活动介绍

python3.9.21,pytorch2.5.0,torchvision应该是什么版本

时间: 2025-07-10 22:48:11 浏览: 16
<think>好的,用户的问题是关于如何找到与Python 3.9.21和PyTorch 2.5.0兼容的torchvision版本。首先,我需要回忆一下PyTorch和torchvision之间的版本对应关系。通常,PyTorch和torchvision的版本需要严格匹配,否则可能会出现兼容性问题。 用户提到他们使用的是Python 3.9.21,这应该是一个相对较新的Python版本。PyTorch 2.5.0可能是一个较新的版本,但不确定是否已经正式发布。我需要先确认PyTorch 2.5.0的存在,或者是否有可能是用户打错了版本号,比如可能是2.0.0或1.13.0等。假设用户提供的版本是正确的,我需要查找PyTorch官方文档或版本发布说明来找到对应的torchvision版本。 接下来,我需要访问PyTorch官方网站的Previous PyTorch Versions页面,通常这个页面会列出各个PyTorch版本及其对应的torchvision和Python版本。例如,PyTorch 1.13.0可能对应torchvision 0.14.0,支持Python 3.7-3.10。但用户需要的是PyTorch 2.5.0,可能对应的torchvision版本更高。 如果官方网站没有直接列出PyTorch 2.5.0的信息,可能需要查看GitHub的发布页面或者通过PyTorch的官方安装命令来推断。例如,用户提供的引用[1]中的安装命令是使用conda安装PyTorch,CUDA 11.8版本。这可能对应某个特定的PyTorch版本,但需要进一步确认。 另外,用户可能希望使用pip安装,所以需要检查PyPI上的torchvision版本,或者使用PyTorch官方的版本兼容性表格。通常,每个PyTorch版本会有一个推荐的torchvision版本,例如PyTorch 2.0.0对应torchvision 0.15.1。 不过,根据用户的问题,他们可能需要更具体的指导,比如如何查找对应版本。因此,建议用户访问PyTorch官网的安装页面,选择对应的PyTorch版本、操作系统、包管理器(conda或pip)、CUDA版本等,然后网站会生成相应的安装命令,其中会包含正确的torchvision版本。 此外,用户需要确保Python 3.9.21与所选版本兼容。PyTorch通常支持一定范围内的Python版本,例如3.8到3.11,所以3.9.21应该没问题。但需要确认所选torchvision是否支持Python 3.9。 总结步骤: 1. 访问PyTorch官网的Previous Versions页面。 2. 查找PyTorch 2.5.0对应的torchvision版本。 3. 确认该torchvision版本支持Python 3.9.21。 4. 提供安装命令,如使用pip或conda安装。 如果官方没有PyTorch 2.5.0的发布信息,可能需要建议用户检查版本号是否正确,或推荐使用稳定版本如PyTorch 2.0.0,并对应torchvision 0.15.1。</think>### 兼容的 torchvision 版本查询步骤 1. **确认 PyTorch 官方版本对应关系** PyTorch 和 torchvision 的版本需严格匹配。访问 [PyTorch 历史版本页面](https://pytorch.org/get-started/previous-versions/),查找 `PyTorch 2.5.0` 对应的 torchvision 版本。 - 若页面未直接列出 `2.5.0`,可能是用户误输版本号(截至2023年10月,最新稳定版本为 `2.0.1`)。此时建议核对版本号或使用稳定版本[^1]。 2. **Python 3.9.21 的兼容性验证** PyTorch 通常支持 Python 3.8–3.11。Python 3.9.21 属于 3.9 的小版本更新,与 PyTorch 兼容性无冲突[^2]。 3. **安装命令生成(假设兼容版本存在)** - **Pip 安装**: ```bash pip install torch==2.5.0 torchvision==0.15.1 # 假设对应 torchvision 0.15.1 ``` - **Conda 安装**: ```bash conda install pytorch==2.5.0 torchvision==0.15.1 -c pytorch ``` 4. **验证安装** ```python import torch import torchvision print(torch.__version__) # 应输出 2.5.0 print(torchvision.__version__) # 应输出对应版本(如 0.15.1) ```
阅读全文

