for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu')

时间: 2025-07-28 11:04:17 AIGC 浏览: 16
<think>我们正在讨论如何在PyTorch中正确使用`kaiming_normal_`初始化Conv1d层的权重。根据用户提供的代码片段,以及站内引用中的相关信息,我们可以总结如下:用户提供的代码片段:```pythonforminself.modules():ifisinstance(m,nn.Conv1d):nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu')```这个代码片段遍历模型中的所有模块,当遇到`nn.Conv1d`层时,使用Kaiming正态分布初始化其权重,指定模式为`'fan_in'`,非线性函数为`'leaky_relu'`。根据引用[3]和[4],Kaiming初始化(也称为He初始化)是为解决ReLU族激活函数在深度网络中梯度消失或爆炸问题而设计的。具体到Conv1d层,我们需要注意以下几点:1.**模式选择(mode)**:-`fan_in`:基于输入通道数(即卷积核的输入通道数)计算标准差,这有助于在前向传播中保持信号的方差。-`fan_out`:基于输出通道数(即卷积核的输出通道数)计算标准差,这有助于在反向传播中保持梯度的方差。-对于卷积层,通常推荐使用`fan_in`(如引用[4]所述),但也可以根据实际情况选择。例如,引用[3]中在Conv2d层使用了`fan_out`,因为后面紧接着ReLU激活函数。2.**非线性函数(nonlinearity)**:-必须与网络中实际使用的激活函数一致。如果使用LeakyReLU,则指定`nonlinearity='leaky_relu'`,并可以通过参数`a`指定负斜率(默认0.01)。如果是普通的ReLU,则使用`nonlinearity='relu'`。-在用户代码中,使用了`leaky_relu`,因此设置正确。3.**偏置初始化**:-用户提供的代码中没有初始化偏置。根据引用[1]和[3],常见的做法是将偏置初始化为0或一个很小的常数(如0.1)。对于使用ReLU或LeakyReLU的网络,通常将偏置初始化为0(引用[3]的做法)。4.**初始化公式**:-Kaiming正态分布初始化的权重从均值为0、标准差为$\sqrt{\frac{2}{(1+a^2)\times\text{fan\_mode}}}$的正态分布中采样,其中$a$是LeakyReLU的负斜率(对于ReLU,$a=0$),$\text{fan\_mode}$是输入或输出的单元数(取决于模式)[^4]。-对于Conv1d层,`fan_in`的计算方式为:`in_channels*kernel_size`(因为卷积核的每个通道都有`kernel_size`个权重)[^2]。因此,用户提供的代码已经正确地对Conv1d层权重进行了初始化,但缺少对偏置的初始化。我们可以补充偏置初始化为0。优化后的代码:```pythonforminself.modules():ifisinstance(m,nn.Conv1d):nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu')ifm.biasisnotNone:nn.init.constant_(m.bias,0)```这样,我们既初始化了权重,也将偏置初始化为0。**完整示例**(假设在一个神经网络模块的初始化方法中):```pythonimporttorch.nnasnnclassMyModel(nn.Module):def__init__(self):super(MyModel,self).__init__()self.conv1=nn.Conv1d(3,64,kernel_size=7,stride=2,padding=3)#其他层...self._initialize_weights()def_initialize_weights(self):forminself.modules():ifisinstance(m,nn.Conv1d):nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu')ifm.biasisnotNone:nn.init.constant_(m.bias,0)#可以添加其他类型的层的初始化```**注意事项**:-在初始化时,确保模型已经构建完成(即所有子模块已经定义),然后再调用初始化方法。-如果网络中存在多种类型的层(如全连接层、LSTM层等),需要分别处理。例如,对于全连接层,可以使用不同的初始化方法(如引用[3]中对Linear层使用了正态分布初始化)。**验证初始化效果**:可以通过打印权重的均值和标准差来验证:```pythonmodel=MyModel()forname,paraminmodel.named_parameters():if'weight'inname:print(f'{name}:mean={param.mean().item():.4f},std={param.std().item():.4f}')elif'bias'inname:print(f'{name}:mean={param.mean().item():.4f}')```预期输出中,权重的均值接近0,标准差接近理论值$\sqrt{\frac{2}{(1+a^2)\times\text{in_channels}\times\text{kernel\_size}}}$,偏置为0。**引用说明**:-引用[1]展示了使用Xavier初始化Conv2d层权重和常数初始化偏置。-引用[2]提到对于卷积层,Kaiming初始化中`fan_in`的计算为输入通道数乘以卷积核面积(对于Conv1d,就是输入通道数乘以卷积核大小)。-引用[3]提供了对Conv2d层使用Kaiming初始化的代码示例(模式为`fan_out`,非线性函数为`relu`),并初始化偏置为0。-引用[4]指出Kaiming初始化是针对ReLU族激活函数设计的。因此,用户针对Conv1d层使用`mode='fan_in'`和`nonlinearity='leaky_relu'`是合理的,符合文献[^4]的推荐。§§相关问题§§1.Kaiming初始化与Xavier初始化有何区别?2.如何为LSTM层选择合适的权重初始化方法?3.初始化不当会导致哪些训练问题?</think>在 PyTorch 中对 Conv1d 层正确使用 Kaiming Normal 初始化需要综合考虑卷积特性、激活函数和初始化原理。以下是详细实现指南: ### 1. 基础初始化方法 ```python import torch.nn as nn class MyModel(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv1d(3, 64, kernel_size=7) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv1d): # Kaiming 初始化核心代码 nn.init.kaiming_normal_( m.weight, mode='fan_in', # 基于输入通道数 nonlinearity='leaky_relu' # 匹配激活函数 ) # 偏置初始化为零 if m.bias is not None: nn.init.constant_(m.bias, 0) ``` ### 2. 关键参数解析 1. **模式选择 (`mode`)**: - `fan_in`:基于输入通道数计算方差 ($\text{fan_in} = \text{in_channels} \times \text{kernel_size}$),推荐用于卷积层前向传播稳定[^4] - `fan_out`:基于输出通道数计算 ($\text{fan_out} = \text{out_channels} \times \text{kernel_size}$),适合反向传播稳定需求 2. **激活函数匹配 (`nonlinearity`)**: | 实际激活函数 | 参数设置 | 数学公式 | |--------------|-------------------|------------------------------| | ReLU | `nonlinearity='relu'` | $\sigma = \sqrt{\frac{2}{\text{fan\_mode}}}$ | | Leaky ReLU | `nonlinearity='leaky_relu'` | $\sigma = \sqrt{\frac{2}{(1 + a^2) \times \text{fan\_mode}}}$ | - Leaky ReLU 默认负斜率 $a=0.01$,可通过 `a` 参数自定义 3. **数学原理**: $$W \sim \mathcal{N}\left(0, \sigma^2\right)$$ 其中 $\sigma$ 根据激活函数类型和 fan_mode 计算: $$\sigma = \sqrt{\frac{2}{(1 + a^2) \times \text{fan\_mode}}}$$ ### 3. 高级优化技巧 ```python def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv1d): # 自定义Leaky ReLU参数 nn.init.kaiming_normal_( m.weight, mode='fan_in', nonlinearity='leaky_relu', a=0.1 # 自定义负斜率 ) # 深度可分离卷积特殊处理 if m.groups == m.in_channels: nn.init.normal_(m.weight, mean=0, std=0.1) # 偏置初始化(保持为零) nn.init.zeros_(m.bias) ``` ### 4. 验证与调试 ```python # 初始化后检查统计量 model = MyModel() conv = model.conv1 # 理论标准差计算 fan_in = conv.in_channels * conv.kernel_size[0] theoretical_std = (2 / fan_in) ** 0.5 # ReLU情况 print(f"实际标准差: {conv.weight.std().item():.4f}") print(f"理论标准差: {theoretical_std:.4f}") print(f"偏置均值: {conv.bias.mean().item():.4f}") ``` ### 5. 最佳实践建议 1. **激活函数匹配**:确保 `nonlinearity` 参数与实际网络激活函数一致[^3] 2. **批量归一化配合**:Kaiming初始化后应接BN层 ($\text{Conv1d} \rightarrow \text{BN} \rightarrow \text{ReLU}$)[^4] 3. **特殊卷积处理**: - 深度可分离卷积:使用较小标准差 (0.01-0.1) - 1x1卷积:按全连接层处理 (fan_in=in_channels) 4. **分布式训练**:初始化后再进行DP/DDP包装,避免初始化被覆盖 > **数学原理说明**:Kaiming初始化通过调整权重分布的方差 $\sigma^2$,使每层输出的方差保持稳定,解决深度网络中的梯度消失/爆炸问题[^4]。对于Conv1d,$\text{fan\_in}$ 计算为输入通道数与卷积核尺寸的乘积:$\text{fan\_in} = C_{\text{in}} \times K$
