活动介绍

在 Sqoop 命令中使用 --hive-conf

时间: 2025-07-14 14:36:40 浏览: 13
<think>嗯,用户问的是在Sqoop命令中使用--hive-conf参数的问题。我需要先回忆一下Sqoop和Hive的相关知识。Sqoop主要用于Hadoop和关系型数据库之间的数据传输,而Hive则是基于Hadoop的数据仓库工具,允许用类似SQL的HiveQL查询数据。 用户可能想知道如何在Sqoop导入数据到Hive时配置Hive的相关参数。比如,他们可能在导入过程中遇到了问题,比如分隔符不匹配,或者需要动态设置Hive表的属性。这时候,--hive-conf参数就派上用场了。 首先,我需要确认--hive-conf的作用。这个参数允许用户传递Hive的配置属性,这些属性会在Sqoop与Hive交互时生效。例如,设置hive.exec.dynamic.partition.mode为非严格模式,或者指定字段分隔符,这些都可能是在导入数据到Hive时需要调整的参数。 然后,用户可能需要具体的例子来说明如何使用这个参数。比如,在Sqoop命令中加入--hive-conf hive.exec.dynamic.partition.mode=nonstrict,这样在创建Hive分区表时就可以使用动态分区。另一个例子是设置字段分隔符,确保导入的数据能被正确解析。 还要注意,--hive-conf可以多次使用,每次设置一个属性。这需要告诉用户正确的语法,避免他们在一个参数中设置多个属性而导致错误。比如,使用两个--hive-conf分别设置不同的配置项。 另外,用户可能容易混淆--hive-conf和--hive-import。需要明确说明,--hive-import是用于启用Hive导入的选项,而--hive-conf则是传递配置参数。两者可能需要一起使用,但各自有不同的作用。 可能还需要提醒用户一些常见的注意事项,比如配置项的有效性。不是所有的Hive配置都能在Sqoop中使用,有些可能在导入阶段不适用。建议用户参考Hive和Sqoop的官方文档,确认哪些参数是有效的。 最后,总结使用场景,比如动态分区、文件格式、分隔符设置、权限问题等。这样用户能更清楚在什么情况下应该使用--hive-conf参数,以及如何应用这些配置来解决实际问题。</think>在 Sqoop 命令中使用 `--hive-conf` 参数时,其核心作用是 **向 Hive 传递运行时配置参数**。以下是分步解析和使用场景说明: --- ### 一、参数作用 `--hive-conf <property=value>` 允许在 Sqoop 与 Hive 交互时: 1. **动态覆盖 Hive 配置**(如 `hive-site.xml` 中的默认值) 2. **控制 Hive 表创建行为**(如文件格式、压缩设置等) 3. **解决 Hive 与 Sqoop 数据传输的兼容性问题** --- ### 二、基础语法 ```bash sqoop import \ --connect jdbc:mysql://host/db \ --table source_table \ --hive-import \ # 必须与 --hive-conf 配合使用 --hive-conf property1=value1 \ # 单个配置参数 --hive-conf property2=value2 # 可多次使用 ``` --- ### 三、典型使用场景 #### 场景 1:设置动态分区模式 当导入数据到 Hive 动态分区表时: ```bash --hive-conf hive.exec.dynamic.partition.mode=nonstrict ``` #### 场景 2:自定义字段分隔符 覆盖 Hive 默认字段分隔符: ```bash --hive-conf hive.field.delim=, --hive-conf hive.serde2.row.delim=\n ``` #### 场景 3:指定文件格式 强制使用 Parquet 格式存储: ```bash --hive-conf hive.fileformat=Parquet --hive-conf hive.parquet.compression=SNAPPY ``` #### 场景 4:解决权限问题 设置 Hive 仓库目录权限: ```bash --hive-conf hive.warehouse.subdir.inherit.perms=true ``` --- ### 四、注意事项 1. **依赖关系**:必须与 `--hive-import` 参数同时使用 2. **优先级规则**:`--hive-conf` 的配置优先级高于 `hive-site.xml` 3. **参数验证**:不是所有 Hive 配置都适用于 Sqoop 上下文(例如执行引擎设置 `hive.execution.engine` 可能无效) --- ### 五、完整示例 ```bash sqoop import \ --connect jdbc:mysql://dbhost/sales \ --username user \ --password pass \ --table orders \ --hive-import \ --hive-database sales_db \ --hive-table orders_partitioned \ --hive-conf hive.exec.dynamic.partition=true \ --hive-conf hive.exec.dynamic.partition.mode=nonstrict \ --hive-conf hive.merge.mapfiles=false ``` --- 如果需要调试配置是否生效,可通过在 Hive 中执行 `SET property_name;` 验证参数值。建议结合 Hive 官方文档选择适用的配置项。
阅读全文

相关推荐

root@zhaosai conf]# sqoop import --connect jdbc:mysql://192.168.160.130:3306/mydb --username root -P --table news --hive-import --hive-table mydb.news --incremental append --check-column id --last-value 0 --split-by id --target-dir /hdfs://zhaosai:9000/user/hive/warehouse/news --num-mappers 1 23/06/07 17:23:56 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: 23/06/07 17:24:04 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override 23/06/07 17:24:04 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc. 23/06/07 17:24:04 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 23/06/07 17:24:04 INFO tool.CodeGenTool: Beginning code generation Loading class com.mysql.jdbc.Driver'. This is deprecated. The new driver class is com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary. 23/06/07 17:24:04 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM news AS t LIMIT 1 23/06/07 17:24:04 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM news AS t LIMIT 1 23/06/07 17:24:04 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /opt/programs/hadoop-2.7.6 注: /tmp/sqoop-root/compile/b07035b094b6ac39b87f2ef11261c934/news.java使用或覆盖了已过时的 API。 注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。 23/06/07 17:24:05 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/b07035b094b6ac39b87f2ef11261c934/news.jar 23/06/07 17:24:05 INFO tool.ImportTool: Maximal id query for free form incremental import: SELECT MAX(id) FROM news 23/06/07 17:24:05 ERROR tool.ImportTool: Import failed: java.io.IOException: java.sql.SQLSyntaxErrorException: Unknown column 'id' in 'field list' at org.apache.sqoop.tool.ImportTool.initIncrementalConstraints(ImportTool.java:322) at org.apache.sqoop.tool.ImportTool.importTable(ImportTool.java:511) at org.apache.sqoop.tool.ImportTool.run(ImportTool.java:628) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252) Caused by: java.sql.SQLSyntaxErrorException: Unknown column 'id' in 'field list' at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:120) at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:97) at com.mysql.cj.jdbc.exceptions.SQLExceptionsMapping.translateException(SQLExceptionsMapping.java:122) at com.mysql.cj.jdbc.StatementImpl.executeQuery(StatementImpl.java:1200) at org.apache.sqoop.tool.ImportTool.getMaxColumnId(ImportTool.java:238) at org.apache.sqoop.tool.ImportTool.initIncrementalConstraints(ImportTool.java:309)

