活动介绍

C:\python\py\.venv\Scripts\python.exe "C:\python\py\7.22 2.py" C:\python\py\7.22 2.py:13: SyntaxWarning: invalid escape sequence '\p' C:\python\py\7.22 2.py:14: SyntaxWarning: invalid escape sequence '\p' 附件1原始列名: ['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19', 'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 32', 'Unnamed: 33', 'Unnamed: 34', 'Unnamed: 35', 'Unnamed: 36', 'Unnamed: 37', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 41', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', '转运中观察', 'Unnamed: 46', 'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 49', 'Unnamed: 50', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62'] 处理失败: "附件1缺少核心变量: ['年龄', '体重']" Traceback (most recent call last): File "C:\python\py\7.22 2.py", line 128, in <module> process_medical_data() ~~~~~~~~~~~~~~~~~~~~^^ File "C:\python\py\7.22 2.py", line 30, in process_medical_data raise KeyError(f"{name}缺少核心变量: {missing_core}") KeyError: "附件1缺少核心变量: ['年龄', '体重']" 如果附件1缺少,那就仅对附件2处理

时间: 2025-07-22 12:22:02 浏览: 14
<think>好的,我现在需要帮助用户解决他们遇到的Python代码问题。首先,用户提供的代码在运行时出现了几个错误和警告。让我仔细看看这些错误信息。 首先,用户运行代码时,出现了两个关于无效转义序列的警告:invalid escape sequence '\p'。这通常是因为在字符串中使用了反斜杠而没有正确转义。例如,在路径字符串中,像'\p'会被Python解释为转义字符,但'p'不是有效的转义序列,所以会发出警告。正确的做法是使用原始字符串(在字符串前加r),或者将反斜杠转义为双反斜杠。用户可能在路径字符串中没有正确使用原始字符串,导致这个警告。 接下来,用户看到附件1的原始列名输出中有很多Unnamed的列,这说明在读取Excel文件时,列名可能没有被正确识别,导致pandas自动生成了Unnamed的列名。这会导致后续处理中无法找到核心变量如“年龄”和“体重”,从而引发KeyError异常。用户提到如果附件1缺少核心变量,就只处理附件2。因此,需要调整代码逻辑,使得在附件1缺少核心变量时跳过处理,继续处理附件2。 现在,我需要检查用户提供的代码,找出问题所在并进行修改。首先,关于路径中的转义问题。用户代码中的base_path是r'C:\python\py',这里使用了原始字符串,应该没问题。但是file_paths中的路径是否正确?比如,附件1和附件2的路径是否正确,是否确实存在这两个文件?如果路径不正确,可能导致文件读取失败,进而导致列名错误。不过用户提到附件1确实存在,但列名读取有问题。 另一个问题是,附件1的列名中没有“年龄”和“体重”,所以代码在检查核心变量时抛出异常。用户希望在这种情况下跳过附件1的处理,只处理附件2。因此,需要修改代码,使其在发现某个附件缺少核心变量时,不抛出异常,而是记录警告并继续处理其他附件。 此外,用户可能需要调整代码结构,将每个附件的处理过程分开,而不是同时处理所有附件。这样当一个附件处理失败时,不影响其他附件的处理。 接下来,我需要修改代码,确保在读取附件时,正确处理路径,并处理可能的列名问题。同时,在核心变量缺失的情况下,不终止整个程序,而是继续处理其他存在的附件。 可能的修改步骤包括: 1. 使用try-except块分别处理每个附件,避免一个附件的问题影响其他附件。 2. 在读取每个附件后,检查核心变量是否存在,如果不存在,输出警告并跳过该附件的处理。 3. 修正路径中的转义问题,确保路径字符串正确无误。 4. 确保在保存处理后的文件时,文件名正确,避免覆盖或路径错误。 另外,用户提到附件1缺少核心变量,所以需要调整代码逻辑,使得在处理附件1时,如果缺少核心变量,就跳过处理,只处理附件2。这可能涉及到将附件1和附件2的处理逻辑分开,或者在循环中处理每个附件时单独检查核心变量的存在性。 最后,测试修改后的代码,确保能够正确处理附件2,并在附件1缺少核心变量时不会导致程序崩溃。</think>```python import pandas as pd import numpy as np import os from scipy.interpolate import CubicSpline def process_medical_data(): """医疗数据标准化清洗流程(支持单附件处理)""" try: # 1. 路径配置与文件校验(使用原始字符串消除转义警告) base_path = r'C:\python\py' file_paths = { '附件1': os.path.join(base_path, '附件1.xlsx'), '附件2': os.path.join(base_path, '附件2.xlsx') } # 2. 分离附件处理逻辑(独立处理每个文件) for name, path in file_paths.items(): if not os.path.exists(path): print(f"警告: {name}文件不存在,跳过处理") continue try: # 3. 数据加载与列名标准化 df = pd.read_excel(path) print(f"\n{name}原始列名:", df.columns.tolist()) # 4. 核心变量处理(仅当存在时处理) core_vars = ['年龄', '体重'] missing_core = [col for col in core_vars if col not in df.columns] if missing_core: print(f"警告: {name}缺少核心变量: {missing_core},跳过缺失样本处理") else: df.dropna(subset=core_vars, inplace=True) print(f"{name}核心变量缺失样本已删除,剩余{len(df)}条记录") # 5. 高缺失率变量删除(>30%) def remove_high_missing(df): missing_rate = df.isnull().mean() high_missing = missing_rate[missing_rate > 0.3].index.tolist() if high_missing: print(f"删除高缺失列: {high_missing}") return df.drop(columns=high_missing) df = remove_high_missing(df) # 6. 中缺失率变量填充 def fill_missing_values(df): # 时间序列插值(需保证时间戳存在且排序) time_series_vars = ['GCS评分', 'SpO2'] for col in time_series_vars: if df[col].isnull().any() and '时间戳' in df.columns: df.sort_values('时间戳', inplace=True) valid_idx = df[col].notnull() cs = CubicSpline(df.loc[valid_idx, '时间戳'], df.loc[valid_idx, col]) df[col] = df.apply( lambda row: cs(row['时间戳']) if pd.isnull(row[col]) else row[col], axis=1 ) # 分组中位数填充(需保证科室字段存在) non_time_vars = ['GCS评分', 'SpO2'] for col in non_time_vars: if df[col].isnull().any() and '科室' in df.columns: medians = df.groupby('科室')[col].transform('median') df[col].fillna(medians, inplace=True) # 分类变量填充 categorical_vars = { 'low_missing': ['既往史-高血压', '设备配备-监护仪'], 'high_missing': ['既往史-糖尿病', '药物过敏史'] } for col in categorical_vars['low_missing']: if df[col].isnull().any(): mode = df[col].mode()[0] df[col].fillna(mode, inplace=True) for col in categorical_vars['high_missing']: if df[col].isnull().any(): df[col].fillna('未知', inplace=True) return df df = fill_missing_values(df) # 7. 数据编码 def encode_categorical(df): # 二元变量转换 binary_vars = { '是否有胸腹主动脉瘤': {'是': 1, '否': 0}, '是否颅内动脉瘤': {'是': 1, '否': 0} } for col, mapping in binary_vars.items(): if col in df.columns: df[col] = df[col].map(mapping) # 多分类独热编码 multi_vars = ['意识状态', '呼吸支持类型'] for col in multi_vars: if col in df.columns: df = pd.get_dummies(df, columns=[col], drop_first=False) return df df = encode_categorical(df) # 8. 结果保存 desktop_path = os.path.join(os.path.expanduser('~'), 'Desktop') os.makedirs(desktop_path, exist_ok=True) output_path = os.path.join(desktop_path, f'处理后{name}.xlsx') if os.path.exists(output_path): os.remove(output_path) df.to_excel(output_path, index=False) print(f"{name}处理完成,保存路径: {output_path}") except Exception as e: print(f"{name}处理失败: {str(e)}") continue except Exception as e: print(f"全局异常: {str(e)}") if __name__ == "__main__": process_medical_data() ```
阅读全文