阅读全文

相关推荐

class MCNN(nn.Module): def __init__(self, input_dim,hidden_dim=64, num_classes=256,num_head=4): super(MCNN, self).__init__() self.num_head = num_head self.one_hot_embed = nn.Embedding(21, 96) self.proj_aa = nn.Linear(96, 512) self.proj_esm = nn.Linear(1280, 512) # self.lstm_model = ProteinLSTM(512, 16, 2, 512) self.emb = nn.Sequential(nn.Conv1d(input_dim, hidden_dim, kernel_size=3, padding=0),nn.BatchNorm1d(hidden_dim)) self.ms_f = FPN_Module(hidden_dim) self.multi_head = MHA(self.num_head,hidden_dim) self.fc_out = nn.Linear(hidden_dim, num_classes) self.init_parameters() def init_parameters(self): for m in self.modules(): if isinstance(m, nn.Conv1d): init.kaiming_normal_(m.weight,mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight,mode='fan_out') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self,data): # x = data.x x_aa = self.one_hot_embed(data.native_x.long()) x_aa = self.proj_aa(x_aa) x = data.x.float() x_esm = self.proj_esm(x) x = F.relu( x_aa + x_esm) batch_x, _ = to_dense_batch(x, data.batch) x = batch_x.permute(0, 2, 1) conv_emb = self.emb(x) # multi-scale feats conv_ms = self.ms_f(conv_emb) conv_x = self.multi_head(conv_emb) conv_mha = self.multi_head(conv_ms)

import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class Transpose1dLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding=11, upsample=None, output_padding=1): super(Transpose1dLayer, self).__init__() self.upsample = upsample self.upsample_layer = torch.nn.Upsample(scale_factor=upsample) reflection_pad = kernel_size // 2 self.reflection_pad = nn.ConstantPad1d(reflection_pad, value=0) self.conv1d = torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride) self.Conv1dTrans = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, padding, output_padding) def forward(self, x): if self.upsample: return self.conv1d(self.reflection_pad(self.upsample_layer(x))) else: return self.Conv1dTrans(x) class WaveGANGenerator(nn.Module): def __init__(self, model_size=64, ngpus=1, num_channels=1, latent_dim=100, post_proc_filt_len=512, verbose=False, upsample=True): super(WaveGANGenerator, self).__init__() self.ngpus = ngpus self.model_size = model_size # d self.num_channels = num_channels # c self.latent_di = latent_dim self.post_proc_filt_len = post_proc_filt_len self.verbose = verbose # "Dense" is the same meaning as fully connection. self.fc1 = nn.Linear(latent_dim, 256 * model_size) stride = 4 if upsample: stride = 1 upsample = 4 self.deconv_1 = Transpose1dLayer(16 * model_size, 8 * model_size, 25, stride, upsample=upsample) self.deconv_2 = Transpose1dLayer(8 * model_size, 4 * model_size, 25, stride, upsample=upsample) self.deconv_3 = Transpose1dLayer(4 * model_size, 2 * model_size, 25, stride, upsample=upsample) self.deconv_4 = Transpose1dLayer(2 * model_size, model_size, 25, stride, upsample=upsample) self.deconv_5 = Transpose1dLayer(model_size, num_channels, 25, stride, upsample=upsample) if post_proc_filt_len: self.ppfilter1 = nn.Conv1d(num_channels, num_channels, post_proc_filt_len) for m in self.modules(): if isinstance(m, nn.ConvTranspose1d) or isinstance(m, nn.Linear): nn.init.kaiming_normal(m.weight.data) def forward(self, x): x = self.fc1(x).view(-1, 16 * self.model_size, 16) x = F.relu(x) if self.verbose: print(x.shape) x = F.relu(self.deconv_1(x)) if self.verbose: print(x.shape) x = F.relu(self.deconv_2(x)) if self.verbose: print(x.shape) x = F.relu(self.deconv_3(x)) if self.verbose: print(x.shape) x = F.relu(self.deconv_4(x)) if self.verbose: print(x.shape) output = F.tanh(self.deconv_5(x)) return output class PhaseShuffle(nn.Module): """ Performs phase shuffling, i.e. shifting feature axis of a 3D tensor by a random integer in {-n, n} and performing reflection padding where necessary. """ # Copied from https://github.com/jtcramer/wavegan/blob/master/wavegan.py#L8 def __init__(self, shift_factor): super(PhaseShuffle, self).__init__() self.shift_factor = shift_factor def forward(self, x): if self.shift_factor == 0: return x # uniform in (L, R) k_list = torch.Tensor(x.shape[0]).random_(0, 2 * self.shift_factor + 1) - self.shift_factor k_list = k_list.numpy().astype(int) # Combine sample indices into lists so that less shuffle operations # need to be performed k_map = {} for idx, k in enumerate(k_list): k = int(k) if k not in k_map: k_map[k] = [] k_map[k].append(idx) # Make a copy of x for our output x_shuffle = x.clone() # Apply shuffle to each sample for k, idxs in k_map.items(): if k > 0: x_shuffle[idxs] = F.pad(x[idxs][..., :-k], (k, 0), mode='reflect') else: x_shuffle[idxs] = F.pad(x[idxs][..., -k:], (0, -k), mode='reflect') assert x_shuffle.shape == x.shape, "{}, {}".format(x_shuffle.shape, x.shape) return x_shuffle class PhaseRemove(nn.Module): def __init__(self): super(PhaseRemove, self).__init__() def forward(self, x): pass class WaveGANDiscriminator(nn.Module): def __init__(self, model_size=64, ngpus=1, num_channels=1, shift_factor=2, alpha=0.2, verbose=False): super(WaveGANDiscriminator, self).