相关推荐

E:\python3.9.13\python.exe E:\pycharm\study\计算机视觉\test3.py Traceback (most recent call last): File "E:\python3.9.13\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 73, in <module> from tensorflow.python._pywrap_tensorflow_internal import * ImportError: DLL load failed while importing _pywrap_tensorflow_internal: 动态链接库(DLL)初始化例程失败。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\pycharm\study\计算机视觉\test3.py", line 20, in <module> from 计算机视觉.test2 import ObjectRecognitionDeployer File "E:\pycharm\study\计算机视觉\test2.py", line 1, in <module> import tensorflow as tf File "E:\python3.9.13\lib\site-packages\tensorflow\__init__.py", line 40, in <module> from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow # pylint: disable=unused-import File "E:\python3.9.13\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 88, in <module> raise ImportError( ImportError: Traceback (most recent call last): File "E:\python3.9.13\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 73, in <module> from tensorflow.python._pywrap_tensorflow_internal import * ImportError: DLL load failed while importing _pywrap_tensorflow_internal: 动态链接库(DLL)初始化例程失败。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common causes and solutions. If you need help, create an issue at https://github.com/tensorflow/tensorflow/issues and include the entire stack trace above this error message.

Please use pip<24.1 if you need to use this version. ERROR: Ignored the following versions that require a different python version: 1.11.0 Requires-Python <3.13,>=3.9; 1.11.0rc1 Requires-Python <3.13,>=3.9; 1.11.0rc2 Requires-Python <3.13,>=3.9; 1.11.1 Requires-Python <3.13,>=3.9; 1.11.2 Requires-Python <3.13,>=3.9; 1.11.3 Requires-Python <3.13,>=3.9; 1.11.4 Requires-Python >=3.9; 1.12.0 Requires-Python >=3.9; 1.12.0rc1 Requires-Python >=3.9; 1.12.0rc2 Requires-Python >=3.9; 1.13.0 Requires-Python >=3.9; 1.13.0rc1 Requires-Python >=3.9; 1.13.1 Requires-Python >=3.9; 1.14.0 Requires-Python >=3.10; 1.14.0rc1 Requires-Python >=3.10; 1.14.0rc2 Requires-Python >=3.10; 1.14.1 Requires-Python >=3.10; 1.15.0 Requires-Python >=3.10; 1.15.0rc1 Requires-Python >=3.10; 1.15.0rc2 Requires-Python >=3.10; 1.15.1 Requires-Python >=3.10; 1.15.2 Requires-Python >=3.10; 1.15.3 Requires-Python >=3.10; 2.1.0 Requires-Python >=3.10; 2.1.0rc1 Requires-Python >=3.10; 2.5.0 Requires-Python >=3.9; 2.5.0.post0 Requires-Python >=3.9; 2.5.0rc0 Requires-Python >=3.9; 2.5.1 Requires-Python >=3.9; 2.5.1.post0 Requires-Python >=3.9; 2.5.1rc0 Requires-Python >=3.9; 2.5.1rc1 Requires-Python >=3.9; 2.5.1rc2 Requires-Python >=3.9; 3.12.0 Requires-Python >=3.9; 3.12.1 Requires-Python >=3.9; 3.13.0 Requires-Python >=3.9; 6.3.0 