相关推荐

C:\python\py\.venv\Scripts\python.exe C:\python\py\7.22特征工程.py ⚠️ 调试信息 - 特征工程文件列: [['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19', 'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 32', 'Unnamed: 33', 'Unnamed: 34', 'Unnamed: 35', 'Unnamed: 36', 'Unnamed: 37', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 41', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', '转运中观察', 'Unnamed: 46', 'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 49', 'Unnamed: 50', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62'], ['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19', 'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 32', 'Unnamed: 33', 'Unnamed: 34', 'Unnamed: 35', 'Unnamed: 36', 'Unnamed: 37', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 41', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', '转运中观察', 'Unnamed: 46', 'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 49', 'Unnamed: 50', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62']] ⚠️ 调试信息 - 原始处理文件列: [['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 13', 'Unnamed: 15', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 20', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 25', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 32', 'Unnamed: 35', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', 'Unnamed: 50', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62'], ['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 13', 'Unnamed: 15', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 20', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 34', 'Unnamed: 35', 'Unnamed: 36', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', '转运中观察', 'Unnamed: 46', 'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62']] ❌ 操作失败: 无法自动识别目标变量'病情变化' 四个附件里都有病情变化,为什么识别不了

C:\python\py\.venv\Scripts\python.exe C:\python\py\7.22特征工程.py 特征工程文件列: [['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19', 'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 32', 'Unnamed: 33', 'Unnamed: 34', 'Unnamed: 35', 'Unnamed: 36', 'Unnamed: 37', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 41', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', '转运中观察', 'Unnamed: 46', 'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 49', 'Unnamed: 50', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62'], ['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19', 'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 32', 'Unnamed: 33', 'Unnamed: 34', 'Unnamed: 35', 'Unnamed: 36', 'Unnamed: 37', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 41', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', '转运中观察', 'Unnamed: 46', 'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 49', 'Unnamed: 50', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62']] 原始处理文件列: [['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 13', 'Unnamed: 15', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 20', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 25', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 32', 'Unnamed: 35', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', 'Unnamed: 50', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62'], ['患者基本信息', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4', 'Unnamed: 5', '转运前准备', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 13', 'Unnamed: 15', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 20', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30', 'Unnamed: 31', 'Unnamed: 34', 'Unnamed: 35', 'Unnamed: 36', 'Unnamed: 38', 'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 42', 'Unnamed: 43', 'Unnamed: 44', '转运中观察', 'Unnamed: 46', 'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 51', '转运后交接', 'Unnamed: 53', 'Unnamed: 54', 'Unnamed: 55', 'Unnamed: 58', 'Unnamed: 59', 'Unnamed: 60', 'Unnamed: 61', 'Unnamed: 62']] 附件1特征工程列识别结果: {'transport_duration': [], 'vital_fluctuation': [], 'pipe_load': [], 'z_score': []} 附件2特征工程列识别结果: {'transport_duration': [], 'vital_fluctuation': [], 'pipe_load': [], 'z_score': []} ❌ 操作失败: 目标变量'病情变化'缺失 进程已结束,退出代码为 0 按你理解的改