__init__() self.model_size = model_size # d self.ngpus = ngpus self.num_channels = num_channels # c self.shift_factor = shift_factor # n self.alpha = alpha self.verbose = verbose self.conv1 = nn.Conv1d(num_channels, model_size, 25, stride=4, padding=11) self.conv2 = nn.Conv1d(model_size, 2 * model_size, 25, stride=4, padding=11) self.conv3 = nn.Conv1d(2 * model_size, 4 * model_size, 25, stride=4, padding=11) self.conv4 = nn.Conv1d(4 * model_size, 8 * model_size, 25, stride=4, padding=11) self.conv5 = nn.Conv1d(8 * model_size, 16 * model_size, 25, stride=4, padding=11) self.ps1 = PhaseShuffle(shift_factor) self.ps2 = PhaseShuffle(shift_factor) self.ps3 = PhaseShuffle(shift_factor) self.ps4 = PhaseShuffle(shift_factor) self.fc1 = nn.Linear(256 * model_size, 1) for m in self.modules(): if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear): nn.init.kaiming_normal(m.weight.data) def forward(self, x): x = F.leaky_relu(self.conv1(x), negative_slope=self.alpha) if self.verbose: print(x.shape) x = self.ps1(x) x = F.leaky_relu(self.conv2(x), negative_slope=self.alpha) if self.verbose: print(x.shape) x = self.ps2(x) x = F.leaky_relu(self.conv3(x), negative_slope=self.alpha) if self.verbose: print(x.shape) x = self.ps3(x) x = F.leaky_relu(self.conv4(x), negative_slope=self.alpha) if self.verbose: print(x.shape) x = self.ps4(x) x = F.leaky_relu(self.conv5(x), negative_slope=self.alpha) if self.verbose: print(x.shape) x = x.view(-1, 256 * self.model_size) if self.verbose: print(x.shape) return self.fc1(x) """ from torch.autograd import Variable x = Variable(torch.randn(10, 100)) G = WaveGANGenerator(verbose=True, upsample=False) out = G(x) print(out.shape) D = WaveGANDiscriminator(verbose=True) out2 = D(out) print(out2.shape) """ 这段用语一维音频信号的代码能否适用于一维电流信号呢

def gcd(a, b): while b: a, b = b, a % b return a # Other types of layers can go here (e.g., nn.Linear, etc.) def _init_weights(module, name, scheme=''): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d): if scheme == 'normal': nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'trunc_normal': trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'xavier_normal': nn.init.xavier_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'kaiming_normal': nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) else: # efficientnet like fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def act_layer(act, inplace=False, neg_slope=0.2, n_prelu=1): # activation layer act = act.lower() if act == 'relu': layer = nn.ReLU(inplace) elif act == 'relu6': layer = nn.ReLU6(inplace) elif act == 'leakyrelu': layer = nn.LeakyReLU(neg_slope, inplace) elif act == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) elif act == 'gelu': layer = nn.GELU() elif act == 'hswish': layer = nn.Hardswish(inplace) else: raise NotImplementedError('activation layer [%s] is not found' % act) return layer def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x # Multi-scale depth-wise convolution (MSDC) class MSDC(nn.Module): def __init__(self, in_channels, kernel_sizes, stride, activation='relu6', dw_parallel=True): super(MSDC, self).__init__() self.in_channels = in_channels self.kernel_sizes = kernel_sizes self.activation = activation self.dw_parallel = dw_parallel self.dwconvs = nn.ModuleList([ nn.Sequential( nn.Conv2d(self.in_channels, self.in_channels, kernel_size, stride, kernel_size // 2, groups=self.in_channels, bias=False), nn.BatchNorm2d(self.in_channels), act_layer(self.activation, inplace=True) ) for kernel_size in self.kernel_sizes ]) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): # Apply the convolution layers in a loop outputs = [] for dwconv in self.dwconvs: dw_out = dwconv(x) outputs.append(dw_out) if self.dw_parallel == False: x = x + dw_out # You can return outputs based on what you intend to do with them return outputs class MSCB(nn.Module): """ Multi-scale convolution block (MSCB) """ def __init__(self, in_channels, out_channels, shortcut=False, stride=1, kernel_sizes=[1, 3, 5], expansion_factor=2, dw_parallel=True, activation='relu6'): super(MSCB, self).__init__() add = shortcut self.in_channels = in_channels self.out_channels = out_channels self.stride = stride self.kernel_sizes = kernel_sizes self.expansion_factor = expansion_factor self.dw_parallel = dw_parallel self.add = add self.activation = activation self.n_scales = len(self.kernel_sizes) # check stride value assert self.stride in [1, 2] # Skip connection if stride is 1 self.use_skip_connection = True if self.stride == 1 else False # expansion factor self.ex_channels = int(self.in_channels * self.expansion_factor) self.pconv1 = nn.Sequential( # pointwise convolution nn.Conv2d(self.in_channels, self.ex_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.ex_channels), act_layer(self.activation, inplace=True) ) self.msdc = MSDC(self.ex_channels, self.kernel_sizes, self.stride, self.activation, dw_parallel=self.dw_parallel) if self.add == True: self.combined_channels = self.ex_channels * 1 else: self.combined_channels = self.ex_channels * self.n_scales self.pconv2 = nn.Sequential( # pointwise