Requires-Python >=3.9; 6.3.1 Requires-Python >=3.9; 7.5.0 Requires-Python >=3.9; 75.4.0 Requires-Python >=3.9; 75.5.0 Requires-Python >=3.9; 75.6.0 Requires-Python >=3.9; 75.7.0 Requires-Python >=3.9; 75.8.0 Requires-Python >=3.9; 75.8.1 Requires-Python >=3.9; 75.8.2 Requires-Python >=3.9; 75.9.0 Requires-Python >=3.9; 75.9.1 Requires-Python >=3.9; 76.0.0 Requires-Python >=3.9; 76.1.0 Requires-Python >=3.9; 77.0.1 Requires-Python >=3.9; 77.0.3 Requires-Python >=3.9; 78.0.1 Requires-Python >=3.9; 78.0.2 Requires-Python >=3.9; 78.1.0 Requires-Python >=3.9; 78.1.1 Requires-Python >=3.9; 79.0.0 Requires-Python >=3.9; 79.0.1 Requires-Python >=3.9; 80.0.0 Requires-Python >=3.9; 80.0.1 Requires-Python >=3.9; 80.1.0 Requires-Python >=3.9; 80.2.0 Requires-Python >=3.9; 80.3.0 Requires-Python >=3.9; 80.3.1 Requires-Python >=3.9; 80.4.0 Requires-Python >=3.9 ERROR: Could not find a version that satisfies the requirement pytorch_lightning==1.6.4 (from versions: 0.0.2, 0.2, 0.2.2, 0.2.3, 0.2.4, 0.2.4.1, 0.2.5, 0.2.5.1, 0.2.5.2, 0.2.6, 0.3, 0.3.1, 0.3.2, 0.3.3, 0.3.4, 0.3.4.1, 0.3.5, 0.3.6, 0.3.6.1, 0.3.6.3, 0.3.6.4, 0.3.6.5, 0.3.6.6, 0.3.6.7, 0.3.6.8, 0.3.6.9, 0.4.0, 0.4.1, 0.4.2, 0.4.3, 0.4.4, 0.4.5, 0.4.6, 0.4.7, 0.4.8, 0.4.9, 0.5.0, 0.5.1, 0.5.1.2, 0.5.1.3, 0.5.2, 0.5.2.1, 0.5.3, 0.5.3.1, 0.5.3.2, 0.5.3.3, 0.6.0, 0.7.1, 0.7.3, 0.7.5, 0.7.6, 0.8.1, 0.8.3, 0.8.4, 0.8.5, 0.9.0, 0.10.0, 1.0.0, 1.0.1, 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.0.6, 1.0.7, 1.0.8, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6, 1.1.7, 1.1.8, 1.2.0rc0, 1.2.0rc1, 1.2.0rc2, 1.2.0, 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1.2.8, 1.2.9, 1.2.10, 1.3.0rc1, 1.3.0rc2, 1.3.0rc3, 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.3.7.post0, 1.3.8, 1.4.0rc0, 1.4.0rc1, 1.4.0rc2, 1.4.0, 1.4.1, 1.4.2, 1.4.3, 1.4.4, 1.4.5, 1.4.6, 1.4.7, 1.4.8, 1.4.9, 1.5.0rc0, 1.5.0rc1, 1.5.0, 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.5, 1.5.6, 1.5.7, 1.5.8, 1.5.9, 1.5.10, 1.5.10.post0, 1.6.0rc0, 1.6.0rc1, 1.6.0, 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.6.5.post0, 1.7.0rc0, 1.7.0rc1, 1.7.0, 1.7.1, 1.7.2, 1.7.3, 1.7.4, 1.7.5, 1.7.6, 1.7.7, 1.8.0rc0, 1.8.0rc1, 1.8.0rc2, 1.8.0, 1.8.0.post1, 1.8.1, 1.8.2, 1.8.3, 1.8.3.post0, 1.8.3.post1, 1.8.3.post2, 1.8.4, 1.8.4.post0, 1.8.5, 1.8.5.post0, 1.8.6, 1.9.0rc0, 1.9.0, 1.9.1, 1.9.2, 1.9.3, 1.9.4, 1.9.5, 2.0.0rc0, 2.0.0, 2.0.1, 2.0.1.post0, 2.0.2, 2.0.3, 2.0.4, 2.0.5, 2.0.6, 2.0.7, 2.0.8, 2.0.9, 2.0.9.post0, 2.1.0rc0, 2.1.0rc1, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0rc0, 2.2.0, 2.2.0.post0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.4.0) ERROR: No matching distribution found for pytorch_lightning==1.6.4

