.state_dict() if loss_scaler != 'none' else loss_scaler, 'args': args, }, checkpoint_path) print(f'Max accuracy: {max_accuracy:.2f}%') log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} # log about if args.local_rank == 0 and args.gpu == 0: for key, value in log_stats.items(): mlflow.log_metric(key, value, log_stats['epoch']) if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) # 新增调用 if utils.is_main_process() and args.output_dir: plot_loss_curves(train_loss_history, val_loss_history, args.output_dir) if __name__ == '__main__': parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() args.gpu = None if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args) 如何修改上述 问题

import torch import torch.nn as nn import torch.optim as optim import numpy as np class Client: def __init__(self, model, dataset, learning_rate=0.01, local_epochs=5, noise_scale=1.0, clip_bound=1.0): """ 初始化客户端 Args: model: 神经网络模型 dataset: 本地数据集 learning_rate: 学习率 local_epochs: 本地训练轮数 noise_scale: 差分隐私噪声规模 clip_bound: 梯度裁剪界限 """ self.model = model self.dataset = dataset self.learning_rate = learning_rate self.local_epochs = local_epochs self.noise_scale = noise_scale self.clip_bound = clip_bound self.optimizer = optim.SGD(self.model.parameters(), lr=learning_rate) self.criterion = nn.CrossEntropyLoss() def add_noise(self, gradients): """ 添加高斯噪声实现差分隐私 Args: gradients: 模型梯度 Returns: 添加噪声后的梯度 """ noisy_gradients = [] for grad in gradients: if grad is not None: noise = torch.normal(mean=0, std=self.noise_scale, size=grad.shape) noisy_gradients.append(grad + noise) else: noisy_gradients.append(None) return noisy_gradients def clip_gradients(self, gradients): """ 梯度裁剪 Args: gradients: 模型梯度 Returns: 裁剪后的梯度 """ total_norm = 0 for grad in gradients: if grad is not None: total_norm += grad.norm(2).item() ** 2 total_norm = total_norm ** 0.5 clip_coef = self.clip_bound / (total_norm + 1e-6) if clip_coef < 1: for grad in gradients: if grad is not None: grad.mul_(clip_coef) return gradients def train(self, dataloader): """ 本地训练 Args: dataloader: 数据加载器 Returns: 更新后的模型参数 """ self.model.train() for _ in range(self.local_epochs): for data, target in dataloader: self.optimizer.zero_grad() output = self.model(data) loss = self.criterion(output, target) loss.backward() # 获取梯度 gradients = [param.grad.clone() for param in self.model.parameters()] # 梯度裁剪 clipped_gradients = self.clip_gradients(gradients) # 添加差分隐私噪声 noisy_gradients = self.add_noise(clipped_gradients) # 更新模型参数 for param, grad in zip(self.model.parameters(), noisy_gradients): if grad is not None: param.grad = grad self.optimizer.step() return [param.data.clone() for param in self.model.parameters()]分析解释代码