convolution nn.Conv2d(self.combined_channels, self.out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.out_channels), ) if self.use_skip_connection and (self.in_channels != self.out_channels): self.conv1x1 = nn.Conv2d(self.in_channels, self.out_channels, 1, 1, 0, bias=False) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): pout1 = self.pconv1(x) msdc_outs = self.msdc(pout1) if self.add == True: dout = 0 for dwout in msdc_outs: dout = dout + dwout else: dout = torch.cat(msdc_outs, dim=1) dout = channel_shuffle(dout, gcd(self.combined_channels, self.out_channels)) out = self.pconv2(dout) if self.use_skip_connection: if self.in_channels != self.out_channels: x = self.conv1x1(x) return x + out else: return out def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x)) import torch from torch import nn from ultralytics.nn.modules.conv import Conv from torch.nn import functional as F class Channel_Att(nn.Module): def __init__(self, channels, t=16): super(Channel_Att, self).__init__() self.channels = channels self.bn2 = nn.BatchNorm2d(self.channels, affine=True) def forward(self, x): residual = x x = self.bn2(x) weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs()) x = x.permute(0, 2, 3, 1).contiguous() x = torch.mul(weight_bn, x) x = x.permute(0, 3, 1, 2).contiguous() x = torch.sigmoid(x) * residual # return x class NAMAttention(nn.Module): def __init__(self, channels, shape, out_channels=None, no_spatial=True): super(NAMAttention, self).__init__() self.Channel_Att = Channel_Att(channels) def forward(self, x): x_out1 = self.Channel_Att(x) return x_out1 根据这些代码,参考Conv的结构,创建一个名为MSConv的模块,输入分为两个分支,第一个是MSDC模块到BatchNorm2d到SiLU,另一个是NAM注意力,注意力机制与其他三个模块并行,最后将SiLU的输出与NAM的输出合并为最终的输出。请编辑代码实现这个思路。注意NAM注意力机制的参数问题

*coding:utf-8 * import torch import torch.nn as nn import torch.nn.functional as F from utils import PointNetSetAbstraction, PointNetFeaturePropagation class TransformerBlock(nn.Module): “”“点云Transformer模块”“” def init(self, d_model, nhead, dim_feedforward=512, dropout=0.1): super().init() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = F.gelu def forward(self, x): # x: (B, C, N) -> (N, B, C) x = x.permute(2, 0, 1) attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout1(attn_output) x = self.norm1(x) ff_output = self.linear2(self.dropout(self.activation(self.linear1(x)))) x = x + self.dropout2(ff_output) x = self.norm2(x) return x.permute(1, 2, 0) class ChannelAttention(nn.Module): “”“改进的通道注意力机制”“” def init(self, in_channels, reduction_ratio=8): super().init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.max_pool = nn.AdaptiveMaxPool1d(1) # 确保中间层通道数至少为1 mid_channels = max(1, in_channels // reduction_ratio) # 关键修复 self.mlp = nn.Sequential( nn.Conv1d(in_channels, mid_channels, 1), # 使用mid_channels nn.ReLU(), nn.Conv1d(mid_channels, in_channels, 1) # 使用mid_channels ) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.mlp(self.avg_pool(x)) max_out = self.mlp(self.max_pool(x)) out = avg_out + max_out return self.sigmoid(out) class MBConvPoint(nn.Module): “”“改进的MBConv模块”“” def init(self, in_channels, out_channels, expand_ratio, se_ratio, stride): super().init() self.in_channels = in_channels self.out_channels = out_channels self.expand_ratio = expand_ratio self.stride = stride self.has_se = se_ratio is not None and 0 < se_ratio <= 1 # 扩张层 expanded_channels = in_channels * expand_ratio if expand_ratio != 1: self.expand_conv = nn.Conv1d(in_channels, expanded_channels, 1, bias=False) self.bn0 = nn.BatchNorm1d(expanded_channels) self.swish0 = nn.SiLU() # 深度可分离卷积 self.depthwise_conv = nn.Conv1d( expanded_channels, expanded_channels, 1, groups=expanded_channels, bias=False ) self.bn1 = nn.BatchNorm1d(expanded_channels) self.swish1 = nn.SiLU() # 通道注意力 if self.has_se: self.se = ChannelAttention(expanded_channels, reduction_ratio=8) # 投影层 self.project_conv = nn.Conv1d(expanded_channels, out_channels, 1, bias=False) self.bn2 = nn.BatchNorm1d(out_channels) # 残差连接 self.use_skip = in_channels == out_channels and stride == 1 if self.use_skip: self.shortcut = nn.Identity() else: self.shortcut = nn.Sequential( nn.Conv1d(in_channels, out_channels, 1, bias=False), nn.BatchNorm1d(out_channels) ) def forward(self, x): identity = x # 扩展阶段 if self.expand_ratio != 1: x = self.expand_conv(x) x = self.bn0(x) x = self.swish0(x) # 深度卷积 x = self.depthwise_conv(x) x = self.bn1(x) x = self.swish1(x) # 通道注意力 if self.has_se: se_weights = self.se(x) x = x * se_weights # 投影 x = self.project_conv(x) x = self.bn2(x) # 残差连接 if self.use_skip: x = x + identity else: x = x + self.shortcut(identity) return x class DiceLoss(nn.Module): “”“Dice Loss for segmentation tasks”“” def init(self, num_classes, epsilon=1e-5): super().init() self.num_classes = num_classes self.epsilon = epsilon def forward(self, pred, target): probs = F.softmax(pred, dim=1) target_onehot = F.one_hot(target, num_classes=self.num_classes).permute(0, 2, 1).float() intersection = torch.sum(probs * target_onehot, dim=(0, 2)) union = torch.sum(probs, dim=(0, 2)) + torch.sum(target_onehot, dim=(0, 2)) dice = (2. * intersection + self.epsilon) / (union + self.epsilon) return 1. - torch.mean(dice) class FocalLoss(nn.Module): “”“Focal Loss for class imbalance”“” def init(self, alpha=0.5, gamma=2.0, reduction=‘mean’): super().init() self.alpha = alpha self.gamma = gamma self.reduction = reduction self.ce_loss = nn.CrossEntropyLoss(reduction=‘none’) def forward(self, inputs, targets): ce_loss = self.ce_loss(inputs, targets) pt = torch.exp(-ce_loss) focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss if self.reduction == ‘mean’: return torch.mean(focal_loss) elif self.reduction == ‘sum’: return torch.sum(focal_loss) return focal_loss class EnhancedPointEfficientNet(nn.Module): “”“增强版Point-EfficientNet”“” def init(self, num_classes, num_parts=50, normal_channel=False): super().init() if normal_channel: additional_channel = 3 else: additional_channel = 0 self.num_parts = num_parts self.normal_channel = normal_channel # 编码器 self.enc1 = self._make_encoder_stage(3 + additional_channel, 32, 2) self.sa1 = PointNetSetAbstraction(npoint=512, radius=0.2, nsample=64, in_channel=32, mlp=[32, 32, 64], group_all=False) self.transformer1 = TransformerBlock(64, nhead=4) self.enc2 = self._make_encoder_stage(64, 64, 3) self.sa2 = PointNetSetAbstraction(npoint=128, radius=0.4, nsample=64, in_channel=64, mlp=[64, 64, 128], group_all=False) self.transformer2 = TransformerBlock(128, nhead=4) self.enc3 = self._make_encoder_stage(128, 128, 4) self.sa3 = PointNetSetAbstraction(npoint=None, radius=None, nsample=None, in_channel=128, mlp=[128, 256, 512], group_all=True) self.transformer3 = TransformerBlock(512, nhead=8) # 多尺度融合 self.cross_scale_fusion = nn.Sequential( nn.Conv1d(512 + 128, 512, 1), nn.BatchNorm1d(512), nn.LeakyReLU(0.2) ) # 增强注意力机制 self.channel_att = ChannelAttention(512, reduction_ratio=8) self.spatial_att = nn.Sequential( nn.Conv1d(512, 256, 1), nn.BatchNorm1d(256), nn.ReLU(), nn.Conv1d(256, 1, 1), nn.Sigmoid() ) # 类别嵌入 self.cls_emb = nn.Sequential( nn.Linear(16, 256), nn.ReLU(), nn.Linear(256, 512), nn.LayerNorm(512) ) # 解码器 self.fp3 = PointNetFeaturePropagation(in_channel=640, mlp=[256, 256]) self.dec3 = self._make_decoder_stage(256, 128) self.transformer_fp3 = TransformerBlock(128, nhead=4) self.fp2 = PointNetFeaturePropagation(in_channel=192, mlp=[256, 128]) self.dec2 = self._make_decoder_stage(128, 64) self.transformer_fp2 = TransformerBlock(64, nhead=4) in_channel_fp1 = 3 + 32 + 64 self.fp1 = PointNetFeaturePropagation(in_channel=in_channel_fp1, mlp=[128, 128]) self.dec1 = self.make_decoder_stage(128, 64) self.transformer_fp1 = TransformerBlock(64, nhead=4) # 特征适配 self.feat_adapter = nn.Sequential( nn.Conv1d(64, 256, 1), nn.BatchNorm1d(256), nn.SiLU() ) # 分割头 self.conv1 = nn.Conv1d(256 + 512, 512, 1) self.bn1 = nn.BatchNorm1d(512) self.drop1 = nn.Dropout(0.4) self.conv2 = nn.Conv1d(512, num_parts, 1) def make_encoder_stage(self, in_channels, out_channels, num_blocks): blocks = [] blocks.append(MBConvPoint(in_channels, out_channels, expand_ratio=1, se_ratio=0.25, stride=1)) for _ in range(1, num_blocks): blocks.append(MBConvPoint(out_channels, out_channels, expand_ratio=6, se_ratio=0.25, stride=1)) return nn.Sequential(*blocks) def make_decoder_stage(self, in_channels, out_channels): return nn.Sequential( MBConvPoint(in_channels, in_channels, expand_ratio=6, se_ratio=0.25, stride=1), MBConvPoint(in_channels, out_channels, expand_ratio=6, se_ratio=0.25, stride=1) ) def forward(self, xyz, cls_label): B, , N = xyz.shape # 初始化 if self.normal_channel: l0_points = xyz l0_xyz = xyz[:, :3, :] else: l0_points = xyz l0_xyz = xyz # 编码器 l0_points = self.enc1(l0_points) l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l1_points = self.enc2(l1_points) l1_points = self.transformer1(l1_points) # Transformer Block 1 l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l2_points = self.enc3(l2_points) l2_points = self.transformer2(l2_points) # Transformer Block 2 l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l3_points = self.transformer3(l3_points) # Transformer Block 3 # 多尺度特征融合 l2_global = torch.mean(l2_points, dim=2, keepdim=True) fused_features = torch.cat([l3_points, l2_global], dim=1) fused_features = self.cross_scale_fusion(fused_features) # 增强注意力机制 channel_att_weights = self.channel_att(fused_features) spatial_att_weights = self.spatial_att(fused_features) fused_features = fused_features * channel_att_weights * spatial_att_weights # 类别嵌入 cls_embed = self.cls_emb(cls_label).unsqueeze(2) fused_features = fused_features + cls_embed # 全局特征 global_features = fused_features.repeat(1, 1, N) # 解码器 l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l2_points = self.dec3(l2_points) l2_points = self.transformer_fp3(l2_points) # FP Transformer 1 l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l1_points = self.dec2(l1_points) l1_points = self.transformer_fp2(l1_points) # FP Transformer 2 l0_points = self.fp1(l0_xyz, l1_xyz, torch.cat([l0_xyz, l0_points], 1), l1_points) l0_points = self.dec1(l0_points) l0_points = self.transformer_fp1(l0_points) # FP Transformer 3 # 特征适配 l0_points = self.feat_adapter(l0_points) # 