这是虚拟环境里的包,如果升级python会报错吗,absl-py 2.3.1 accelerate 1.8.1 airsim 1.8.1 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 anyio 4.9.0 av 15.0.0 black 25.1.0 blas 1.0 brotlicffi 1.0.9.2 bzip2 1.0.8 ca-certificates 2025.2.25 cairo 1.16.0 cccl 2.3.2 certifi 2025.7.9 cffi 1.17.1 chardet 5.2.0 charset-normalizer 3.4.2 click 8.1.8 cloudpickle 3.1.1 colorama 0.4.6 contourpy 1.3.0 cuda-cccl 12.4.127 cuda-cccl_win-64 12.4.127 cuda-cudart 12.4.127 cuda-cudart-dev 12.4.127 cuda-cudart-dev_win-64 12.4.127 cuda-cudart-static 12.4.127 cuda-cudart-static_win-64 12.4.127 cuda-cudart_win-64 12.4.127 cuda-cupti 12.4.127 cuda-libraries 12.4.1 cuda-libraries-dev 12.4.1 cuda-nvrtc 12.4.127 cuda-nvrtc-dev 12.4.127 cuda-nvtx 12.4.127 cuda-opencl 12.4.127 cuda-opencl-dev 12.4.127 cuda-profiler-api 12.4.127 cuda-runtime 12.4.1 cuda-version 12.4 cycler 0.12.1 cython 3.1.2 dav1d 1.2.1 decord 0.6.0 deprecated 1.2.13 detectron2 0.6 distro 1.9.0 exceptiongroup 1.3.0 expat 2.7.1 ffmpeg 6.1.1 filelock 3.18.0 fontconfig 2.14.1 fonttools 4.58.5 freetype 2.13.3 fsspec 2025.5.1 fuzzywuzzy 0.18.0 fvcore 0.1.5.post20221221 giflib 5.2.2 gmp 6.3.0 gmpy2 2.2.1 graphite2 1.3.14 grpcio 1.73.1 h11 0.16.0 h5py 3.14.0 harfbuzz 10.2.0 hf-transfer 0.1.9 httpcore 1.0.9 httpx 0.28.1 huggingface-hub 0.33.4 hydra-core 1.3.2 icu 73.1 idna 3.10 imageio 2.37.0 imgviz 1.7.6 importlib-metadata 8.7.0 importlib-resources 6.5.2 intel-openmp 2023.1.0 iopath 0.1.9 jinja2 3.1.6 jiter 0.10.0 jpeg 9e khronos-opencl-icd-loader 2024.05.08 kiwisolver 1.4.7 lazy-loader 0.4 lcms2 2.16 lerc 3.0 levenshtein 0.27.1 libabseil 20250127.0 libcublas 12.4.5.8 libcublas-dev 12.4.5.8 libcufft 11.2.1.3 libcufft-dev 11.2.1.3 libcurand 10.3.5.147 libcurand-dev 10.3.5.147 libcusolver 11.6.1.9 libcusolver-dev 11.6.1.9 libcusparse 12.3.1.170 libcusparse-dev 12.3.1.170 libdeflate 1.17 libffi 3.4.4 libglib 2.84.2 libiconv 1.16 libjpeg-turbo 2.0.0 libnpp 12.2.5.30 libnpp-dev 12.2.5.30 libnvfatbin 12.4.127 libnvfatbin-dev 12.4.127 libnvjitlink 12.4.127 libnvjitlink-dev 12.4.127 libnvjpeg 12.3.1.117 libnvjpeg-dev 12.3.1.117 libogg 1.3.5 libpng 1.6.39 libprotobuf 5.29.3 libtheora 1.1.1 libtiff 4.5.1 libtorch 2.5.1 libuv 1.48.0 libwebp 1.3.2 libwebp-base 1.3.2 libxml2 2.13.8 lz4-c 1.9.4 markdown 3.8.2 markupsafe 3.0.2 matplotlib 3.9.4 mkl 2023.1.0 mkl-service 2.4.0 mkl_fft 1.3.11 mkl_random 1.2.8 mpc 1.3.1 mpfr 4.2.1 mpmath 1.3.0 msgpack-python 0.5.6 msgpack-rpc-python 0.4.1 mypy-extensions 1.1.0 networkx 3.2.1 numpy 2.0.2 numpy-base 2.0.2 omegaconf 2.3.0 openai 1.95.1 opencv-contrib-python 4.12.0.88 opencv-python 4.12.0.88 opencv-python-headless 4.12.0.88 openjpeg 2.5.2 openssl 3.0.16 opentelemetry-api 1.30.0 orjson 3.11.0 packaging 25.0 pathspec 0.12.1 pcre2 10.42 pillow 11.3.0 pip 25.1 pixman 0.40.0 platformdirs 4.3.8 portalocker 3.2.0 protobuf 6.31.1 psutil 7.0.0 pycocotools 2.0.10 pycparser 2.21 pydantic 2.11.7 pydantic-core 2.33.2 pyparsing 3.2.3 pyqt5 5.15.11 pyqt5-qt5 5.15.2 pyqt5-sip 12.17.0 pysocks 1.7.1 python 3.9.23 python-dateutil 2.9.0.post0 python-levenshtein 0.27.1 pytorch 2.5.1 pytorch-cuda 12.4 pytorch-mutex 1.0 pywin32 310 pyyaml 6.0.2 qwen-vl-utils 0.0.8 rapidfuzz 3.13.0 regex 2024.11.6 requests 2.32.4 safetensors 0.5.3 scikit-image 0.24.0 scipy 1.13.1 segment-anything 1.0 setuptools 72.1.0 shapely 2.0.7 six 1.17.0 sleef 3.5.1 sniffio 1.3.1 sqlite 3.45.3 submitit 1.5.3 sympy 1.13.1 tabulate 0.9.0 tbb 2021.8.0 tensorboard 2.19.0 tensorboard-data-server 0.7.2 termcolor 3.1.0 tifffile 2024.8.30 timm 1.0.17 tk 8.6.14 tokenizers 0.21.2 tomli 2.2.1 torch 2.7.1 torchaudio 2.5.1 torchvision 0.22.1 tornado 4.5.3 tqdm 4.67.1 transformers 4.53.2 typing-extensions 4.14.1 typing-inspection 0.4.1 typing_extensions 4.12.2 tzdata 2025b ucrt 10.0.22621.0 urllib3 2.5.0 vc 14.3 vc14_runtime 14.44.35208 vs2015_runtime 14.44.35208 werkzeug 3.1.3 wheel 0.45.1 win_inet_pton 1.1.0 wrapt 1.17.0 xz 5.6.4 yacs 0.1.8 yaml 0.2.5 zipp 3.23.0 zlib 1.2.13 zstd 1.5.6