[root@zhaosai conf]# sqoop import --connect jdbc:mysql://zhaosai:3306/mydb --username root --password jqe6b6 --table news --target-dir /user/news --fields-terminated-by “;” --hive-import --hive-table news -m 1 Warning: /opt/programs/sqoop-1.4.7.bin__hadoop-2.6.0/../hbase does not exist! HBase imports will fail. Please set $HBASE_HOME to the root of your HBase installation. Warning: /opt/programs/sqoop-1.4.7.bin__hadoop-2.6.0/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /opt/programs/sqoop-1.4.7.bin__hadoop-2.6.0/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. Warning: /opt/programs/sqoop-1.4.7.bin__hadoop-2.6.0/../zookeeper does not exist! Accumulo imports will fail. Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation. 23/06/10 16:07:14 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 23/06/10 16:07:15 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 23/06/10 16:07:15 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 23/06/10 16:07:15 INFO tool.CodeGenTool: Beginning code generation 23/06/10 16:07:15 ERROR sqoop.Sqoop: Got exception running Sqoop: java.lang.RuntimeException: Could not load db driver class: com.mysql.jdbc.Driver java.lang.RuntimeException: Could not load db driver class: com.mysql.jdbc.Driver at org.apache.sqoop.manager.SqlManager.makeConnection(SqlManager.java:875) at org.apache.sqoop.manager.GenericJdbcManager.getConnection(GenericJdbcManager.java:59) at org.apache.sqoop.manager.SqlManager.execute(SqlManager.java:763) at org.apache.sqoop.manager.SqlManager.execute(SqlManager.java:786) at org.apache.sqoop.manager.SqlManager.getColumnInfoForRawQuery(SqlManager.java:289) at org.apache.sqoop.manager.SqlManager.getColumnTypesForRawQuery(SqlManager.java:260) at org.apache.sqoop.manager.SqlManager.getColumnTypes(SqlManager.java:246) at org.apache.sqoop.manager.ConnManager.getColumnTypes(ConnManager.java:327) at org.apache.sqoop.orm.ClassWriter.getColumnTypes(ClassWriter.java:1872) at org.apache.sqoop.orm.ClassWriter.generate(ClassWriter.java:1671) at org.apache.sqoop.tool.CodeGenTool.generateORM(CodeGenTool.java:106) at org.apache.sqoop.tool.ImportTool.importTable(ImportTool.java:501) at org.apache.sqoop.tool.ImportTool.run(ImportTool.java:628) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252)