import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import pointbiserialr import networkx as nx import pingouin as pg from statsmodels.stats.outliers_influence import variance_inflation_factor import statsmodels.api as sm 设置中文支持和图像清晰度 plt.rcParams[‘font.sans-serif’] = [‘SimHei’] plt.rcParams[‘axes.unicode_minus’] = False plt.rcParams[‘figure.dpi’] = 300 固定随机种子 np.random.seed(123) %% 1. 模拟符合因素效应特征的数据 np_samples = 1500 # 样本量 初始化数据字典 data = {} T0阶段:转运前基础状态 data[‘GCS’] = np.round(np.random.uniform(3, 15, np_samples)).astype(int) # GCS评分 data[‘APACHE’] = np.round(np.random.uniform(0, 30, np_samples)).astype(int) # APACHE II评分 data[‘age’] = np.round(np.random.normal(60, 15, np_samples)).astype(int) # 年龄 data[‘hypertension’] = np.random.randint(0, 2, np_samples) # 高血压史 T1阶段:转运中过程变量 data[‘transport_time’] = np.round(np.random.normal(18, 8, np_samples)).astype(int) # 转运时长 data[‘spo2_mean’] = np.round(np.random.normal(94, 6, np_samples)).astype(int) # 平均血氧 data[‘sedative’] = np.random.randint(0, 2, np_samples) # 镇静剂使用 data[‘respiratory_rate’] = np.round(np.random.normal(18, 5, np_samples)).astype(int) # 呼吸频率 data[‘transport_distance’] = np.round(np.random.normal(10, 5, np_samples)).astype(int) # 距离 data[‘transport_personnel’] = np.random.randint(1, 4, np_samples) # 人员 data[‘temperature’] = np.random.normal(36.5, 0.8, np_samples) # 体温 T2阶段:转运后状态 data[‘spo2_final’] = (data[‘spo2_mean’] + np.random.normal(0, 2, np_samples)).round().astype(int) data[‘heart_rate’] = np.round(np.random.normal(85, 20, np_samples)).astype(int) data[‘resp_support’] = np.random.randint(0, 3, np_samples) # 呼吸支持 %% 构建结局变量:转运后不良事件 gcs_effect = np.zeros(np_samples) for i in range(np_samples): if data[‘GCS’][i] < 8: gcs_effect[i] = -0.223 * (8 - data[‘GCS’][i]) else: gcs_effect[i] = -0.087 * (15 - data[‘GCS’][i]) ht_effect = 0.185 * data[‘hypertension’] time_effect = np.zeros(np_samples) for i in range(np_samples): if data[‘transport_time’][i] > 20: time_effect[i] = 0.032 * (data[‘transport_time’][i] - 20) else: time_effect[i] = 0.015 * data[‘transport_time’][i] age_effect = np.zeros(np_samples) for i in range(np_samples): if data[‘age’][i] > 65: age_effect[i] = 0.037 * (data[‘age’][i] - 65) / 5 else: age_effect[i] = 0.016 * data[‘age’][i] / 5 resp_support_effect = 0.096 * data[‘resp_support’] spo2_effect = np.zeros(np_samples) for i in range(np_samples): if data[‘spo2_final’][i] < 90: spo2_effect[i] = -0.123 * (90 - data[‘spo2_final’][i]) else: spo2_effect[i] = -0.021 * (data[‘spo2_final’][i] - 90) hr_effect = np.zeros(np_samples) for i in range(np_samples): if data[‘heart_rate’][i] < 50: hr_effect[i] = 0.42 * (50 - data[‘heart_rate’][i]) / 10 elif data[‘heart_rate’][i] > 120: hr_effect[i] = 0.38 * (data[‘heart_rate’][i] - 120) / 10 sedative_effect = -0.1839 * data[‘sedative’] rr_effect = np.zeros(np_samples) for i in range(np_samples): if data[‘respiratory_rate’][i] < 10: rr_effect[i] = 0.35 elif data[‘respiratory_rate’][i] > 24: rr_effect[i] = 0.31 temp_effect = np.zeros(np_samples) for i in range(np_samples): if data[‘temperature’][i] < 36: temp_effect[i] = 0.28 elif data[‘temperature’][i] > 38.5: temp_effect[i] = 0.25 distance_effect = -0.028 * data[‘transport_distance’] / 5 personnel_effect = -0.025 * (data[‘transport_personnel’] - 1) apache_effect = 0.011 * data[‘APACHE’] / 10 总logit计算 logit = (0.2 + 0.257 * gcs_effect + 0.185 * ht_effect + 0.172 * time_effect + 0.153 * age_effect + 0.096 * resp_support_effect + 0.078 * sedative_effect + 0.062 * spo2_effect + 0.058 * hr_effect + 0.049 * rr_effect + 0.045 * temp_effect + 0.028 * distance_effect + 0.025 * personnel_effect + 0.011 * apache_effect) 计算概率和结局 prob = 1 / (1 + np.exp(-logit)) data[‘adverse_event’] = np.random.binomial(1, prob) %% 2. 核心因素筛选(不剔除任何变量,不显示 0.00) factors = { ‘心率’: data[‘heart_rate’], ‘血氧饱和度’: data[‘spo2_final’], ‘GCS评分’: data[‘GCS’], ‘转运时长’: data[‘transport_time’], ‘镇静剂使用’: data[‘sedative’], ‘呼吸支持’: data[‘resp_support’], ‘年龄’: data[‘age’], ‘APACHE II评分’: data[‘APACHE’] } rpb = [] p_values = [] for name, values in factors.items(): r, p = pointbiserialr(values, data[‘adverse_event’]) rpb.append® p_values.append(p) 不进行变量剔除,直接保留所有变量 filtered_factors = factors.copy() print(“=== 因素筛选结果(不显示 0.00) ===”) for i, (name, values) in enumerate(factors.items()): if abs(rpb[i]) > 0.001 or p_values[i] > 0.001: print(f"{name}: rpb={rpb[i]:.2f}, P={p_values[i]:.2f}") %% 3. 共线性处理(VIF) X = pd.DataFrame(filtered_factors) vif_data = pd.DataFrame() vif_data[“特征”] = X.columns vif_data[“VIF值”] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] print(“\n=== VIF共线性分析 ===”) print(vif_data) %% 4. 偏相关分析 df = pd.DataFrame(filtered_factors) df[‘adverse_event’] = data[‘adverse_event’] 自定义偏相关矩阵函数 def partial_corr_matrix(df): cols = df.columns pcorr = pd.DataFrame(np.zeros((len(cols), len(cols))), columns=cols, index=cols) for i, col1 in enumerate(cols): for j, col2 in enumerate(cols): if i == j: pcorr.loc[col1, col2] = 1.0 elif j > i: controls = list(set(cols) - {col1, col2}) r = pg.partial_corr(data=df, x=col1, y=col2, covar=controls).r[0] pcorr.loc[col1, col2] = r pcorr.loc[col2, col1] = r return pcorr 计算偏相关矩阵 partial_corr = partial_corr_matrix(df) print(“\n=== 显著直接关联(偏相关|r|>0.001) ===”) for col in df.columns: if col != ‘adverse_event’: corr = partial_corr.loc[col, ‘adverse_event’] if abs(corr) > 0.001: print(f"{col} 与 转运后不良事件: r={corr:.3f}") %% 5. 动态网络模型构建 T0_nodes = [‘GCS评分’, ‘APACHE II评分’, ‘年龄’] T1_nodes = [‘转运时长’, ‘血氧饱和度’, ‘镇静剂使用’] T2_nodes = [‘心率’, ‘呼吸支持’, ‘adverse_event’] G = nx.DiGraph() G.add_nodes_from(df.columns) 添加边(显著偏相关) for i in df.columns: for j in df.columns: if i != j: pc = partial_corr.loc[i, j] if abs(pc) > 0.2: G.add_edge(i, j, weight=pc) %% 6. 动态特征量化分析 节点核心度 node_core = {} for node in G.nodes: core = sum(abs(G[u][v][‘weight’]) for u, v in G.edges if u == node or v == node) node_core[node] = core print(“\n=== 节点核心度排序 ===”) for node, score in sorted(node_core.items(), key=lambda x: x[1], reverse=True): print(f"{node}: {score:.3f}") %% 7. 网络可视化 pos = nx.spring_layout(G, seed=42) plt.figure(figsize=(12, 8)) 节点颜色 color_map = [] for node in G.nodes: if node in T0_nodes: color_map.append((0.8, 0.9, 1)) elif node in T1_nodes: color_map.append((0.9, 0.8, 1)) elif node in T2_nodes: color_map.append((1, 0.8, 0.8)) 边颜色 edge_colors = [‘red’ if G[u][v][‘weight’] > 0 else ‘blue’ for u, v in G.edges] 绘图 nx.draw(G, pos, with_labels=True, node_color=color_map, edge_color=edge_colors, width=[abs(G[u][v][‘weight’]) * 5 for u, v in G.edges], node_size=[core * 100 for core in node_core.values()], font_size=10, font_weight=‘bold’, alpha=0.8) plt.title(‘转运后不良事件动态关联网络’, fontsize=16) plt.legend(handles=[ plt.Line2D([0], [0], color=‘red’, lw=2, label=‘正相关’), plt.Line2D([0], [0], color=‘blue’, lw=2, label=‘负相关’) ]) plt.show() 此代码的结果 C:\python\py.venv\Scripts\python.exe C:\python\py\7.22.py === 因素筛选结果(不显示 0.00) === 心率: rpb=-0.01, P=0.58 血氧饱和度: rpb=0.01, P=0.69 GCS评分: rpb=0.02, P=0.40 转运时长: rpb=-0.02, P=0.36 镇静剂使用: rpb=0.00, P=0.92 呼吸支持: rpb=0.00, P=0.88 年龄: rpb=0.02, P=0.34 APACHE II评分: rpb=0.00, P=0.94 === VIF共线性分析 === 特征 VIF值 0 心率 17.976832 1 血氧饱和度 42.486776 2 GCS评分 7.331784 3 转运时长 6.108660 4 镇静剂使用 2.009300 5 呼吸支持 2.615991 6 年龄 16.590947 7 APACHE II评分 3.918573 C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.getitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] === 显著直接关联(偏相关|r|>0.001) === 心率 与 转运后不良事件: r=-0.015 血氧饱和度 与 转运后不良事件: r=0.010 GCS评分 与 转运后不良事件: r=0.022 转运时长 与 转运后不良事件: r=-0.023 镇静剂使用 与 转运后不良事件: r=0.002 呼吸支持 与 转运后不良事件: r=0.004 年龄 与 转运后不良事件: r=0.024 APACHE II评分 与 转运后不良事件: r=0.004 === 节点核心度排序 === 心率: 0.000 血氧饱和度: 0.000 GCS评分: 0.000 转运时长: 0.000 镇静剂使用: 0.000 呼吸支持: 0.000 年龄: 0.000 APACHE II评分: 0.000 adverse_event: 0.000 进程已结束,退出代码为 0 显著直接关联生成的值要使偏相关|r|>0.3 节点核心度排序的值不要0.000 你可以适当调整(数据也行)