(3)v1.10.1 ~ v1.7.02. 安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自 pytorch 的 github 官方文档:pytorch/vision: Datasets, Transforms and Models specific to Computer Visionpytorch 安装官网:Start Locally | PyTorchpytorch 之前版本的安装命令:Previous PyTorch Versions | PyTorchtorch、torchvision 等相关库:download.pytorch.org/whl/torch_stable.html其中,命令中 "-c pytorch" 表示官方源,自己换源可以去掉。torch 版本 torchvision 版本 torchaudio 版本 支持的 Python 版本(示例) Cuda 版本2.5.1 0.20.1 2.5.1 >=3.9, <3.13(3.12)[9/10/11/12] 12.4/12.1/11.82.5.0 0.20.0 2.5.0 >=3.9, <3.13(3.12) 12.4/12.1/11.82.4.1 0.19.1 2.4.1 >=3.8, <3.13(3.12)[8/9/10/11/12] 12.4/12.1/11.82.4.0 0.19.0 2.4.0 >=3.8, <3.13(3.12) 12.4/12.1/11.82.3.1 0.18.1 2.3.1 >=3.8, <3.13(3.12)8/9/10/11/12 12.1/11.82.3.0 0.18.0 2.3.0 >=3.8, <3.13(3.12) 12.1/11.82.2.2 0.17.2 2.2.2 >=3.8, <3.12 [8/9/10/11] 12.1/11.82.2.1 0.17.1 2.2.1 >=3.8, <3.12 12.1/11.82.2.0 0.17.0 2.2.0 >=3.8, <3.12 12.1/11.82.1.2 0.16.2 2.1.2 >=3.8, <3.12(3.10)8/9/10/11 12.1/11.82.1.1 0.16.1 2.1.1 >=3.8, <3.12(3.10) 12.1/11.82.1.0 0.16.0 2.1.0 >=3.8, <3.12(3.10) 12.1/11.82.0.0 0.15.0 2.0.0 >=3.8, <3.12(3.8)[8/9/10/11] 11.8/11.71.13.1 0.14.1 0.13.1 >=3.7.2, <=3.10(3.8)[7/8/9/10] 11.7/11.61.13.0 0.14.0 0.13.0 >=3.7.2, <=3.10(3.8) 11.7/11.61.12.1 0.13.1 1.12.1 >=3.7, <=3.10(3.8)[7/8/9/10] 11.6/11.3/10.21.12.0 0.13.0 1.12.0 >=3.7, <=3.10(3.8) 11.6/11.3/10.21.11.0 0.12.0 1.11.0 >=3.7, <=3.10(3.8) 11.3/10.21.10.1 0.11.2 0.10.1 >=3.6, <=3.9(3.8)[6/7/8/9] 11.3/10.21.10.0 0.11.0 0.10.0 >=3.6, <=3.9(3.8) 11.3/10.21.9.1 0.10.1 0.9.1 >=3.6, <=3.9(3.8)[6/7/8/9] 11.1/10.21.9.0 0.10.0 0.9.0 >=3.6, <=3.9(3.8) 11.1/10.21.8.1 0.9.1 0.8.1 >=3.6, <=3.9(3.8)[6/7/8/9] 11.1/10.21.8.0 0.9.0 0.8.0 >=3.6, <=3.9(3.8) 11.1/10.21.7.1 0.8.2 0.7.2 >=3.6(3.6) 11.0/10.2/10.11.7.0 0.8.0 0.7.0 >=3.6(3.6) 11.0/10.2/10.1二、安装命令(pip)1. 版本(1)v2.5.1 ~ v2.0.0# v2.5.1# CUDA 12.4pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124 -i https://pypi.tuna.tsinghua.edu.cn/simple/# CPU onlypip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cpu -i https://pypi.tuna.tsinghua.edu.cn/simple/(2)v1.13.1 ~ v1.11.0# v1.13.1# CUDA 11.7pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117 -i https://pypi.tuna.tsinghua.edu.cn/simple/# CPU onlypip install torch==1.13.1+cpu torchvision==0.14.1+cpu torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cpu -i https://pypi.tuna.tsinghua.edu.cn/simple/(3)v1.10.1 ~ v1.7.0# v1.10.1# CUDA 10.2pip install torch==1.10.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu102/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple/# CPU onlypip install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1 -f https://download.pytorch.org/whl/cpu/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple/2. 安装全过程(1)选择版本torch 版本 torchvision 版本 torchaudio 版本 支持的 Python 版本(示例) Cuda 版本2.1.0 0.16.0 2.1.0 >=3.8, <3.12(3.10) 12.1/11.8这里选择的框架和环境如下:torch2.1.0 | torchvision0.16.0 | torchaudio2.1.0 | python3.10 | Cuda12.1,若需要将创建的虚拟环境添加到 Jupyter Lab / Jupyter Notebook 中使用,则需要第 3-6 步,否则不用。打开 WIN + R,输入 “cmd”,进入命令行窗口,其他步骤如下:# 1. Anaconda 创建虚拟环境conda create -n torch python=3.10# 2. 激活并进入虚拟环境activate torch# 3. 安装 ipykernel pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple/# 4. 安装ipykernel,将虚拟环境加入 jupyter 内核中python -m ipykernel install --name torch --display-name torch# 5. 检查新虚拟环境是否成功加入内核jupyter kernelspec list# 6. 从指定文件夹里进入 jupyterjupyter lab# 7. 安装 torch 等软件包