[root@node ~]# mysql -u root -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 8 Server version: 8.0.42 MySQL Community Server - GPL Copyright (c) 2000, 2025, Oracle and/or its affiliates. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql> CREATE DATABASE weblog_db; ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'CREATE DATABASE weblog_db' at line 1 mysql> CREATE DATABASE weblog_db; ERROR 1007 (HY000): Can't create database 'weblog_db'; database exists mysql> USE weblog_db; Reading table information for completion of table and column names You can turn off this feature to get a quicker startup with -A Database changed mysql> DROP DATABASE IF EXISTS weblog_db; Query OK, 2 rows affected (0.02 sec) mysql> CREATE DATABASE weblog_db; Query OK, 1 row affected (0.01 sec) mysql> USE weblog_db; Database changed mysql> CREATE TABLE page_visits ( -> page VARCHAR(255) , -> visits BIGINT -> ); ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'TABLE page_visits ( page VARCHAR(255) , visits BIGINT )' at line 1 mysql> CREATE TABLE page_visits ( -> page VARCHAR(255), -> visits BIGINT -> ); Query OK, 0 rows affected (0.02 sec) mysql> SHOW TABLES; +---------------------+ | Tables_in_weblog_db | +---------------------+ | page_visits | +---------------------+ 1 row in set (0.00 sec) mysql> ^C mysql> q -> quit -> exit -> ^C mysql> ^C mysql> ^C mysql> ^DBye [root@node ~]# hive SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Hive Session ID = 7bb79582-cc2b-49b6-abc7-020dcdc46542 Logging initialized using configuration in jar:file:/home/hive-3.1.3/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Hive Session ID = 15d9da52-e18e-40b2-a80f-e76eda81df4c hive> DESCRIBE FORMATTED page_visits; OK # col_name data_type comment page string visits bigint # Detailed Table Information Database: default OwnerType: USER Owner: root CreateTime: Tue Jul 08 01:43:42 CST 2025 LastAccessTime: UNKNOWN Retention: 0 Location: hdfs://node:9000/hive/warehouse/page_visits Table Type: MANAGED_TABLE Table Parameters: COLUMN_STATS_ACCURATE {\"BASIC_STATS\":\"true\"} bucketing_version 2 numFiles 1 numRows 4 rawDataSize 56 totalSize 60 transient_lastDdlTime 1751910222 # Storage Information SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe InputFormat: org.apache.hadoop.mapred.TextInputFormat OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Compressed: No Num Buckets: -1 Bucket Columns: [] Sort Columns: [] Storage Desc Params: serialization.format 1 Time taken: 0.785 seconds, Fetched: 32 row(s) hive> [root@node ~]# [root@node ~]# sqoop export \ > --connect jdbc:mysql://localhost/weblog_db \ > --username root \ > --password Aa@123456 \ > --table page_visits \ > --export-dir hdfs://node:9000/hive/warehouse/page_visits \ > --input-fields-terminated-by '\001' \ > --num-mappers 1 Warning: /home/sqoop-1.4.7/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /home/sqoop-1.4.7/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-07-08 15:28:12,550 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 2025-07-08 15:28:12,587 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 2025-07-08 15:28:12,704 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 2025-07-08 15:28:12,708 INFO tool.CodeGenTool: Beginning code generation Loading class com.mysql.jdbc.Driver'. This is deprecated. The new driver class is com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary. 2025-07-08 15:28:13,225 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:28:13,266 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:28:13,280 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/hadoop3.3 Note: /tmp/sqoop-root/compile/363869e21c2078b9742685122c43a3cc/page_visits.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 2025-07-08 15:28:16,377 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/363869e21c2078b9742685122c43a3cc/page_visits.jar 2025-07-08 15:28:16,391 INFO mapreduce.ExportJobBase: Beginning export of page_visits 2025-07-08 15:28:16,391 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address 2025-07-08 15:28:16,484 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 2025-07-08 15:28:17,339 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative 2025-07-08 15:28:17,342 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:28:17,343 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 2025-07-08 15:28:17,555 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at node/192.168.196.122:8032 2025-07-08 15:28:17,782 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1751959003014_0001 2025-07-08 15:28:26,026 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:28:26,029 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:28:26,495 INFO mapreduce.JobSubmitter: number of splits:1 2025-07-08 15:28:26,528 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:28:26,619 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1751959003014_0001 2025-07-08 15:28:26,620 INFO mapreduce.JobSubmitter: Executing with tokens: [] 2025-07-08 15:28:26,805 INFO conf.Configuration: resource-types.xml not found 2025-07-08 15:28:26,805 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'. 2025-07-08 15:28:27,226 INFO impl.YarnClientImpl: Submitted application application_1751959003014_0001 2025-07-08 15:28:27,264 INFO mapreduce.Job: The url to track the job: http://node:8088/proxy/application_1751959003014_0001/ 2025-07-08 15:28:27,264 INFO mapreduce.Job: Running job: job_1751959003014_0001 2025-07-08 15:28:34,334 INFO mapreduce.Job: Job job_1751959003014_0001 running in uber mode : false 2025-07-08 15:28:34,335 INFO mapreduce.Job: map 0% reduce 0% 2025-07-08 15:28:38,374 INFO mapreduce.Job: map 100% reduce 0% 2025-07-08 15:28:38,381 INFO mapreduce.Job: Job job_1751959003014_0001 failed with state FAILED due to: Task failed task_1751959003014_0001_m_000000 Job failed as tasks failed. failedMaps:1 failedReduces:0 killedMaps:0 killedReduces: 0 2025-07-08 15:28:38,448 INFO mapreduce.Job: Counters: 8 Job Counters Failed map tasks=1 Launched map tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=2061 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=2061 Total vcore-milliseconds taken by all map tasks=2061 Total megabyte-milliseconds taken by all map tasks=2110464 2025-07-08 15:28:38,456 WARN mapreduce.Counters: Group FileSystemCounters is deprecated. Use org.apache.hadoop.mapreduce.FileSystemCounter instead 2025-07-08 15:28:38,457 INFO mapreduce.ExportJobBase: Transferred 0 bytes in 21.1033 seconds (0 bytes/sec) 2025-07-08 15:28:38,462 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead 2025-07-08 15:28:38,462 INFO mapreduce.ExportJobBase: Exported 0 records. 2025-07-08 15:28:38,462 ERROR mapreduce.ExportJobBase: Export job failed! 2025-07-08 15:28:38,463 ERROR tool.ExportTool: Error during export: Export job failed! at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:445) at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:931) at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:80) at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:99) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:81) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252) [root@node ~]# sqoop export \ > --connect jdbc:mysql://localhost/weblog_db \ > --username root \ > --password Aa@123456 \ > --table page_visits \ > --export-dir hdfs://node:9000/hive/warehouse/page_visits \ > --input-fields-terminated-by ',' \ > --num-mappers 1 Warning: /home/sqoop-1.4.7/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /home/sqoop-1.4.7/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-07-08 15:30:31,174 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 2025-07-08 15:30:31,218 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 2025-07-08 15:30:31,333 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 2025-07-08 15:30:31,336 INFO tool.CodeGenTool: Beginning code generation Loading class com.mysql.jdbc.Driver'. This is deprecated. The new driver class is com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary. 2025-07-08 15:30:31,771 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:30:31,814 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:30:31,821 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/hadoop3.3 Note: /tmp/sqoop-root/compile/ab00e36d1f5084a0f7d522b4e9a975e5/page_visits.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 2025-07-08 15:30:33,116 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/ab00e36d1f5084a0f7d522b4e9a975e5/page_visits.jar 2025-07-08 15:30:33,129 INFO mapreduce.ExportJobBase: Beginning export of page_visits 2025-07-08 15:30:33,129 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address 2025-07-08 15:30:33,212 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 2025-07-08 15:30:33,877 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative 2025-07-08 15:30:33,880 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:30:33,880 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 2025-07-08 15:30:34,097 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at node/192.168.196.122:8032 2025-07-08 15:30:34,310 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1751959003014_0002 2025-07-08 15:30:39,127 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:30:39,131 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:30:39,995 INFO mapreduce.JobSubmitter: number of splits:1 2025-07-08 15:30:40,022 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:30:40,532 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1751959003014_0002 2025-07-08 15:30:40,532 INFO mapreduce.JobSubmitter: Executing with tokens: [] 2025-07-08 15:30:40,689 INFO conf.Configuration: resource-types.xml not found 2025-07-08 15:30:40,689 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'. 2025-07-08 15:30:40,746 INFO impl.YarnClientImpl: Submitted application application_1751959003014_0002 2025-07-08 15:30:40,783 INFO mapreduce.Job: The url to track the job: http://node:8088/proxy/application_1751959003014_0002/ 2025-07-08 15:30:40,784 INFO mapreduce.Job: Running job: job_1751959003014_0002 2025-07-08 15:30:46,847 INFO mapreduce.Job: Job job_1751959003014_0002 running in uber mode : false 2025-07-08 15:30:46,848 INFO mapreduce.Job: map 0% reduce 0% 2025-07-08 15:30:50,893 INFO mapreduce.Job: map 100% reduce 0% 2025-07-08 15:30:51,905 INFO mapreduce.Job: Job job_1751959003014_0002 failed with state FAILED due to: Task failed task_1751959003014_0002_m_000000 Job failed as tasks failed. failedMaps:1 failedReduces:0 killedMaps:0 killedReduces: 0 2025-07-08 15:30:51,973 INFO mapreduce.Job: Counters: 8 Job Counters Failed map tasks=1 Launched map tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=2058 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=2058 Total vcore-milliseconds taken by all map tasks=2058 Total megabyte-milliseconds taken by all map tasks=2107392 2025-07-08 15:30:51,979 WARN mapreduce.Counters: Group FileSystemCounters is deprecated. Use org.apache.hadoop.mapreduce.FileSystemCounter instead 2025-07-08 15:30:51,980 INFO mapreduce.ExportJobBase: Transferred 0 bytes in 18.0828 seconds (0 bytes/sec) 2025-07-08 15:30:51,983 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead 2025-07-08 15:30:51,983 INFO mapreduce.ExportJobBase: Exported 0 records. 2025-07-08 15:30:51,983 ERROR mapreduce.ExportJobBase: Export job failed! 2025-07-08 15:30:51,984 ERROR tool.ExportTool: Error during export: Export job failed! at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:445) at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:931) at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:80) at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:99) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:81) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252) [root@node ~]# 6.2 Sqoop导出数据 6.2.1从Hive将数据导出到MySQL 6.2.2sqoop导出格式 6.2.3导出page_visits表 6.2.4导出到ip_visits表 6.3验证导出数据 6.3.1登录MySQL 6.3.2执行查询