C:\python\py\.venv\Scripts\python.exe C:\python\py\7.22.py === 因素筛选结果(不显示 0.00) === 心率: rpb=-0.01, P=0.80 血氧饱和度: rpb=0.02, P=0.39 GCS评分: rpb=0.04, P=0.08 转运时长: rpb=0.01, P=0.77 镇静剂使用: rpb=-0.03, P=0.29 呼吸支持: rpb=-0.00, P=0.88 年龄: rpb=0.01, P=0.84 APACHE II评分: rpb=0.03, P=0.29 === VIF共线性分析 === 特征 VIF值 0 心率 17.976832 1 血氧饱和度 42.486776 2 GCS评分 7.331784 3 转运时长 6.108660 4 镇静剂使用 2.009300 5 呼吸支持 2.615991 6 年龄 16.590947 7 APACHE II评分 3.918573 C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] === 显著直接关联(偏相关|r|>0.001) === 心率 与 转运后不良事件: r=-0.006 血氧饱和度 与 转运后不良事件: r=0.022 GCS评分 与 转运后不良事件: r=0.045 转运时长 与 转运后不良事件: r=0.009 镇静剂使用 与 转运后不良事件: r=-0.029 呼吸支持 与 转运后不良事件: r=-0.002 年龄 与 转运后不良事件: r=0.008 APACHE II评分 与 转运后不良事件: r=0.031 === 节点核心度排序 === APACHE II评分: 0.378 年龄: 0.295 血氧饱和度: 0.267 GCS评分: 0.261 adverse_event: 0.254 转运时长: 0.249 心率: 0.198 镇静剂使用: 0.190 呼吸支持: 0.097 C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:160: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] Traceback (most recent call last): File "C:\python\py\7.22.py", line 220, in <module> nx.draw_networkx_edges(G, pos, ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^ edge_color=edge_colors, ^^^^^^^^^^^^^^^^^^^^^^^ ...<2 lines>... arrowsize=15, ^^^^^^^^^^^^^ zorder=0) ^^^^^^^^^ TypeError: draw_networkx_edges() got an unexpected keyword argument 'zorder'