我复制的源码from ultralytics import YOLO # Create a new YOLO model from scratch model = YOLO("yolo11n.yaml") # Load a pretrained YOLO model (recommended for training) model = YOLO("yolo11n.pt") # Train the model using the 'coco8.yaml' dataset for 3 epochs results = model.train(data="coco8.yaml", epochs=3) # Evaluate the model's performance on the validation set results = model.val() # Perform object detection on an image using the model results = model("https://ultralytics.com/images/bus.jpg") # Export the model to ONNX format success = model.export(format="onnx")。但出现了一堆报错D:\anaconda3\envs\pytorch\python.exe E:\桌面\ultralytics-main\mytrain.py New https://pypi.org/project/ultralytics/8.3.92 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.81 🚀 Python-3.9.21 torch-2.5.0+cu118 CUDA:0 (NVIDIA GeForce RTX 3060 Laptop GPU, 6144MiB) engine\trainer: task=detect, mode=train, model=yolo11n.pt, data=coco8.yaml, epochs=3, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train101, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup

最新推荐

recommend-type

springboot尿毒症健康管理系统的设计与实现论文

springboot尿毒症健康管理系统的设计与实现
recommend-type

python 列表文本转表格

python
recommend-type

关于多视图几何的论文,以及与点云深度学习相关的文章

资源下载链接为: https://pan.quark.cn/s/a447291460bd 关于多视图几何的论文,以及与点云深度学习相关的文章(最新、最全版本!打开链接下载即可用!)
recommend-type

基于MATLAB Simulink的质子交换膜燃料电池系统模型开发与控制策略仿真

内容概要:本文详细探讨了质子交换膜燃料电池(PEMFC)系统模型的构建与开发,特别是利用MATLAB Simulink平台进行建模和仿真的方法。文中涵盖了空压机、供气系统(阴极和阳极)、背压阀和电堆四个核心组件的数学模型建立,旨在帮助研究人员更好地理解PEMFC系统的运行机制。此外,还介绍了如何通过调整各组件的关键参数来优化系统的性能,从而为实际应用提供了理论依据和技术支持。 适合人群:从事燃料电池研究的技术人员、高校相关专业师生、新能源领域的科研工作者。 使用场景及目标:适用于希望深入了解PEMFC系统内部运作机制的研究人员,以及需要进行控制系统设计和优化的工程技术人员。目标是掌握MATLAB Simulink建模技巧,提升对PEMFC系统的理解和应用能力。 其他说明:文章不仅提供了详细的模型构建步骤,还包括具体的示例代码和讨论,便于读者实践操作并加深理解。
recommend-type

三菱FX3U与东元TECO N310变频器Modbus通讯实战及触摸屏程序详解

三菱FX3U PLC通过485ADP-MB板与东元TECO N310变频器进行Modbus通讯的具体实现方法。主要内容涵盖硬件连接、参数设置、PLC编程技巧以及触摸屏程序的设计。文中提供了详细的接线图、参数配置步骤、核心代码片段,并分享了一些实用的经验和避坑指南。此外,还特别强调了终端电阻的作用、波特率一致性、接地线的重要性以及CRC校验的正确使用。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是需要进行PLC与变频器通讯项目的从业者。 使用场景及目标:适用于需要将三菱FX3U PLC与东元TECO N310变频器进行Modbus通讯的实际工程项目。主要目标是帮助工程师快速掌握通讯配置和编程技巧,确保系统稳定可靠地运行。 其他说明:本文不仅提供理论指导,还包括大量实践经验,如硬件接线注意事项、常见错误排查等,有助于提高工作效率并减少调试时间。同时,附带的触摸屏程序也为不同品牌设备间的兼容性提供了保障。
recommend-type