root@hadoop01 apache-hive-3.1.3-bin]# bin/hive which: no hbase in (:/export/servers/apache-hive-3.1.3-bin/bin:/export/servers/flume-1.9.0/bin:/export/servers/hadoop-3.3.5/bin::/export/servers/apache-hive-3.1.3-bin/bin:/export/servers/flume-1.9.0/bin::/export/servers/apache-hive-3.1.3-bin/bin:/export/servers/flume-1.9.0/bin:/export/servers/flume-1.9.0/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/export/servers/jdk1.8.0_161/bin:/export/servers/hadoop-3.3.5/bin:/export/servers/hadoop-3.3.5/sbin:/export/servers/scala-2.12.10/bin:/root/bin:/export/servers/jdk1.8.0_161/bin:/export/servers/hadoop-3.3.5/bin:/export/servers/hadoop-3.3.5/sbin:/export/servers/scala-2.12.10/bin:/export/servers/jdk1.8.0_161/bin:/export/servers/hadoop-3.3.5/bin:/export/servers/hadoop-3.3.5/sbin:/export/servers/scala-2.12.10/bin:/root/bin:/export/servers/jdk1.8.0_161/bin:/export/servers/hadoop-3.3.5/bin:/export/servers/hadoop-3.3.5/sbin:/export/servers/scala-2.12.10/bin:/export/servers/sqoop/bin:) 2025-06-17 18:31:23,734 INFO conf.HiveConf: Found configuration file file:/export/servers/apache-hive-3.1.3-bin/conf/hive-site.xml Hive Session ID = 1bb412dc-6394-489e-80ca-943bacb068f6 2025-06-17 18:31:29,776 INFO SessionState: Hive Session ID = 1bb412dc-6394-489e-80ca-943bacb068f6 Logging initialized using configuration in jar:file:/export/servers/apache-hive-3.1.3-bin/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true 2025-06-17 18:31:29,920 INFO SessionState: Logging initialized using configuration in jar:file:/export/servers/apache-hive-3.1.3-bin/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true 2025-06-17 18:31:33,217 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/1bb412dc-6394-489e-80ca-943bacb068f6 2025-06-17 18:31:33,267 INFO session.SessionState: Created local directory: /tmp/root/1bb412dc-6394-489e-80ca-943bacb068f6 2025-06-17 18:31:33,280 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/1bb412dc-6394-489e-80ca-943bacb068f6/_tmp_space.db 2025-06-17 18:31:33,323 INFO conf.HiveConf: Using the default value passed in for log id: 1bb412dc-6394-489e-80ca-943bacb068f6 2025-06-17 18:31:33,323 INFO session.SessionState: Updating thread name to 1bb412dc-6394-489e-80ca-943bacb068f6 main 2025-06-17 18:31:35,971 INFO metastore.HiveMetaStore: 0: Opening raw store with implementation class:org.apache.hadoop.hive.metastore.ObjectStore 2025-06-17 18:31:36,007 WARN metastore.ObjectStore: datanucleus.autoStartMechanismMode is set to unsupported value null . Setting it to value: ignored 2025-06-17 18:31:36,017 INFO metastore.ObjectStore: ObjectStore, initialize called 2025-06-17 18:31:36,019 INFO conf.MetastoreConf: Found configuration file file:/export/servers/apache-hive-3.1.3-bin/conf/hive-site.xml 2025-06-17 18:31:36,021 INFO conf.MetastoreConf: Unable to find config file hivemetastore-site.xml 2025-06-17 18:31:36,021 INFO conf.MetastoreConf: Found configuration file null 2025-06-17 18:31:36,023 INFO conf.MetastoreConf: Unable to find config file metastore-site.xml 2025-06-17 18:31:36,023 INFO conf.MetastoreConf: Found configuration file null 2025-06-17 18:31:36,357 INFO DataNucleus.Persistence: Property datanucleus.cache.level2 unknown - will be ignored 2025-06-17 18:31:36,899 INFO hikari.HikariDataSource: HikariPool-1 - Starting... 2025-06-17 18:31:37,442 INFO hikari.HikariDataSource: HikariPool-1 - Start completed. 2025-06-17 18:31:37,532 INFO hikari.HikariDataSource: HikariPool-2 - Starting... 2025-06-17 18:31:37,674 INFO hikari.HikariDataSource: HikariPool-2 - Start completed. 2025-06-17 18:31:38,661 INFO metastore.ObjectStore: Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order" 2025-06-17 18:31:39,025 INFO metastore.MetaStoreDirectSql: Using direct SQL, underlying DB is MYSQL 2025-06-17 18:31:39,031 INFO metastore.ObjectStore: Initialized ObjectStore 2025-06-17 18:31:39,705 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:39,706 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:39,707 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:39,707 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:39,708 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:39,709 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:43,370 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:43,371 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:43,372 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:43,372 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:43,372 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:43,372 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 18:31:48,380 WARN metastore.ObjectStore: Version information not found in metastore. metastore.schema.verification is not enabled so recording the schema version 3.1.0 2025-06-17 18:31:48,380 WARN metastore.ObjectStore: setMetaStoreSchemaVersion called but recording version is disabled: version = 3.1.0, comment = Set by MetaStore [email protected] 2025-06-17 18:31:48,917 INFO metastore.HiveMetaStore: Added admin role in metastore 2025-06-17 18:31:48,922 INFO metastore.HiveMetaStore: Added public role in metastore 2025-06-17 18:31:49,028 INFO metastore.HiveMetaStore: No user is added in admin role, since config is empty 2025-06-17 18:31:49,426 INFO metastore.RetryingMetaStoreClient: RetryingMetaStoreClient proxy=class org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient ugi=root (auth:SIMPLE) retries=1 delay=1 lifetime=0 2025-06-17 18:31:49,471 INFO metastore.HiveMetaStore: 0: get_all_functions 2025-06-17 18:31:49,474 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_all_functions Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. 2025-06-17 18:31:49,645 INFO CliDriver: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Hive Session ID = 4bd9c9da-8eb4-44a2-948e-faa5053d60f3 2025-06-17 18:31:49,645 INFO SessionState: Hive Session ID = 4bd9c9da-8eb4-44a2-948e-faa5053d60f3 2025-06-17 18:31:49,697 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/4bd9c9da-8eb4-44a2-948e-faa5053d60f3 2025-06-17 18:31:49,703 INFO session.SessionState: Created local directory: /tmp/root/4bd9c9da-8eb4-44a2-948e-faa5053d60f3 2025-06-17 18:31:49,710 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/4bd9c9da-8eb4-44a2-948e-faa5053d60f3/_tmp_space.db 2025-06-17 18:31:49,713 INFO metastore.HiveMetaStore: 1: get_databases: @hive# 2025-06-17 18:31:49,714 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_databases: @hive# 2025-06-17 18:31:49,716 INFO metastore.HiveMetaStore: 1: Opening raw store with implementation class:org.apache.hadoop.hive.metastore.ObjectStore 2025-06-17 18:31:49,720 INFO metastore.ObjectStore: ObjectStore, initialize called 2025-06-17 18:31:49,755 INFO metastore.MetaStoreDirectSql: Using direct SQL, underlying DB is MYSQL 2025-06-17 18:31:49,756 INFO metastore.ObjectStore: Initialized ObjectStore 2025-06-17 18:31:49,768 INFO metastore.HiveMetaStore: 1: get_tables_by_type: db=@hive#db_hive1 pat=.*,type=MATERIALIZED_VIEW 2025-06-17 18:31:49,769 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_tables_by_type: db=@hive#db_hive1 pat=.*,type=MATERIALIZED_VIEW 2025-06-17 18:31:49,789 INFO metastore.HiveMetaStore: 1: get_multi_table : db=db_hive1 tbls= 2025-06-17 18:31:49,793 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_multi_table : db=db_hive1 tbls= 2025-06-17 18:31:49,795 INFO metastore.HiveMetaStore: 1: get_tables_by_type: db=@hive#default pat=.*,type=MATERIALIZED_VIEW 2025-06-17 18:31:49,796 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_tables_by_type: db=@hive#default pat=.*,type=MATERIALIZED_VIEW 2025-06-17 18:31:49,803 INFO metastore.HiveMetaStore: 1: get_multi_table : db=default tbls= 2025-06-17 18:31:49,803 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_multi_table : db=default tbls= 2025-06-17 18:31:49,803 INFO metadata.HiveMaterializedViewsRegistry: Materialized views registry has been initialized hive>