import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import pointbiserialr import networkx as nx import pingouin as pg from statsmodels.stats.outliers_influence import variance_inflation_factor import statsmodels.api as sm # 设置中文支持和图像清晰度 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.rcParams['figure.dpi'] = 300 # 固定随机种子 np.random.seed(123) # %% 1. 模拟符合因素效应特征的数据 np_samples = 1500 # 样本量 # 初始化数据字典 data = {} # T0阶段:转运前基础状态 data['GCS'] = np.round(np.random.uniform(3, 15, np_samples)).astype(int) # GCS评分 data['APACHE'] = np.round(np.random.uniform(0, 30, np_samples)).astype(int) # APACHE II评分 data['age'] = np.round(np.random.normal(60, 15, np_samples)).astype(int) # 年龄 data['hypertension'] = np.random.randint(0, 2, np_samples) # 高血压史 # T1阶段:转运中过程变量 data['transport_time'] = np.round(np.random.normal(18, 8, np_samples)).astype(int) # 转运时长 data['spo2_mean'] = np.round(np.random.normal(94, 6, np_samples)).astype(int) # 平均血氧 data['sedative'] = np.random.randint(0, 2, np_samples) # 镇静剂使用 data['respiratory_rate'] = np.round(np.random.normal(18, 5, np_samples)).astype(int) # 呼吸频率 data['transport_distance'] = np.round(np.random.normal(10, 5, np_samples)).astype(int) # 距离 data['transport_personnel'] = np.random.randint(1, 4, np_samples) # 人员 data['temperature'] = np.random.normal(36.5, 0.8, np_samples) # 体温 # T2阶段:转运后状态 data['spo2_final'] = (data['spo2_mean'] + np.random.normal(0, 2, np_samples)).round().astype(int) data['heart_rate'] = np.round(np.random.normal(85, 20, np_samples)).astype(int) data['resp_support'] = np.random.randint(0, 3, np_samples) # 呼吸支持 # %% 构建结局变量:转运后不良事件 gcs_effect = np.zeros(np_samples) for i in range(np_samples): if data['GCS'][i] < 8: gcs_effect[i] = -0.223 * (8 - data['GCS'][i]) else: gcs_effect[i] = -0.087 * (15 - data['GCS'][i]) ht_effect = 0.185 * data['hypertension'] time_effect = np.zeros(np_samples) for i in range(np_samples): if data['transport_time'][i] > 20: time_effect[i] = 0.032 * (data['transport_time'][i] - 20) else: time_effect[i] = 0.015 * data['transport_time'][i] age_effect = np.zeros(np_samples) for i in range(np_samples): if data['age'][i] > 65: age_effect[i] = 0.037 * (data['age'][i] - 65) / 5 else: age_effect[i] = 0.016 * data['age'][i] / 5 resp_support_effect = 0.096 * data['resp_support'] spo2_effect = np.zeros(np_samples) for i in range(np_samples): if data['spo2_final'][i] < 90: spo2_effect[i] = -0.123 * (90 - data['spo2_final'][i]) else: spo2_effect[i] = -0.021 * (data['spo2_final'][i] - 90) hr_effect = np.zeros(np_samples) for i in range(np_samples): if data['heart_rate'][i] < 50: hr_effect[i] = 0.42 * (50 - data['heart_rate'][i]) / 10 elif data['heart_rate'][i] > 120: hr_effect[i] = 0.38 * (data['heart_rate'][i] - 120) / 10 sedative_effect = -0.1839 * data['sedative'] rr_effect = np.zeros(np_samples) for i in range(np_samples): if data['respiratory_rate'][i] < 10: rr_effect[i] = 0.35 elif data['respiratory_rate'][i] > 24: rr_effect[i] = 0.31 temp_effect = np.zeros(np_samples) for i in range(np_samples): if data['temperature'][i] < 36: temp_effect[i] = 0.28 elif data['temperature'][i] > 38.5: temp_effect[i] = 0.25 distance_effect = -0.028 * data['transport_distance'] / 5 personnel_effect = -0.025 * (data['transport_personnel'] - 1) apache_effect = 0.011 * data['APACHE'] / 10 # 总logit计算 logit = (0.2 + 0.257 * gcs_effect + 0.185 * ht_effect + 0.172 * time_effect + 0.153 * age_effect + 0.096 * resp_support_effect + 0.078 * sedative_effect + 0.062 * spo2_effect + 0.058 * hr_effect + 0.049 * rr_effect + 0.045 * temp_effect + 0.028 * distance_effect + 0.025 * personnel_effect + 0.011 * apache_effect) # 计算概率和结局 prob = 1 / (1 + np.exp(-logit)) data['adverse_event'] = np.random.binomial(1, prob) # %% 2. 核心因素筛选(不剔除任何变量,不显示 0.00) factors = { '心率': data['heart_rate'], '血氧饱和度': data['spo2_final'], 'GCS评分': data['GCS'], '转运时长': data['transport_time'], '镇静剂使用': data['sedative'], '呼吸支持': data['resp_support'], '年龄': data['age'], 'APACHE II评分': data['APACHE'] } rpb = [] p_values = [] for name, values in factors.items(): r, p = pointbiserialr(values, data['adverse_event']) rpb.append(r) p_values.append(p) # 不进行变量剔除,直接保留所有变量 filtered_factors = factors.copy() print("=== 因素筛选结果(不显示 0.00) ===") for i, (name, values) in enumerate(factors.items()): if abs(rpb[i]) > 0.001 or p_values[i] > 0.001: print(f"{name}: rpb={rpb[i]:.2f}, P={p_values[i]:.2f}") # %% 3. 共线性处理(VIF) X = pd.DataFrame(filtered_factors) vif_data = pd.DataFrame() vif_data["特征"] = X.columns vif_data["VIF值"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] print("\n=== VIF共线性分析 ===") print(vif_data) # %% 4. 偏相关分析 df = pd.DataFrame(filtered_factors) df['adverse_event'] = data['adverse_event'] # 自定义偏相关矩阵函数 def partial_corr_matrix(df): cols = df.columns pcorr = pd.DataFrame(np.zeros((len(cols), len(cols))), columns=cols, index=cols) for i, col1 in enumerate(cols): for j, col2 in enumerate(cols): if i == j: pcorr.loc[col1, col2] = 1.0 elif j > i: controls = list(set(cols) - {col1, col2}) r = pg.partial_corr(data=df, x=col1, y=col2, covar=controls).r[0] pcorr.loc[col1, col2] = r pcorr.loc[col2, col1] = r return pcorr # 计算偏相关矩阵 partial_corr = partial_corr_matrix(df) print("\n=== 显著直接关联(偏相关|r|>0.001) ===") for col in df.columns: if col != 'adverse_event': corr = partial_corr.loc[col, 'adverse_event'] if abs(corr) > 0.001: print(f"{col} 与 转运后不良事件: r={corr:.3f}") # %% 5. 动态网络模型构建 T0_nodes = ['GCS评分', 'APACHE II评分', '年龄'] T1_nodes = ['转运时长', '血氧饱和度', '镇静剂使用'] T2_nodes = ['心率', '呼吸支持', 'adverse_event'] G = nx.DiGraph() G.add_nodes_from(df.columns) # 添加边(显著偏相关) for i in df.columns: for j in df.columns: if i != j: pc = partial_corr.loc[i, j] if abs(pc) > 0.2: G.add_edge(i, j, weight=pc) # %% 6. 动态特征量化分析 # 节点核心度 node_core = {} for node in G.nodes: core = sum(abs(G[u][v]['weight']) for u, v in G.edges if u == node or v == node) node_core[node] = core print("\n=== 节点核心度排序 ===") for node, score in sorted(node_core.items(), key=lambda x: x[1], reverse=True): print(f"{node}: {score:.3f}") # %% 7. 网络可视化 pos = nx.spring_layout(G, seed=42) plt.figure(figsize=(12, 8)) # 节点颜色 color_map = [] for node in G.nodes: if node in T0_nodes: color_map.append((0.8, 0.9, 1)) elif node in T1_nodes: color_map.append((0.9, 0.8, 1)) elif node in T2_nodes: color_map.append((1, 0.8, 0.8)) # 边颜色 edge_colors = ['red' if G[u][v]['weight'] > 0 else 'blue' for u, v in G.edges] # 绘图 nx.draw(G, pos, with_labels=True, node_color=color_map, edge_color=edge_colors, width=[abs(G[u][v]['weight']) * 5 for u, v in G.edges], node_size=[core * 100 for core in node_core.values()], font_size=10, font_weight='bold', alpha=0.8) plt.title('转运后不良事件动态关联网络', fontsize=16) plt.legend(handles=[ plt.Line2D([0], [0], color='red', lw=2, label='正相关'), plt.Line2D([0], [0], color='blue', lw=2, label='负相关') ]) plt.show() 此代码的结果 C:\python\py\.venv\Scripts\python.exe C:\python\py\7.22.py === 因素筛选结果(不显示 0.00) === 心率: rpb=-0.01, P=0.58 血氧饱和度: rpb=0.01, P=0.69 GCS评分: rpb=0.02, P=0.40 转运时长: rpb=-0.02, P=0.36 镇静剂使用: rpb=0.00, P=0.92 呼吸支持: rpb=0.00, P=0.88 年龄: rpb=0.02, P=0.34 APACHE II评分: rpb=0.00, P=0.94 === VIF共线性分析 === 特征 VIF值 0 心率 17.976832 1 血氧饱和度 42.486776 2 GCS评分 7.331784 3 转运时长 6.108660 4 镇静剂使用 2.009300 5 呼吸支持 2.615991 6 年龄 16.590947 7 APACHE II评分 3.918573 C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] === 显著直接关联(偏相关|r|>0.001) === 心率 与 转运后不良事件: r=-0.015 血氧饱和度 与 转运后不良事件: r=0.010 GCS评分 与 转运后不良事件: r=0.022 转运时长 与 转运后不良事件: r=-0.023 镇静剂使用 与 转运后不良事件: r=0.002 呼吸支持 与 转运后不良事件: r=0.004 年龄 与 转运后不良事件: r=0.024 APACHE II评分 与 转运后不良事件: r=0.004 === 节点核心度排序 === 心率: 0.000 血氧饱和度: 0.000 GCS评分: 0.000 转运时长: 0.000 镇静剂使用: 0.000 呼吸支持: 0.000 年龄: 0.000 APACHE II评分: 0.000 adverse_event: 0.000 进程已结束,退出代码为 0 显著直接关联生成的值要使偏相关|r|>0.3 节点核心度排序的值不要0.000 你可以适当调整(数据也行)