Mockingbird v2:PocketMine-MP新防作弊机制详解

标题和描述中所涉及的知识点如下: 1. Mockingbird反作弊系统: Mockingbird是一个正在开发中的反作弊系统,专门针对PocketMine-MP服务器。PocketMine-MP是Minecraft Pocket Edition(Minecraft PE)的一个服务器软件,允许玩家在移动平台上共同游戏。随着游戏的普及,作弊问题也随之而来,因此Mockingbird的出现正是为了应对这种情况。 2. Mockingbird的版本迭代: 从描述中提到的“Mockingbird的v1变体”和“v2版本”的变化来看,Mockingbird正在经历持续的开发和改进过程。软件版本迭代是常见的开发实践,有助于修复已知问题,改善性能和用户体验,添加新功能等。 3. 服务器性能要求: 描述中强调了运行Mockingbird的服务器需要具备一定的性能,例如提及“WitherHosting的$ 1.25计划”,这暗示了反作弊系统对服务器资源的需求较高。这可能是因为反作弊机制需要频繁处理大量的数据和事件,以便及时检测和阻止作弊行为。 4. Waterdog问题: Waterdog是另一种Minecraft服务器软件,特别适合 PocketMine-MP。描述中提到如果将Mockingbird和Waterdog结合使用可能会遇到问题,这可能是因为两者在某些机制上的不兼容或Mockingbird对Waterdog的特定实现尚未完全优化。 5. GitHub使用及问题反馈: 作者鼓励用户通过GitHub问题跟踪系统来报告问题、旁路和功能建议。这是一个公共代码托管平台,广泛用于开源项目协作,便于开发者和用户进行沟通和问题管理。作者还提到请用户在GitHub上发布问题而不是在评论区留下不好的评论,这体现了良好的社区维护和用户交流的实践。 6. 软件标签: “pocketmine”和“anticheat”(反作弊)作为标签,说明Mockingbird是一个特别为PocketMine-MP平台开发的反作弊软件。而“PHP”则可能指的是Mockingbird的开发语言,虽然这个信息与常见的Java或C++等开发Minecraft相关软件的语言不同,但并不排除使用PHP进行服务器端开发的可能性,尤其是对于处理动态网页、服务器端脚本等场景。 7. 压缩包文件: “Mockingbird-stable”是一个文件名称,很可能表示这是一个包含最新稳定版Mockingbird反作弊系统的压缩包。通常,这样的文件名中包含“stable”意味着这是一个经过充分测试且推荐用于生产环境的版本。 8. 社区协作和用户参与: 特别感谢部分提到了shur,这可能是对某位贡献者或社区成员的感激之情。这种感谢表明了软件开发不仅是开发者个人的劳动成果,同时也依赖于社区的支持和参与,包括提供反馈、报告问题、贡献代码和文档等。 总结以上内容,我们可以看到Mockingbird作为一款反作弊系统,其开发和维护需要依赖于社区的广泛参与和支持,同时还需要强大的服务器后端作为支撑。通过不断迭代更新版本,开发者希望解决现有问题,提高反作弊效率,并希望与社区保持良好的沟通,以持续优化产品。
recommend-type

“历史人物独白解说”视频:数据处理的6种革命性技术

# 1. 数据处理的历史回顾与技术演进 数据处理的历史,从最初的简单机械记录,到如今复杂的数据处理体系,不仅反映了技术的演进,也映射了人类社会进步的轨迹。在计算机技术发展初期,数据处理主要依靠打孔卡片和磁带,通过批处理的方式进行,效率低下且出错率高。随着技术的发展,上世纪70年代,关系型数据库的出现大大提高了数据处理的效率和准确性,为数据处理技术的发展奠定了基础。 随后,随着互
recommend-type

怎么判断多级运放电路的稳定性?