最新推荐

recommend-type

公司合伙投资协议书.docx

公司合伙投资协议书.docx
recommend-type

Python程序TXLWizard生成TXL文件及转换工具介绍

### 知识点详细说明: #### 1. 图形旋转与TXL向导 图形旋转是图形学领域的一个基本操作,用于改变图形的方向。在本上下文中,TXL向导(TXLWizard)是由Esteban Marin编写的Python程序,它实现了特定的图形旋转功能,主要用于电子束光刻掩模的生成。光刻掩模是半导体制造过程中非常关键的一个环节,它确定了在硅片上沉积材料的精确位置。TXL向导通过生成特定格式的TXL文件来辅助这一过程。 #### 2. TXL文件格式与用途 TXL文件格式是一种基于文本的文件格式,它设计得易于使用,并且可以通过各种脚本语言如Python和Matlab生成。这种格式通常用于电子束光刻中,因为它的文本形式使得它可以通过编程快速创建复杂的掩模设计。TXL文件格式支持引用对象和复制对象数组(如SREF和AREF),这些特性可以用于优化电子束光刻设备的性能。 #### 3. TXLWizard的特性与优势 - **结构化的Python脚本:** TXLWizard 使用结构良好的脚本来创建遮罩,这有助于开发者创建清晰、易于维护的代码。 - **灵活的Python脚本:** 作为Python程序,TXLWizard 可以利用Python语言的灵活性和强大的库集合来编写复杂的掩模生成逻辑。 - **可读性和可重用性:** 生成的掩码代码易于阅读,开发者可以轻松地重用和修改以适应不同的需求。 - **自动标签生成:** TXLWizard 还包括自动为图形对象生成标签的功能,这在管理复杂图形时非常有用。 #### 4. TXL转换器的功能 - **查看.TXL文件:** TXL转换器(TXLConverter)允许用户将TXL文件转换成HTML或SVG格式,这样用户就可以使用任何现代浏览器或矢量图形应用程序来查看文件。 - **缩放和平移:** 转换后的文件支持缩放和平移功能,这使得用户在图形界面中更容易查看细节和整体结构。 - **快速转换:** TXL转换器还提供快速的文件转换功能,以实现有效的蒙版开发工作流程。 #### 5. 应用场景与技术参考 TXLWizard的应用场景主要集中在电子束光刻技术中,特别是用于设计和制作半导体器件时所需的掩模。TXLWizard作为一个向导,不仅提供了生成TXL文件的基础框架,还提供了一种方式来优化掩模设计,提高光刻过程的效率和精度。对于需要进行光刻掩模设计的工程师和研究人员来说,TXLWizard提供了一种有效的方法来实现他们的设计目标。 #### 6. 系统开源特性 标签“系统开源”表明TXLWizard遵循开放源代码的原则,这意味着源代码对所有人开放,允许用户自由地查看、修改和分发软件。开源项目通常拥有活跃的社区,社区成员可以合作改进软件,添加新功能,或帮助解决遇到的问题。这种开放性促进了技术创新,并允许用户根据自己的需求定制软件。 #### 7. 压缩包子文件的文件名称列表 文件名称列表中的“txlwizard-master”可能指的是TXLWizard项目的主版本库或主分支。这个名称表明了这是项目源代码的中心点,其他开发者会从这个主分支拉取代码进行合作开发或部署。以“-master”结尾通常是版本控制系统中表示主要开发线路的常见约定,例如Git中的master(现在更常被称为main)分支。 通过这些知识点的详细解释,我们可以看到TXLWizard不仅是一个用于生成TXL文件的工具,它还整合了一系列的功能,使得电子束光刻掩模的设计工作更为高效和直观。同时,作为一个开源项目,它能够借助社区的力量不断进步,为用户带来更多的便利和创新。
recommend-type

【创新图生成:扣子平台的技术前沿与创新思维】:引领图像生成技术的新潮流

# 1. 扣子平台的图像生成技术概述 在当今数字化时代,图像生成技术正成为推动技术创新和社会变革的关键力量。扣子平台正是这一技术革新的代表。本章将对扣子平台的图像生成技术进行一个全面概述,探究它如何将理论技术转化为实际应用,并带来显著的社会影响。 扣子平台运用了先进的图像生成技术,将现实世界和数字空间无缝融合,打造了沉浸式的视觉体验。其技术的核心是通过高度复杂的算法模型,快速生成高质
recommend-type

海康威视机器视觉工程师考核

<think>好的,我现在需要帮助用户了解海康威视机器视觉工程师的考核内容和要求。根据用户提供的引用资料,特别是引用[1]和[2],里面提到了考核素材包分为初级和中级,涵盖理论、算法、应用案例等。首先,我要整理这些信息,确保结构清晰,符合用户要求的格式。 接下来,我需要确认素材包的具体内容,比如初级和中级的不同点。引用[2]提到初级包含基础理论、算法实现和实际案例,中级则增加复杂算法和项目分析。这部分需要分点说明,方便用户理解层次。 另外,用户可能想知道如何准备考核,比如下载素材、学习顺序、模拟考核等,引用[2]中有使用说明和注意事项,这部分也要涵盖进去。同时要注意提醒用户考核窗口已关闭,
recommend-type