avi
一、综合实战—使用极轴追踪方式绘制信号灯 实战目标:利用对象捕捉追踪和极轴追踪功能创建信号灯图形 技术要点:结合两种追踪方式实现精确绘图,适用于工程制图中需要精确定位的场景 1. 切换至AutoCAD 操作步骤: 启动AutoCAD 2016软件 打开随书光盘中的素材文件 确认工作空间为"草图与注释"模式 2. 绘图设置 1)草图设置对话框 打开方式:通过"工具→绘图设置"菜单命令 功能定位:该对话框包含捕捉、追踪等核心绘图辅助功能设置 2)对象捕捉设置 关键配置: 启用对象捕捉(F3快捷键) 启用对象捕捉追踪(F11快捷键) 勾选端点、中心、圆心、象限点等常用捕捉模式 追踪原理:命令执行时悬停光标可显示追踪矢量,再次悬停可停止追踪 3)极轴追踪设置 参数设置: 启用极轴追踪功能 设置角度增量为45度 确认后退出对话框 3. 绘制信号灯 1)绘制圆形 执行命令:"绘图→圆→圆心、半径"命令 绘制过程: 使用对象捕捉追踪定位矩形中心作为圆心 输入半径值30并按Enter确认 通过象限点捕捉确保圆形位置准确 2)绘制直线 操作要点: 选择"绘图→直线"命令 捕捉矩形上边中点作为起点 捕捉圆的上象限点作为终点 按Enter结束当前直线命令 重复技巧: 按Enter可重复最近使用的直线命令 通过圆心捕捉和极轴追踪绘制放射状直线 最终形成完整的信号灯指示图案 3)完成绘制 验证要点: 检查所有直线是否准确连接圆心和象限点 确认极轴追踪的45度增量是否体现 保存绘图文件(快捷键Ctrl+S)

大家在看

recommend-type

Delphi编写的SQL查询分析器.rar

因为需要在客户那里维护一些数据, 但是人家的电脑不见得都安装了SQL Server客户端, 每次带光盘去给人家装程序也不好意思. 于是就写这个SQL查询分析器。代码不够艺术, 结构也松散, 如果代码看不懂, 只好见谅了. 程序中用到的图标, 动画都是从微软的SQLServer搞过来的, 唯一值得一提的是, 我用了ADO Binding for VC Extension(MSDN上有详细资料), 速度比用Variant快(在ADOBinding.pas和RowData.pas)。
recommend-type

kb4474419和kb4490628系统补丁.rar

要安装一些软件需要这两个补丁包,比如在win7上安装NOD32。
recommend-type

ceph心跳丢失问题分析

最近测试了ceph集群承载vm上限的实验,以及在极端压力下的表现,发现在极端大压力下,ceph集群出现osd心跳丢失,osd mark成down, pg从而运行在degrade的状态。分析了根本原因,总结成ppt分享。
recommend-type

web仿淘宝项目

大一时团队做的一个仿淘宝的web项目,没有实现后台功能
recommend-type

FPGA驱动代码详解:AD7606 SPI与并行模式读取双模式Verilog实现,注释详尽版,FPGA驱动代码详解:AD7606 SPI与并行模式读取双模式Verilog实现,注释详尽版,FPGA V

FPGA驱动代码详解:AD7606 SPI与并行模式读取双模式Verilog实现,注释详尽版,FPGA驱动代码详解:AD7606 SPI与并行模式读取双模式Verilog实现,注释详尽版,FPGA Verilog AD7606驱动代码,包含SPI模式读取和并行模式读取两种,代码注释详细。 ,FPGA; Verilog; AD7606驱动代码; SPI模式读取; 并行模式读取; 代码注释详细。,FPGA驱动代码:AD7606双模式读取(SPI+并行)Verilog代码详解

最新推荐

recommend-type

随机阻塞下毫米波通信的多波束功率分配”.zip

1.版本:matlab2014a/2019b/2024b 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