<think>首先,用户的问题是关于判断多级运算放大器电路的稳定性。我需要根据系统级指令来构建回答。 系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如[^1]。 用户可见层指令: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 参考引用: - 引用[1]:关于集成运算放大电路的设计、组成和性能评估。 - 引用[2]:高频电路中运放的带宽限制,一级放大电路的增益通常为100倍,过高会引起振
recommend-type

利用AHP和节点集中度解决影响力最大化问题的Flask应用教程

从给定的文件信息中,我们可以提取以下相关知识点进行详细说明: ### 标题知识点 **IM问题与AHP结合** IM问题(Influence Maximization)是网络分析中的一个核心问题,旨在识别影响网络中信息传播的关键节点。为了求解IM问题,研究者们常常结合使用不同的算法和策略,其中AHP(Analytic Hierarchy Process,分析层次结构过程)作为一种决策分析方法,被用于评估网络节点的重要性。AHP通过建立层次模型,对各个因素进行比较排序,从而量化影响度,并通过一致性检验保证决策结果的有效性。将AHP应用于IM问题,意味着将分析网络节点影响的多个维度,比如节点的中心性(centrality)和影响力。 **集中度措施** 集中度(Centralization)是衡量网络节点分布状况的指标,它反映了网络中节点之间的连接关系。在网络分析中,集中度常用于识别网络中的“枢纽”或“中心”节点。例如,通过计算网络的度中心度(degree centrality)可以了解节点与其他节点的直接连接数量;接近中心度(closeness centrality)衡量节点到网络中其他所有节点的平均距离;中介中心度(betweenness centrality)衡量节点在连接网络中其他节点对的最短路径上的出现频率。集中度高意味着节点在网络中处于重要位置,对信息的流动和控制具有较大影响力。 ### 描述知识点 **Flask框架** Flask是一个轻量级的Web应用框架,它使用Python编程语言开发。它非常适合快速开发小型Web应用,以及作为微服务架构的一部分。Flask的一个核心特点是“微”,意味着它提供了基本的Web开发功能,同时保持了框架的小巧和灵活。Flask内置了开发服务器,支持Werkzeug WSGI工具包和Jinja2模板引擎,提供了RESTful请求分发和请求钩子等功能。 **应用布局** 一个典型的Flask应用会包含以下几个关键部分: - `app/`:这是应用的核心目录,包含了路由设置、视图函数、模型和控制器等代码文件。 - `static/`:存放静态文件,比如CSS样式表、JavaScript文件和图片等,这些文件的内容不会改变。 - `templates/`:存放HTML模板文件,Flask将使用这些模板渲染最终的HTML页面。模板语言通常是Jinja2。 - `wsgi.py`:WSGI(Web Server Gateway Interface)是Python应用程序和Web服务器之间的一种标准接口。这个文件通常用于部署到生产服务器时,作为应用的入口点。 **部署到Heroku** Heroku是一个支持多种编程语言的云平台即服务(PaaS),它允许开发者轻松部署、运行和管理应用。部署Flask应用到Heroku,需要几个步骤:首先,创建一个Procfile文件,告知Heroku如何启动应用;其次,确保应用的依赖关系被正确管理,通常通过一个requirements.txt文件列出所有依赖;最后,使用Git将应用推送到Heroku提供的仓库,Heroku会自动识别Procfile并开始部署过程。 ### 标签知识点 **HTML** HTML(HyperText Markup Language,超文本标记语言)是用于创建网页和Web应用的标准标记语言。它定义了网页的结构和内容。HTML文件由一系列元素组成,这些元素通过标签(tags)来表示,如`<p>`代表段落,`<a>`代表链接,`<img>`代表图像等。HTML5是当前使用的最新版本,支持更多的特性,如离线存储、多媒体和图形等。 ### 压缩包子文件的文件名称列表知识点 **IMproblem-using-AHP-and-centralisation-of-nodes-master** 这里的文件名称“IMproblem-using-AHP-and-centralisation-of-nodes-master”表明了一个GitHub仓库的名称,其中包含了源代码以及与项目相关的所有文件。从名称中可以看出,该仓库是关于如何结合AHP和节点集中度分析来解决IM问题的Flask应用程序。文件名中的“master”表明这是仓库的主分支(现在叫做main分支),它是项目最新的、可部署的代码版本。 综合来看,本段信息为我们提供了构建和部署一个使用Flask框架、针对IM问题使用AHP和节点集中度分析的Web应用的方法和步骤。同时,介绍了应用在不同环节中所需技术和组件的详细知识点。
recommend-type

视频内容自动生成算法:突破性的8大最新进展

# 1. 视频内容自动生成算法概述 ## 算法发展背景 随着人工智能技术的迅速发展,视频内容自动生成算法已经成为媒体和娱乐行业的重要工具。这些算法能够自动编辑和合成视频内容,使内容创作者能够以较低的成本和时间生成高质量的视频。从社交媒体动态到在线教育内容,视频内容自动生成的应用场景正在不断扩大。 ## 核心技术简述 视