[root@hadoop01 bin]# sqoop list-databases --connect jdbc:mysql://localhost:3306 --username root -p Warning: /export/servers/sqoop/../hbase does not exist! HBase imports will fail. Please set $HBASE_HOME to the root of your HBase installation. Warning: /export/servers/sqoop/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /export/servers/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-06-16 17:41:30,249 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 2025-06-16 17:41:30,316 ERROR tool.BaseSqoopTool: Error parsing arguments for list-databases: 2025-06-16 17:41:30,316 ERROR tool.BaseSqoopTool: Unrecognized argument: -p Try --help for usage instructions. [root@hadoop01 bin]# vi $SQOOP_HOME/conf/sqoop-env.sh [root@hadoop01 bin]# sqoop version Warning: /export/servers/sqoop/../hbase does not exist! HBase imports will fail. Please set $HBASE_HOME to the root of your HBase installation. Warning: /export/servers/sqoop/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /export/servers/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-06-16 17:57:06,080 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Sqoop 1.4.7 git commit id 2328971411f57f0cb683dfb79d19d4d19d185dd8 Compiled by maugli on Thu Dec 21 15:59:58 STD 2017 [root@hadoop01 bin]# sqoop list-databases --connect jdbc:mysql://localhost:3306 --username root -P Warning: /export/servers/sqoop/../hbase does not exist! HBase imports will fail. Please set $HBASE_HOME to the root of your HBase installation. Warning: /export/servers/sqoop/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /export/servers/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-06-16 17:57:25,507 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: 2025-06-16 17:57:32,492 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/commons/lang/StringUtils at org.apache.sqoop.manager.MySQLManager.initOptionDefaults(MySQLManager.java:73) at org.apache.sqoop.manager.SqlManager.<init>(SqlManager.java:89) at com.cloudera.sqoop.manager.SqlManager.<init>(SqlManager.java:33) at org.apache.sqoop.manager.GenericJdbcManager.<init>(GenericJdbcManager.java:51) at com.cloudera.sqoop.manager.GenericJdbcManager.<init>(GenericJdbcManager.java:30) at org.apache.sqoop.manager.CatalogQueryManager.<init>(CatalogQueryManager.java:46) at com.cloudera.sqoop.manager.CatalogQueryManager.<init>(CatalogQueryManager.java:31) at org.apache.sqoop.manager.InformationSchemaManager.<init>(InformationSchemaManager.java:38) at com.cloudera.sqoop.manager.InformationSchemaManager.<init>(InformationSchemaManager.java:31) at org.apache.sqoop.manager.MySQLManager.<init>(MySQLManager.java:65) at org.apache.sqoop.manager.DefaultManagerFactory.accept(DefaultManagerFactory.java:67) at org.apache.sqoop.ConnFactory.getManager(ConnFactory.java:184) at org.apache.sqoop.tool.BaseSqoopTool.init(BaseSqoopTool.java:272) at org.apache.sqoop.tool.ListDatabasesTool.run(ListDatabasesTool.java:44) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:82) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252) Caused by: java.lang.ClassNotFoundException: org.apache.commons.lang.StringUtils at java.net.URLClassLoader.findClass(URLClassLoader.java:381) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:338) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ... 20 more