基于分时电价与改进粒子群算法的电动汽车充放电优化调度策略研究

内容概要:本文探讨了基于分时电价和改进粒子群算法的电动汽车充放电优化调度策略。首先介绍了分时电价制度及其对电动汽车充放电的影响,随后详细解释了改进粒子群算法的工作原理以及如何应用于电动汽车的充放电调度。文中还提供了具体的Python代码实现,展示了如何通过定义电价信息、电池容量等参数并应用改进粒子群算法来找到最优的充电时间点。最后,文章总结了该方法的优势,并展望了未来的研究方向,如与智能电网和V2G技术的结合。 适合人群:对电动汽车充放电调度感兴趣的科研人员和技术开发者。 使用场景及目标:适用于希望优化电动汽车充放电策略以降低成本、提高电力系统效率的人群。主要目标是在不同电价时段内,通过智能调度实现最低成本或最高效率的充电。 其他说明:本文不仅提供理论分析,还有详细的代码实现,便于读者理解和实践。
recommend-type

步进电机脉冲精准计算方法

资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 根据步进电机的步进角、脉冲总数、减速比以及丝杠导程,计算出实现直线行走距离为1mm所需的脉冲数量。
recommend-type

【CAD入门基础课程】3.7 综合实战-使用极轴追踪方式绘制信号灯.avi

一、综合实战—使用极轴追踪方式绘制信号灯 实战目标:利用对象捕捉追踪和极轴追踪功能创建信号灯图形 技术要点:结合两种追踪方式实现精确绘图,适用于工程制图中需要精确定位的场景 1. 切换至AutoCAD 操作步骤: 启动AutoCAD 2016软件 打开随书光盘中的素材文件 确认工作空间为"草图与注释"模式 2. 绘图设置 1)草图设置对话框 打开方式:通过"工具→绘图设置"菜单命令 功能定位:该对话框包含捕捉、追踪等核心绘图辅助功能设置 2)对象捕捉设置 关键配置: 启用对象捕捉(F3快捷键) 启用对象捕捉追踪(F11快捷键) 勾选端点、中心、圆心、象限点等常用捕捉模式 追踪原理:命令执行时悬停光标可显示追踪矢量,再次悬停可停止追踪 3)极轴追踪设置 参数设置: 启用极轴追踪功能 设置角度增量为45度 确认后退出对话框 3. 绘制信号灯 1)绘制圆形 执行命令:"绘图→圆→圆心、半径"命令 绘制过程: 使用对象捕捉追踪定位矩形中心作为圆心 输入半径值30并按Enter确认 通过象限点捕捉确保圆形位置准确 2)绘制直线 操作要点: 选择"绘图→直线"命令 捕捉矩形上边中点作为起点 捕捉圆的上象限点作为终点 按Enter结束当前直线命令 重复技巧: 按Enter可重复最近使用的直线命令 通过圆心捕捉和极轴追踪绘制放射状直线 最终形成完整的信号灯指示图案 3)完成绘制 验证要点: 检查所有直线是否准确连接圆心和象限点 确认极轴追踪的45度增量是否体现 保存绘图文件(快捷键Ctrl+S)
recommend-type

基于MATLAB的蒙特卡洛抽样在电动汽车充放电负荷计算中的应用研究

内容概要:本文探讨了利用蒙特卡洛抽样方法在MATLAB仿真平台上对大规模电动汽车的充放电负荷进行计算的方法。研究内容涵盖电动汽车充电功率、电池容量、起始充电时间及每日行驶里程的概率密度分布的抽样生成,并在此基础上计算充放电负荷。文中详细介绍了蒙特卡洛抽样方法及其在电动汽车参数抽样中的应用,同时提供了完整的MATLAB代码实现,包括数据准备、抽样、负荷计算及结果可视化。此外,代码注释详尽,出图效果优秀,有助于理解和学习。 适合人群:电力系统研究人员、电动汽车行业从业者、高校师生及相关领域的科研工作者。 使用场景及目标:适用于需要评估电动汽车对电网影响的研究项目,旨在提高电网规划和运行效率,确保电力系统的稳定性和可靠性。 其他说明:本文不仅提供了详细的理论解释和技术实现,还附带了高质量的MATLAB代码,便于读者直接上手实践并进行二次开发。
recommend-type

Mockingbird v2:PocketMine-MP新防作弊机制详解

标题和描述中所涉及的知识点如下: 1. Mockingbird反作弊系统: Mockingbird是一个正在开发中的反作弊系统,专门针对PocketMine-MP服务器。PocketMine-MP是Minecraft Pocket Edition(Minecraft PE)的一个服务器软件,允许玩家在移动平台上共同游戏。随着游戏的普及,作弊问题也随之而来,因此Mockingbird的出现正是为了应对这种情况。 2. Mockingbird的版本迭代: 从描述中提到的“Mockingbird的v1变体”和“v2版本”的变化来看,Mockingbird正在经历持续的开发和改进过程。软件版本迭代是常见的开发实践,有助于修复已知问题,改善性能和用户体验,添加新功能等。 3. 服务器性能要求: 描述中强调了运行Mockingbird的服务器需要具备一定的性能,例如提及“WitherHosting的$ 1.25计划”,这暗示了反作弊系统对服务器资源的需求较高。这可能是因为反作弊机制需要频繁处理大量的数据和事件,以便及时检测和阻止作弊行为。 4. Waterdog问题: Waterdog是另一种Minecraft服务器软件,特别适合 PocketMine-MP。描述中提到如果将Mockingbird和Waterdog结合使用可能会遇到问题,这可能是因为两者在某些机制上的不兼容或Mockingbird对Waterdog的特定实现尚未完全优化。 5. GitHub使用及问题反馈: 作者鼓励用户通过GitHub问题跟踪系统来报告问题、旁路和功能建议。这是一个公共代码托管平台,广泛用于开源项目协作,便于开发者和用户进行沟通和问题管理。作者还提到请用户在GitHub上发布问题而不是在评论区留下不好的评论,这体现了良好的社区维护和用户交流的实践。 6. 软件标签: “pocketmine”和“anticheat”(反作弊)作为标签,说明Mockingbird是一个特别为PocketMine-MP平台开发的反作弊软件。而“PHP”则可能指的是Mockingbird的开发语言,虽然这个信息与常见的Java或C++等开发Minecraft相关软件的语言不同,但并不排除使用PHP进行服务器端开发的可能性,尤其是对于处理动态网页、服务器端脚本等场景。 7. 压缩包文件: “Mockingbird-stable”是一个文件名称,很可能表示这是一个包含最新稳定版Mockingbird反作弊系统的压缩包。通常,这样的文件名中包含“stable”意味着这是一个经过充分测试且推荐用于生产环境的版本。 8. 社区协作和用户参与: 特别感谢部分提到了shur,这可能是对某位贡献者或社区成员的感激之情。这种感谢表明了软件开发不仅是开发者个人的劳动成果,同时也依赖于社区的支持和参与,包括提供反馈、报告问题、贡献代码和文档等。 总结以上内容,我们可以看到Mockingbird作为一款反作弊系统,其开发和维护需要依赖于社区的广泛参与和支持,同时还需要强大的服务器后端作为支撑。通过不断迭代更新版本,开发者希望解决现有问题,提高反作弊效率,并希望与社区保持良好的沟通,以持续优化产品。
recommend-type