Linux环境下Docker Hub公共容器映像检测工具集

在给出的知识点中,我们需要详细解释有关Docker Hub、公共容器映像、容器编排器以及如何与这些工具交互的详细信息。同时,我们会涵盖Linux系统下的相关操作和工具使用,以及如何在ECS和Kubernetes等容器编排工具中运用这些检测工具。 ### Docker Hub 和公共容器映像 Docker Hub是Docker公司提供的一项服务,它允许用户存储、管理以及分享Docker镜像。Docker镜像可以视为应用程序或服务的“快照”,包含了运行特定软件所需的所有必要文件和配置。公共容器映像指的是那些被标记为公开可见的Docker镜像,任何用户都可以拉取并使用这些镜像。 ### 静态和动态标识工具 静态和动态标识工具在Docker Hub上用于识别和分析公共容器映像。静态标识通常指的是在不运行镜像的情况下分析镜像的元数据和内容,例如检查Dockerfile中的指令、环境变量、端口映射等。动态标识则需要在容器运行时对容器的行为和性能进行监控和分析,如资源使用率、网络通信等。 ### 容器编排器与Docker映像 容器编排器是用于自动化容器部署、管理和扩展的工具。在Docker环境中,容器编排器能够自动化地启动、停止以及管理容器的生命周期。常见的容器编排器包括ECS和Kubernetes。 - **ECS (Elastic Container Service)**:是由亚马逊提供的容器编排服务,支持Docker容器,并提供了一种简单的方式来运行、停止以及管理容器化应用程序。 - **Kubernetes**:是一个开源平台,用于自动化容器化应用程序的部署、扩展和操作。它已经成为容器编排领域的事实标准。 ### 如何使用静态和动态标识工具 要使用这些静态和动态标识工具,首先需要获取并安装它们。从给定信息中了解到,可以通过克隆仓库或下载压缩包并解压到本地系统中。之后,根据需要针对不同的容器编排环境(如Dockerfile、ECS、Kubernetes)编写配置,以集成和使用这些检测工具。 ### Dockerfile中的工具使用 在Dockerfile中使用工具意味着将检测工具的指令嵌入到构建过程中。这可能包括安装检测工具的命令、运行容器扫描的步骤,以及将扫描结果集成到镜像构建流程中,确保只有通过安全和合规检查的容器镜像才能被构建和部署。 ### ECS与Kubernetes中的工具集成 在ECS或Kubernetes环境中,工具的集成可能涉及到创建特定的配置文件、定义服务和部署策略,以及编写脚本或控制器来自动执行检测任务。这样可以在容器编排的过程中实现实时监控,确保容器编排器只使用符合预期的、安全的容器镜像。 ### Linux系统下的操作 在Linux系统下操作这些工具,用户可能需要具备一定的系统管理和配置能力。这包括使用Linux命令行工具、管理文件系统权限、配置网络以及安装和配置软件包等。 ### 总结 综上所述,Docker Hub上的静态和动态标识工具提供了一种方法来检测和分析公共容器映像,确保这些镜像的安全性和可靠性。这些工具在Linux开发环境中尤为重要,因为它们帮助开发人员和运维人员确保他们的容器映像满足安全要求。通过在Dockerfile、ECS和Kubernetes中正确使用这些工具,可以提高应用程序的安全性,减少由于使用不安全的容器镜像带来的风险。此外,掌握Linux系统下的操作技能,可以更好地管理和维护这些工具,确保它们能够有效地发挥作用。
recommend-type

【扣子平台图像艺术探究:理论与实践的完美结合】:深入学习图像生成的艺术

# 1. 图像艺术的理论基础 艺术领域的每一个流派和技巧都有其理论基础。在图像艺术中,理论基础不仅是对艺术表现形式的认知,也是掌握艺术创作内在逻辑的关键。深入理解图像艺术的理论基础,能够帮助艺术家们在创作过程中更加明确地表达自己的艺术意图,以及更好地与观众沟通。 图像艺术的理论
recommend-type

增广路定理的证明

<think>嗯,用户想查找增广路定理的证明,关于图论和网络流算法的。我得先理解增广路定理是什么,然后找到相关的证明方法。根据之前的引用,尤其是引用5提到最大流最小割定理,里面有三个等价条件,其中第二个是残余网络中没有增广路径时,流就是最大流。这可能和增广路定理相关,也就是当残余网络中没有增广路时,当前流就是最大流,这可能就是增广路定理的内容。 首先,我需要明确增广路定理的陈述。根据引用5,增广路定理可能指的是:一个流是最大流当且仅当残余网络中不存在增广路径。这个定理的证明需要用到最大流最小割定理,也就是第三个条件,即最大流的流量等于最小割的容量。 证明的步骤可能需要分为两个方向:必要性(
recommend-type