分割头 combined = torch.cat([l0_points, global_features], dim=1) feat = F.silu(self.bn1(self.conv1(combined))) x = self.drop1(feat) x = self.conv2(x) x = F.log_softmax(x, dim=1) return x, l3_points def init_weights(self): for m in self.modules(): if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): nn.init.kaiming_normal(m.weight, mode=‘fan_out’, nonlinearity=‘relu’) if m.bias is not None: nn.init.constant(m.bias, 0) elif isinstance(m, (nn.BatchNorm1d, nn.LayerNorm)): nn.init.constant(m.weight, 1.0) nn.init.constant(m.bias, 0) class HybridLoss(nn.Module): “”“改进的混合损失函数(Focal Loss + Dice Loss)”“” def init(self, num_classes, class_weights=None, focal_weight=0.7, dice_weight=0.3, focal_alpha=0.5, focal_gamma=2.0): super().init() self.focal = FocalLoss(alpha=focal_alpha, gamma=focal_gamma) self.dice = DiceLoss(num_classes) self.focal_weight = focal_weight self.dice_weight = dice_weight def forward(self, pred, target): focal_loss = self.focal(pred, target) dice_loss = self.dice(pred, target) return self.focal_weight * focal_loss + self.dice_weight * dice_loss *coding:utf-8 * import torch import torch.nn as nn import torch.nn.functional as F from utils import PointNetSetAbstraction class TransformerBlock(nn.Module): “”“点云Transformer模块”“” def init(self, d_model, nhead, dim_feedforward=512, dropout=0.1): super().init() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = F.gelu def forward(self, x): x = x.permute(2, 0, 1) attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout1(attn_output) x = self.norm1(x) ff_output = self.linear2(self.dropout(self.activation(self.linear1(x)))) x = x + self.dropout2(ff_output) x = self.norm2(x) return x.permute(1, 2, 0) class ChannelAttention(nn.Module): “”“改进的通道注意力机制”“” def init(self, in_channels, reduction_ratio=8): super().init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.max_pool = nn.AdaptiveMaxPool1d(1) mid_channels = max(1, in_channels // reduction_ratio) self.mlp = nn.Sequential( nn.Conv1d(in_channels, mid_channels, 1), nn.ReLU(), nn.Conv1d(mid_channels, in_channels, 1) ) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.mlp(self.avg_pool(x)) max_out = self.mlp(self.max_pool(x)) out = avg_out + max_out return self.sigmoid(out) class MBConvPoint(nn.Module): “”“改进的MBConv模块”“” def init(self, in_channels, out_channels, expand_ratio, se_ratio, stride): super().init() self.in_channels = in_channels self.out_channels = out_channels self.expand_ratio = expand_ratio self.stride = stride self.has_se = se_ratio is not None and 0 < se_ratio <= 1 expanded_channels = in_channels * expand_ratio if expand_ratio != 1: self.expand_conv = nn.Conv1d(in_channels, expanded_channels, 1, bias=False) self.bn0 = nn.BatchNorm1d(expanded_channels) self.swish0 = nn.SiLU() self.depthwise_conv = nn.Conv1d( expanded_channels, expanded_channels, 1, groups=expanded_channels, bias=False ) self.bn1 = nn.BatchNorm1d(expanded_channels) self.swish1 = nn.SiLU() if self.has_se: self.se = ChannelAttention(expanded_channels, reduction_ratio=8) self.project_conv = nn.Conv1d(expanded_channels, out_channels, 1, bias=False) self.bn2 = nn.BatchNorm1d(out_channels) self.use_skip = in_channels == out_channels and stride == 1 if self.use_skip: self.shortcut = nn.Identity() else: self.shortcut = nn.Sequential( nn.Conv1d(in_channels, out_channels, 1, bias=False), nn.BatchNorm1d(out_channels) ) def forward(self, x): identity = x if self.expand_ratio != 1: x = self.expand_conv(x) x = self.bn0(x) x = self.swish0(x) x = self.depthwise_conv(x) x = self.bn1(x) x = self.swish1(x) if self.has_se: se_weights = self.se(x) x = x * se_weights x = self.project_conv(x) x = self.bn2(x) if self.use_skip: return x + identity return x + self.shortcut(identity) class PointEfficientNetForClassification(nn.Module): “”“用于ScanObjectNN分类任务的增强版Point-EfficientNet”“” def init(self, num_classes=15, normal_channel=False): super().init() self.normal_channel = normal_channel additional_channel = 3 if normal_channel else 0 # 编码器 self.enc1 = self._make_encoder_stage(3 + additional_channel, 32, 2) self.sa1 = PointNetSetAbstraction(npoint=512, radius=0.2, nsample=64, in_channel=32, mlp=[32, 32, 64], group_all=False) self.transformer1 = TransformerBlock(64, nhead=4) self.enc2 = self.make_encoder_stage(64, 64, 3) self.sa2 = PointNetSetAbstraction(npoint=128, radius=0.4, nsample=64, in_channel=64, mlp=[64, 64, 128], group_all=False) self.transformer2 = TransformerBlock(128, nhead=4) self.enc3 = self.make_encoder_stage(128, 128, 4) self.sa3 = PointNetSetAbstraction(npoint=None, radius=None, nsample=None, in_channel=128, mlp=[128, 256, 512], group_all=True) self.transformer3 = TransformerBlock(512, nhead=8) # 多尺度融合 self.cross_scale_fusion = nn.Sequential( nn.Conv1d(512 + 128, 512, 1), nn.BatchNorm1d(512), nn.LeakyReLU(0.2) ) # 增强注意力机制 self.channel_att = ChannelAttention(512, reduction_ratio=8) self.spatial_att = nn.Sequential( nn.Conv1d(512, 256, 1), nn.BatchNorm1d(256), nn.ReLU(), nn.Conv1d(256, 1, 1), nn.Sigmoid() ) # 分类头 self.classifier = nn.Sequential( nn.Linear(512, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Linear(256, num_classes) ) def make_encoder_stage(self, in_channels, out_channels, num_blocks): blocks = [] blocks.append(MBConvPoint(in_channels, out_channels, expand_ratio=1, se_ratio=0.25, stride=1)) for _ in range(1, num_blocks): blocks.append(MBConvPoint(out_channels, out_channels, expand_ratio=6, se_ratio=0.25, stride=1)) return nn.Sequential(*blocks) def forward(self, xyz): B, , N = xyz.shape # 初始化 if self.normal_channel: l0_points = xyz l0_xyz = xyz[:, :3, :] else: l0_points = xyz l0_xyz = xyz # 编码器 l0_points = self.enc1(l0_points) l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l1_points = self.enc2(l1_points) l1_points = self.transformer1(l1_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l2_points = self.enc3(l2_points) l2_points = self.transformer2(l2_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l3_points = self.transformer3(l3_points) # 多尺度特征融合 l2_global = torch.mean(l2_points, dim=2, keepdim=True) fused_features = torch.cat([l3_points, l2_global], dim=1) fused_features = self.cross_scale_fusion(fused_features) # 增强注意力机制 channel_att_weights = self.channel_att(fused_features) spatial_att_weights = self.spatial_att(fused_features) fused_features = fused_features * channel_att_weights * spatial_att_weights # 全局池化 global_features = F.adaptive_avg_pool1d(fused_features, 1).squeeze(-1) # 分类 x = self.classifier(global_features) # # 打印输出维度 # print(f"global_features shape: {global_features.shape}“) # print(f"Output shape: {x.shape}”) return x def init_weights(self): for m in self.modules(): if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): nn.init.kaiming_normal(m.weight, mode=‘fan_out’, nonlinearity=‘relu’) if m.bias is not None: nn.init.constant(m.bias, 0) elif isinstance(m, (nn.BatchNorm1d, nn.LayerNorm)): nn.init.constant(m.weight, 1.0) nn.init.constant(m.bias, 0) 我把我的模型从上面的分割模型变成了下面的分类模型。也就是之前用于训练ShapeNetPart数据集,现在用于训练ScanObjectNN数据集。可是为什么修改之前在shapenetpart数据集上能达到80多的miou,但是在分类数据集上准确率一直都是0.0几不怎么变化?这明显有问题,不能这么差。请帮我仔细阅读代码,分析原因

# *_*coding:utf-8 *_* import torch import torch.nn as nn import torch.nn.functional as F from utils import PointNetSetAbstraction class TransformerBlock(nn.Module): """点云Transformer模块""" def __init__(self, d_model, nhead, dim_feedforward=512, dropout=0.1): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = F.gelu def forward(self, x): x = x.permute(2, 0, 1) attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout1(attn_output) x = self.norm1(x) ff_output = self.linear2(self.dropout(self.activation(self.linear1(x)))) x = x + self.dropout2(ff_output) x = self.norm2(x) return x.permute(1, 2, 0) class ChannelAttention(nn.Module): """改进的通道注意力机制""" def __init__(self, in_channels, reduction_ratio=8): super().__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.max_pool = nn.AdaptiveMaxPool1d(1) mid_channels = max(1, in_channels // reduction_ratio) self.mlp = nn.Sequential( nn.Conv1d(in_channels, mid_channels, 1), nn.ReLU(), nn.Conv1d(mid_channels, in_channels, 1) ) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.mlp(self.avg_pool(x)) max_out = self.mlp(self.max_pool(x)) out = avg_out + max_out return self.sigmoid(out) class MBConvPoint(nn.Module): """改进的MBConv模块""" def __init__(self, in_channels, out_channels, expand_ratio, se_ratio, stride): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.expand_ratio = expand_ratio self.stride = stride self.has_se = se_ratio is not None and 0 < se_ratio <= 1 expanded_channels = in_channels * expand_ratio if expand_ratio != 1: self.expand_conv = nn.Conv1d(in_channels, expanded_channels, 1, bias=False) self.bn0 = nn.BatchNorm1d(expanded_channels) self.swish0 = nn.SiLU() self.depthwise_conv = nn.Conv1d( expanded_channels, expanded_channels, 1, groups=expanded_channels, bias=False ) self.bn1 = nn.BatchNorm1d(expanded_channels) self.swish1 = nn.SiLU() if self.has_se: self.se = ChannelAttention(expanded_channels, reduction_ratio=8) self.project_conv = nn.Conv1d(expanded_channels, out_channels, 1, bias=False) self.bn2 = nn.BatchNorm1d(out_channels) self.use_skip = in_channels == out_channels and stride == 1 if self.use_skip: self.shortcut = nn.Identity() else: self.shortcut = nn.Sequential( nn.Conv1d(in_channels, out_channels, 1, bias=False), nn.BatchNorm1d(out_channels) ) def forward(self, x): identity = x if self.expand_ratio != 1: x = self.expand_conv(x) x = self.bn0(x) x = self.swish0(x) x = self.depthwise_conv(x) x = self.bn1(x) x = self.swish1(x) if self.has_se: se_weights = self.se(x) x = x * se_weights x = self.project_conv(x) x = self.bn2(x) if self.use_skip: return x + identity return x + self.shortcut(identity) class PointEfficientNetForClassification(nn.Module): def __init__(self, num_classes=15, normal_channel=False): super().