flink cdc 集成paimon样例
时间: 2025-01-23 14:34:43 浏览: 52
### Flink CDC 集成 Paimon 示例代码与教程
#### 使用 Flink CDC 连接器读取 MySQL 数据并写入 Paimon 表
为了实现这一目标,可以按照如下方式配置和编写代码:
1. **引入依赖**
在 `pom.xml` 文件中添加必要的 Maven 依赖项以支持 Flink CDC 和 Paimon。
```xml
<dependencies>
<!-- Flink dependencies -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- Flink CDC Connector for MySQL -->
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>${cdc.connector.version}</version>
</dependency>
<!-- Apache Paimon Table Store -->
<dependency>
<groupId>org.apache.paimon</groupId>
<artifactId>paimon-flink</artifactId>
<version>${paimon.version}</version>
</dependency>
</dependencies>
```
2. **创建表结构定义**
使用 SQL DDL 定义要同步到 Paimon 中的目标表。这里假设有一个名为 `orders` 的订单表。
```sql
CREATE TABLE orders (
order_id BIGINT NOT NULL,
user_id BIGINT,
product_name STRING,
amount DOUBLE,
PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
'connector' = 'paimon',
'warehouse.path' = 'file:///path/to/paimon/warehouse'
);
```
3. **编写 Flink 应用程序**
下面是一个完整的 Java 实现例子,它展示了如何利用 Flink CDC 将来自 MySQL 的变更数据捕获并通过 Paimon 存储起来。
```java
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import com.alibaba.ververica.cdc.connectors.mysql.MySqlSource;
import com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema;
import org.apache.flink.formats.json.JsonRowDataDeserializationSchema;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class MysqlToPaimonExample {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
final StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
.hostname("localhost")
.port(3306)
.databaseList("test_db") // database name
.tableList("test_db.orders") // table names, format is {database}.{table}
.username("root")
.password("your_password")
.deserializer(new JsonRowDataDeserializationSchema()) // convert to JSON string
.build();
tableEnv.executeSql("""
CREATE TABLE paimon_orders (
order_id BIGINT NOT NULL,
user_id BIGINT,
product_name STRING,
amount DOUBLE,
PRIMARY KEY(order_id) NOT ENFORCED
) WITH (
'connector' = 'paimon',
'warehouse.path' = '/tmp/paimon_example'
)
""");
var cdcStream = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source");
tableEnv.createTemporaryView("source_table", cdcStream.map(record -> record));
tableEnv.executeSql("INSERT INTO paimon_orders SELECT * FROM source_table").await();
}
}
```
此应用程序会持续监听 MySQL 数据库中的变化,并将这些更改实时地应用到指定路径下的 Paimon 表中[^1]。
阅读全文
相关推荐



