大家在看

recommend-type

python的预测房价模型组合代码.zip

模型-python的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip
recommend-type

中国检查徽章背景的检察机关PPT模板

这是一套中国检查徽章背景的,检察机关PPT模板。第一PPT模板网提供精美军警类幻灯片模板免费下载; 关键词:蓝天白云、华表、彩带、中国检查徽章PPT背景图片,中国检查院工作汇报PPT模板,蓝色绿色搭配扁平化幻灯片图表,.PPTX格式;
recommend-type

opc转101_104_CDT软件(试用版)

电站或者泵站等大型发电或者用电用户的运行相关数据需要上传调度协调运行,现在上传调度的规约主要有串口101、串口的CDT、网口的104,而现在通用的组态软件如wincc、组态王、MCGS等都提供OPCServer数据发布。结合情况开发本软件实现opc客户端采集数据转发调度上送。 具体功能: 1、可连接多个opc服务器采集数据。 2、101规约、104规约、CDT规约三种可供选择。 3、自由设置相关规约的各项参数。 4、遥信、遥测量组态连接,设置相关系数、取反、添加描述等。 需要正式办或者源代码联系qq:327937566
recommend-type

IM1266交直流自适应测量智能家居物联网用电监测微型电能计量模块技术手册.pdf

IM1266交直流自适应电能计量模块 1:可采集监测交/直流电压、电流、有功功率、电能、温度等电参数 2:产品自带外壳,设计美观,集成度高,体积小,嵌入式安装。 3:支持MODbus-RTU和DL/T645-2007双协议,通讯及应用简单。 4:工业级产品,测量电路或交流或直流,均能准确测量各项电参数。
recommend-type

富士施乐s2220打印机驱动 含扫描驱动与打印驱动

富士施乐s2220打印机驱动是许多朋友都在寻找的驱动程序,小编在这里将其打印程序与驱动程序都进行了整理,你可以选择自己所需要的进行下载,赶快下载s2220打印机驱动修复使用发生的状况吧。富士施乐S2220CPS详细参数基本参数 产品类型:数码复,欢迎下载体验

最新推荐

recommend-type

spring-webflux-5.0.0.M5.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

美国国际航空交通数据分析报告(1990-2020)

根据给定的信息,我们可以从中提取和分析以下知识点: 1. 数据集概述: 该数据集名为“U.S. International Air Traffic data(1990-2020)”,记录了美国与国际间航空客运和货运的详细统计信息。数据集涵盖的时间范围从1990年至2020年,这说明它包含了长达30年的时间序列数据,对于进行长期趋势分析非常有价值。 2. 数据来源及意义: 此数据来源于《美国国际航空客运和货运统计报告》,该报告是美国运输部(USDOT)所管理的T-100计划的一部分。T-100计划旨在收集和发布美国和国际航空公司在美国机场的出入境交通报告,这表明数据的权威性和可靠性较高,适用于政府、企业和学术研究等领域。 3. 数据内容及应用: 数据集包含两个主要的CSV文件,分别是“International_Report_Departures.csv”和“International_Report_Passengers.csv”。 a. International_Report_Departures.csv文件可能包含了以下内容: - 离港航班信息:记录了各航空公司的航班号、起飞和到达时间、起飞和到达机场的代码以及国际地区等信息。 - 航空公司信息:可能包括航空公司代码、名称以及所属国家等。 - 飞机机型信息:如飞机类型、座位容量等,这有助于分析不同机型的使用频率和趋势。 - 航线信息:包括航线的起始和目的国家及城市,对于研究航线网络和优化航班计划具有参考价值。 这些数据可以用于航空交通流量分析、机场运营效率评估、航空市场分析等。 b. International_Report_Passengers.csv文件可能包含了以下内容: - 航班乘客信息:可能包括乘客的国籍、年龄、性别等信息。 - 航班类型:如全客机、全货机或混合型航班,可以分析乘客运输和货物运输的比例。 - 乘客数量:记录了各航班或航线的乘客数量,对于分析航空市场容量和增长趋势很有帮助。 - 飞行里程信息:有助于了解国际间不同航线的长度和飞行距离,为票价设置和燃油成本分析提供数据支持。 这些数据可以用于航空客运市场分析、需求预测、收益管理等方面。 4. 数据分析和应用实例: - 航空流量分析:通过分析离港航班数据,可以观察到哪些航线最为繁忙,哪些机场的国际航空流量最大,这有助于航空公司调整航班时刻表和运力分配。 - 市场研究:乘客数据可以揭示不同国家和地区之间的人口流动趋势,帮助航空公司和政府机构了解国际旅行市场的需求变化。 - 飞机利用率:结合飞机机型和飞行频率信息,可以对特定机型的使用率进行分析,评估飞机维护需求和燃油效率。 - 安全监管:通过对比不同航空公司和航班的安全记录,监管机构可以更有效地评估航空公司的安全性能,并采取必要的监管措施。 5. 技术和方法论: 分析此类数据通常涉及数据清洗、数据整合、统计分析、时间序列分析、预测建模等数据科学方法。使用Excel、SQL、R、Python等工具进行数据处理和分析是常见的做法。例如,可以使用Python的Pandas库来清洗和准备数据,使用Matplotlib和Seaborn库来可视化数据,然后利用Scikit-learn或Statsmodels库来构建预测模型。 通过以上知识点的提取和分析,我们可以理解到“U.S. International Air Traffic data(1990-2020)-数据集”的重要性,它不仅记录了跨越30年的航空交通数据,还为各种分析和应用提供了详实的基础信息。对于航空业从业者、政策制定者、研究人员以及数据分析师来说,这是一个极具价值的数据资源。
recommend-type