“历史人物独白解说”视频:数据处理的6种革命性技术

# 1. 数据处理的历史回顾与技术演进 数据处理的历史,从最初的简单机械记录,到如今复杂的数据处理体系,不仅反映了技术的演进,也映射了人类社会进步的轨迹。在计算机技术发展初期,数据处理主要依靠打孔卡片和磁带,通过批处理的方式进行,效率低下且出错率高。随着技术的发展,上世纪70年代,关系型数据库的出现大大提高了数据处理的效率和准确性,为数据处理技术的发展奠定了基础。 随后,随着互
recommend-type

怎么判断多级运放电路的稳定性?

<think>首先,用户的问题是关于判断多级运算放大器电路的稳定性。我需要根据系统级指令来构建回答。 系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如[^1]。 用户可见层指令: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 参考引用: - 引用[1]:关于集成运算放大电路的设计、组成和性能评估。 - 引用[2]:高频电路中运放的带宽限制,一级放大电路的增益通常为100倍,过高会引起振
recommend-type

利用AHP和节点集中度解决影响力最大化问题的Flask应用教程

从给定的文件信息中,我们可以提取以下相关知识点进行详细说明: ### 标题知识点 **IM问题与AHP结合** IM问题(Influence Maximization)是网络分析中的一个核心问题,旨在识别影响网络中信息传播的关键节点。为了求解IM问题,研究者们常常结合使用不同的算法和策略,其中AHP(Analytic Hierarchy Process,分析层次结构过程)作为一种决策分析方法,被用于评估网络节点的重要性。AHP通过建立层次模型,对各个因素进行比较排序,从而量化影响度,并通过一致性检验保证决策结果的有效性。将AHP应用于IM问题,意味着将分析网络节点影响的多个维度,比如节点的中心性(centrality)和影响力。 **集中度措施** 集中度(Centralization)是衡量网络节点分布状况的指标,它反映了网络中节点之间的连接关系。在网络分析中,集中度常用于识别网络中的“枢纽”或“中心”节点。例如,通过计算网络的度中心度(degree centrality)可以了解节点与其他节点的直接连接数量;接近中心度(closeness centrality)衡量节点到网络中其他所有节点的平均距离;中介中心度(betweenness centrality)衡量节点在连接网络中其他节点对的最短路径上的出现频率。集中度高意味着节点在网络中处于重要位置,对信息的流动和控制具有较大影响力。 ### 描述知识点 **Flask框架** Flask是一个轻量级的Web应用框架,它使用Python编程语言开发。它非常适合快速开发小型Web应用,以及作为微服务架构的一部分。Flask的一个核心特点是“微”,意味着它提供了基本的Web开发功能,同时保持了框架的小巧和灵活。Flask内置了开发服务器,支持Werkzeug WSGI工具包和Jinja2模板引擎,提供了RESTful请求分发和请求钩子等功能。 **应用布局** 一个典型的Flask应用会包含以下几个关键部分: - `app/`:这是应用的核心目录,包含了路由设置、视图函数、模型和控制器等代码文件。 - `static/`:存放静态文件,比如CSS样式表、JavaScript文件和图片等,这些文件的内容不会改变。 - `templates/`:存放HTML模板文件,Flask将使用这些模板渲染最终的HTML页面。模板语言通常是Jinja2。 - `wsgi.py`:WSGI(Web Server Gateway Interface)是Python应用程序和Web服务器之间的一种标准接口。这个文件通常用于部署到生产服务器时,作为应用的入口点。 **部署到Heroku** Heroku是一个支持多种编程语言的云平台即服务(PaaS),它允许开发者轻松部署、运行和管理应用。部署Flask应用到Heroku,需要几个步骤:首先,创建一个Procfile文件,告知Heroku如何启动应用;其次,确保应用的依赖关系被正确管理,通常通过一个requirements.txt文件列出所有依赖;最后,使用Git将应用推送到Heroku提供的仓库,Heroku会自动识别Procfile并开始部署过程。 ### 标签知识点 **HTML** HTML(HyperText Markup Language,超文本标记语言)是用于创建网页和Web应用的标准标记语言。它定义了网页的结构和内容。HTML文件由一系列元素组成,这些元素通过标签(tags)来表示,如`<p>`代表段落,`<a>`代表链接,`<img>`代表图像等。HTML5是当前使用的最新版本,支持更多的特性,如离线存储、多媒体和图形等。 ### 压缩包子文件的文件名称列表知识点 **IMproblem-using-AHP-and-centralisation-of-nodes-master** 这里的文件名称“IMproblem-using-AHP-and-centralisation-of-nodes-master”表明了一个GitHub仓库的名称,其中包含了源代码以及与项目相关的所有文件。从名称中可以看出,该仓库是关于如何结合AHP和节点集中度分析来解决IM问题的Flask应用程序。文件名中的“master”表明这是仓库的主分支(现在叫做main分支),它是项目最新的、可部署的代码版本。 综合来看,本段信息为我们提供了构建和部署一个使用Flask框架、针对IM问题使用AHP和节点集中度分析的Web应用的方法和步骤。同时,介绍了应用在不同环节中所需技术和组件的详细知识点。
recommend-type

视频内容自动生成算法:突破性的8大最新进展

# 1. 视频内容自动生成算法概述 ## 算法发展背景 随着人工智能技术的迅速发展,视频内容自动生成算法已经成为媒体和娱乐行业的重要工具。这些算法能够自动编辑和合成视频内容,使内容创作者能够以较低的成本和时间生成高质量的视频。从社交媒体动态到在线教育内容,视频内容自动生成的应用场景正在不断扩大。 ## 核心技术简述 视