Pulse:基于SwiftUI的Apple平台高效日志记录与网络监控

从给定文件信息中,我们可以提取出以下IT知识点进行详细阐述: **Pulse概览:** Pulse是一个专门针对Apple平台(如iOS、iPadOS、macOS等)的功能强大的日志记录系统。其设计目的是为了简化开发者在这些平台上调试网络请求和应用日志的过程。Pulse的核心特色是它使用SwiftUI来构建,这有助于开发者利用现代Swift语言的声明式UI优势来快速开发和维护。 **SwiftUI框架:** SwiftUI是一种声明式框架,由苹果公司推出,用于构建用户界面。与传统的UIKit相比,SwiftUI使用更加简洁的代码来描述界面和界面元素,它允许开发者以声明的方式定义视图和界面布局。SwiftUI支持跨平台,这意味着同一套代码可以在不同的Apple设备上运行,大大提高了开发效率和复用性。Pulse选择使用SwiftUI构建,显示了其对现代化、高效率开发的支持。 **Network Inspector功能:** Pulse具备Network Inspector功能,这个功能使得开发者能够在开发iOS应用时,直接从应用内记录和检查网络请求和日志。这种内嵌式的网络诊断能力非常有助于快速定位网络请求中的问题,如不正确的URL、不返回预期响应等。与传统的需要外部工具来抓包和分析的方式相比,这样的内嵌式工具大大减少了调试的复杂性。 **日志记录和隐私保护:** Pulse强调日志是本地记录的,并保证不会离开设备。这种做法对隐私保护至关重要,尤其是考虑到当前数据保护法规如GDPR等的严格要求。因此,Pulse的设计在帮助开发者进行问题诊断的同时,也确保了用户数据的安全性。 **集成和框架支持:** Pulse不仅仅是一个工具,它更是一个框架。它能够记录来自URLSession的事件,这意味着它可以与任何使用URLSession进行网络通信的应用或框架配合使用,包括但不限于Apple官方的网络库。此外,Pulse与使用它的框架(例如Alamofire)也能够良好配合,Alamofire是一个流行的网络请求库,广泛应用于Swift开发中。Pulse提供了一个PulseUI视图组件,开发者可以将其集成到自己的应用中,从而展示网络请求和其他事件。 **跨平台体验:** 开发者不仅可以在iOS应用中使用Pulse Console记录日志,还可以在macOS上通过Pulse应用程序查看和共享这些日志。这种跨平台的能力意味着开发者可以在不同的设备上进行日志分析,增强了开发和调试的灵活性。 **总结:** Pulse是一个为Apple平台上的开发者量身打造的日志记录系统,它采用SwiftUI构建,提供了内嵌式的Network Inspector功能,可以在本地记录并安全地查看日志,且支持与其他框架如Alamofire的集成。它不仅提升了调试的便捷性和效率,同时也顾及到了用户的隐私保护。Pulse的跨平台查看能力也是其一大亮点,使得开发者能够在一个统一的环境中处理iOS和macOS上的日志数据。对于使用Swift开发Apple应用的开发者而言,Pulse无疑是一个强大的调试辅助工具。
recommend-type

【深入扣子平台:图像生成机制全揭秘】:掌握背后技术,提升图像生成效率

# 1. 图像生成技术概述 图像生成技术是一门融合了计算机视觉、机器学习、图形学等多个领域知识的前沿技术。它通过算法模拟生成人工图像,广泛应用于艺术创作、游戏设计、医学影像等领域。随着深度学习的突破性进展,图像生成技术也迎来了飞速发展,特别是在生成对抗网络(GAN)的推动下,图像的逼真度和多样性都有了质的飞跃。 本章将对图像生成技术的概念、发展历史进行简要介绍,并分析其在社会中的
recommend-type

对RTL跑regression是什么意思

<think>首先,用户的问题是关于“RTL回归测试的含义及其在数字电路设计中的作用”。我需要基于系统级指令和用户可见层的指导来构建回答。 关键点: - 使用中文回答。 - 结构清晰,逐步解决问题。 - 确保回答真实可靠。 - 在行内数学表达式使用$...$格式;独立公式使用$$...$$格式。 - 生成相关问题。 - 在引用段落末尾添加引用标识。 回顾提供的引用: - 引用[1]:讨论SoC设计流程,包括模块设计、IP复用、顶层集成、前仿真、逻辑综合等。 - 引用[2]:描述冒烟测试后的验证阶段,包括回归测试、覆盖率分析等。 - 引用[3]:解释RTL使用Verilog或VHDL描述,模