统计学视角:深入理解最小二乘法的概率论基础

# 1. 最小二乘法的基本概念 最小二乘法(Least Squares Method, LSM)是统计学和数据分析中广泛使用的一种数学优化技术。其主要目的是通过最小化误差的平方和来寻找数据的最佳函数匹配。这种方法最早由高斯提出,但在工程、物理、经济和其他领域中有着广泛的应用。 在本章中,我们将首先了
recommend-type

vscode中使用Codeium

<think>好的,我需要回答用户如何在VSCode中使用Codeium插件的问题。首先,我需要回顾用户提供的引用内容,看看是否有相关信息。用户提供的引用[1]提到了Codeium Chat可以解释代码中的问题,引用[2]提到了在IDEA中的一些问题,可能对VSCode的安装有帮助。用户还提到了安装步骤、基本功能、常见问题等。 首先,我应该分步骤说明安装过程,包括在VSCode扩展商店搜索Codeium并安装。然后,登录部分可能需要用户访问仪表板获取API密钥,引用[2]中提到登录问题,可能需要提醒用户注意网络或权限设置。 接下来是基本功能,比如代码自动补全和Chat功能。引用[1]提到C
recommend-type

UniMoCo:统一框架下的多监督视觉学习方法

在详细解析“unimoco”这个概念之前,我们需要明确几个关键点。首先,“unimoco”代表的是一种视觉表示学习方法,它在机器学习尤其是深度学习领域中扮演着重要角色。其次,文章作者通过这篇论文介绍了UniMoCo的全称,即“Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning”,其背后的含义是在于UniMoCo框架整合了无监督学习、半监督学习和全监督学习三种不同的学习策略。最后,该框架被官方用PyTorch库实现,并被提供给了研究者和开发者社区。 ### 1. 对比学习(Contrastive Learning) UniMoCo的概念根植于对比学习的思想,这是一种无监督学习的范式。对比学习的核心在于让模型学会区分不同的样本,通过将相似的样本拉近,将不相似的样本推远,从而学习到有效的数据表示。对比学习与传统的分类任务最大的不同在于不需要手动标注的标签来指导学习过程,取而代之的是从数据自身结构中挖掘信息。 ### 2. MoCo(Momentum Contrast) UniMoCo的实现基于MoCo框架,MoCo是一种基于队列(queue)的对比学习方法,它在训练过程中维持一个动态的队列,其中包含了成对的负样本。MoCo通过 Momentum Encoder(动量编码器)和一个队列来保持稳定和历史性的负样本信息,使得模型能够持续地进行对比学习,即使是在没有足够负样本的情况下。 ### 3. 无监督学习(Unsupervised Learning) 在无监督学习场景中,数据样本没有被标记任何类别或标签,算法需自行发现数据中的模式和结构。UniMoCo框架中,无监督学习的关键在于使用没有标签的数据进行训练,其目的是让模型学习到数据的基础特征表示,这对于那些标注资源稀缺的领域具有重要意义。 ### 4. 半监督学习(Semi-Supervised Learning) 半监督学习结合了无监督和有监督学习的优势,它使用少量的标注数据与大量的未标注数据进行训练。UniMoCo中实现半监督学习的方式,可能是通过将已标注的数据作为对比学习的一部分,以此来指导模型学习到更精准的特征表示。这对于那些拥有少量标注数据的场景尤为有用。 ### 5. 全监督学习(Full-Supervised Learning) 在全监督学习中,所有的训练样本都有相应的标签,这种学习方式的目的是让模型学习到映射关系,从输入到输出。在UniMoCo中,全监督学习用于训练阶段,让模型在有明确指示的学习目标下进行优化,学习到的任务相关的特征表示。这通常用于有充足标注数据的场景,比如图像分类任务。 ### 6. PyTorch PyTorch是一个开源机器学习库,由Facebook的人工智能研究团队开发,主要用于计算机视觉和自然语言处理等任务。它被广泛用于研究和生产环境,并且因其易用性、灵活性和动态计算图等特性受到研究人员的青睐。UniMoCo官方实现选择PyTorch作为开发平台,说明了其对科研社区的支持和对易于实现的重视。 ### 7. 可视化表示学习(Visual Representation Learning) 可视化表示学习的目的是从原始视觉数据中提取特征,并将它们转换为能够反映重要信息且更易于处理的形式。在UniMoCo中,无论是无监督、半监督还是全监督学习,最终的目标都是让模型学习到有效的视觉表示,这些表示可以用于下游任务,如图像分类、目标检测、图像分割等。 ### 8. 标签队列(Label Queue) UniMoCo通过标签队列维护受监管的标签,这可能意味着对于那些半监督或全监督学习的任务,模型在进行对比学习时,会参考这些来自标签队列的数据。标签队列机制能帮助模型更好地利用有限的标注数据,增强模型的泛化能力。 ### 结论 UniMoCo的提出,以及其官方PyTorch实现的发布,将对计算机视觉领域产生深远影响。它不仅提供了一个统一的对比学习框架,使得从无监督到全监督的学习过程更加灵活和高效,而且为研究者们提供了一个强力的工具,以便更好地探索和实现各种视觉任务。UniMoCo的研究和应用前景,为机器学习尤其是深度学习在视觉领域的研究和实践提供了新的视角和可能。
recommend-type

【MATLAB算法精讲】:最小二乘法的实现与案例深度分析

# 1. 最小二乘法的基本原理 最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。其核心思想是选择一条曲线,使得所有观察点到这条曲线的距离之和最小。这种方法广泛应用于统计学、信号处理、工程学和经济学等领域,尤其适用于需要通过一组数据点来确定函数参数的情况。 ## 1.1 统计学视角下的最小二乘法 在统计学中,最小二乘法经常用于
recommend-type

Idea使用教程+jdk配置

<think>好的,我现在需要回答用户关于IntelliJ IDEA使用教程和JDK配置方法的问题。首先,用户明确提到了参考站内引用中的内容,引用[1]和引用[2]都涉及JDK的配置步骤,但看起来这些引用内容可能来自其他问题或文档,可能与当前问题不完全相关,但用户希望我利用这些信息来组织回答。 首先,我需要确认IntelliJ IDEA配置JDK的基本步骤,并整合用户提供的引用内容。引用[1]提到选择JDK安装根目录,例如D:\develop\Java\jdk-17,这说明配置时需要定位到JDK的主目录。引用[2]则提到了通过New按钮选择JDK版本,并完成项目创建,这部分可能涉及到项目设置
recommend-type

GitHub入门实践:审查拉取请求指南

从提供的文件信息中,我们可以抽取以下知识点: **GitHub入门与Pull Request(PR)的审查** **知识点1:GitHub简介** GitHub是一个基于Git的在线代码托管和版本控制平台,它允许开发者在互联网上进行代码的托管和协作。通过GitHub,用户可以跟踪和管理代码变更,参与开源项目,或者创建自己的私有仓库进行项目协作。GitHub为每个项目提供了问题跟踪和任务管理功能,支持Pull Request机制,以便用户之间可以进行代码的审查和讨论。 **知识点2:Pull Request的作用与审查** Pull Request(PR)是协作开发中的一个重要机制,它允许开发者向代码库贡献代码。当开发者在自己的分支上完成开发后,他们可以向主分支(或其他分支)提交一个PR,请求合入他们的更改。此时,其他开发者,包括项目的维护者,可以审查PR中的代码变更,进行讨论,并最终决定是否合并这些变更到目标分支。 **知识点3:审查Pull Request的步骤** 1. 访问GitHub仓库,并查看“Pull requests”标签下的PR列表。 2. 选择一个PR进行审查,点击进入查看详细内容。 3. 查看PR的标题、描述以及涉及的文件变更。 4. 浏览代码的具体差异,可以逐行审查,也可以查看代码变更的概览。 5. 在PR页面添加评论,可以针对整个PR,也可以针对特定的代码行或文件。 6. 当审查完成后,可以提交评论,或者批准、请求修改或关闭PR。 **知识点4:代码审查的最佳实践** 1. 确保PR的目标清晰且具有针对性,避免过于宽泛。 2. 在审查代码时,注意代码的质量、结构以及是否符合项目的编码规范。 3. 提供建设性的反馈,指出代码的优点和需要改进的地方。 4. 使用清晰、具体的语言,避免模糊和主观的评论。 5. 鼓励开发者间的协作,而不是单向的批评。 6. 经常审查PR,以避免延迟和工作积压。 **知识点5:HTML基础** HTML(HyperText Markup Language)是用于创建网页的标准标记语言。它通过各种标签(如`<p>`用于段落,`<img>`用于图片,`<a>`用于链接等)来定义网页的结构和内容。HTML文档由元素组成,这些元素通过开始标签和结束标签来标识。例如,`<p>This is a paragraph.</p>`。HTML的最新版本是HTML5,它引入了许多新的元素和API,增强了对多媒体、图形和本地存储的支持。 **知识点6:GitHub Pages功能介绍** GitHub Pages是一个静态站点托管服务,允许用户直接从GitHub仓库中发布个人、组织或项目的网站。你可以通过设置一个专门的分支来存放你的网站源代码,然后利用GitHub Pages的设置选项,选择分支并发布你的网站。发布的网站将可以通过一个自定义的URL访问,这个URL通常是`username.github.io/repo-name`的格式。这为开发者提供了一个简单而快速的方法来搭建个人或项目的展示页面。 **知识点7:简单的游戏开发实践** 文件描述中提到了一个基于项目的学习活动,通过游戏的形式,让入门人员体验操作和理解基本的游戏开发概念。在这个活动中,参与者通过键盘操作控制形状的旋转和移动,目标是创建无空隙的完整行,这涉及到游戏逻辑、用户输入处理和图形界面显示等基础知识。该活动可能使用了HTML、JavaScript和CSS等前端技术实现,参与者通过实践操作来学习如何编程,并理解基本的游戏设计原理。
recommend-type

【R语言高级教程】:最小二乘法从入门到精通

# 1. 最小二乘法的理论基础 最小二乘法是数学优化技术之一,广泛应用于统计学、数据分析和工程学等领域。其核心思想在于找到一条直线(或曲线),使得所有观测点到该直线的垂直距离之和最小,即误差平方和最小。这一方法不仅简单易行,而且可以有效减少异常值对模型的影响,使得参数估计更加稳定。 ## 1.1 最小二乘法的数学表述 在最基本的线性回归模型中,最小二乘法通过最小化误差的平方和来寻找最
recommend-type

cadence画PCB时改变线长

<think>好的,我现在需要帮助用户解决在Cadence PCB设计中调整走线长度的问题。首先,我得回想一下用户提到的引用内容,尤其是引用1、2和3,里面提到了实时显示走线长度、约束导向设计以及过孔对长度的影响。用户可能已经知道如何显示长度,现在想知道如何调整它们。 用户的问题是如何调整走线长度以满足特定需求,比如等长布线或时序要求。我应该先分步骤说明不同的调整方法,比如手动调整、使用自动优化工具、蛇形走线,以及设置约束管理器中的规则。 记得引用中的信息,比如引用2提到的约束导向环境和实时长度显示,所以需要提到约束管理器的使用。引用3讨论了过孔对长度的影响,调整过孔数量可能也是一种方法。