__init__() self.normal_channel = normal_channel additional_channel = 3 if normal_channel else 0 # 编码器 self.enc1 = self._make_encoder_stage(3 + additional_channel, 32, 2) self.sa1 = PointNetSetAbstraction(npoint=512, radius=0.2, nsample=64, in_channel=32, mlp=[32, 32, 64], group_all=False) self.transformer1 = TransformerBlock(64, nhead=4) self.enc2 = self._make_encoder_stage(64, 64, 3) self.sa2 = PointNetSetAbstraction(npoint=128, radius=0.4, nsample=64, in_channel=64, mlp=[64, 64, 128], group_all=False) self.transformer2 = TransformerBlock(128, nhead=4) self.enc3 = self._make_encoder_stage(128, 128, 4) self.sa3 = PointNetSetAbstraction(npoint=None, radius=None, nsample=None, in_channel=128, mlp=[128, 256, 1024], group_all=True) # 增加输出维度 # 移除无效的Transformer3(序列长度=1时无效) # 多尺度特征融合(修复维度) self.cross_scale_fusion = nn.Sequential( nn.Conv1d(1024 + 128, 1024, 1), # 修正输入通道数 nn.BatchNorm1d(1024), nn.LeakyReLU(0.2) ) # 增强注意力机制(移除空间注意力) self.channel_att = ChannelAttention(1024, reduction_ratio=16) # 增强通道注意力 # 全局特征增强 self.global_feat_enhancer = nn.Sequential( nn.Linear(1024, 512), nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Dropout(0.3), nn.Linear(512, 1024), nn.Sigmoid() ) # 分类头(增强结构) self.classifier = nn.Sequential( nn.Linear(1024, 768), nn.BatchNorm1d(768), nn.ReLU(inplace=True), nn.Dropout(0.4), nn.Linear(768, 384), nn.BatchNorm1d(384), nn.ReLU(inplace=True), nn.Dropout(0.3), nn.Linear(384, num_classes) ) def _make_encoder_stage(self, in_channels, out_channels, num_blocks): blocks = [] blocks.append(MBConvPoint(in_channels, out_channels, expand_ratio=1, se_ratio=0.25, stride=1)) for _ in range(1, num_blocks): blocks.append(MBConvPoint(out_channels, out_channels, expand_ratio=6, se_ratio=0.25, stride=1)) return nn.Sequential(*blocks) def forward(self, xyz): B, N, C = xyz.shape # 修改为 (B, N, C) # 分离坐标和特征 if self.normal_channel: l0_xyz = xyz[:, :, :3] # 坐标 (B, N, 3) l0_points = xyz[:, :, 3:] # 法线特征 (B, N, 3) else: l0_xyz = xyz # 只有坐标 (B, N, 3) l0_points = None # 没有额外特征 # 编码器 # 注意:PointNetSetAbstraction 期望输入为 (B, C, N) # 所以需要转置 if l0_points is not None: l0_points = l0_points.permute(0, 2, 1) # (B, 3, N) l0_xyz = l0_xyz.permute(0, 2, 1) # (B, 3, N) # 编码器 l0_points = self.enc1(l0_points) l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l1_points = self.enc2(l1_points) l1_points = self.transformer1(l1_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l2_points = self.enc3(l2_points) l2_points = self.transformer2(l2_points) # 最终全局特征(增大输出维度) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) # (B, 1024, 1) # 多尺度特征融合 l2_global = torch.mean(l2_points, dim=2, keepdim=True) # (B, 128, 1) fused_features = torch.cat([l3_points, l2_global], dim=1) # (B, 1024+128, 1) fused_features = self.cross_scale_fusion(fused_features) # (B, 1024, 1) # 通道注意力增强 channel_att_weights = self.channel_att(fused_features) # (B, 1024, 1) fused_features = fused_features * channel_att_weights # 全局特征增强 global_features = fused_features.squeeze(-1) # (B, 1024) feat_weights = self.global_feat_enhancer(global_features) # (B, 1024) enhanced_features = global_features * feat_weights # 分类 x = self.classifier(enhanced_features) return x def init_weights(self): for m in self.modules(): if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, (nn.BatchNorm1d, nn.LayerNorm)): nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0) 这是我的模型代码 修改方案如下: class PointEfficientNetForClassification(nn.Module): def forward(self, xyz): B, N, C = xyz.shape # 修改为 (B, N, C) # 分离坐标和特征 if self.normal_channel: l0_xyz = xyz[:, :, :3] # 坐标 (B, N, 3) l0_points = xyz[:, :, 3:] # 法线特征 (B, N, 3) else: l0_xyz = xyz # 只有坐标 (B, N, 3) l0_points = None # 没有额外特征 # 编码器 # 注意:PointNetSetAbstraction 期望输入为 (B, C, N) # 所以需要转置 if l0_points is not None: l0_points = l0_points.permute(0, 2, 1) # (B, 3, N) l0_xyz = l0_xyz.permute(0, 2, 1) # (B, 3, N) # 后续处理保持不变... 具体该怎么修改?提供修改后的完整代码

import torch import torch.nn as nn import torch.nn.functional as F # from torchsummary import summary class BasicBlock(nn.Module): # BasicBlock and BottleNeck block # have different output size # we use class attribute expansion # to distinct expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super().__init__() # residual function self.residual_function = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels * BasicBlock.expansion) ) # shortcut self.shortcut = nn.Sequential() # the shortcut output dimension is not the same with residual function # use 1*1 convolution to match the dimension if stride != 1 or in_channels != BasicBlock.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * BasicBlock.expansion) ) def forward(self, x): return F.relu(self.residual_function(x) + self.shortcut(x)) class ResNet(nn.Module): def __init__(self, block, num_block): super().__init__() self.in_channels = 64 filters = [64, 128, 256, 512, 1024] # we use a different inputsize than the original paper # so conv2_x's stride is 1 self.conv2_x = self._make_layer(block, filters[0], num_block[0], 1) self.conv3_x = self._make_layer(block, filters[1], num_block[1], 2) self.conv4_x = self._make_layer(block, filters[2], num_block[2], 2) self.conv5_x = self._make_layer(block, filters[3], num_block[3], 2) 在

import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader, random_split from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np import random from tqdm import tqdm import platform # ===== 中文字体支持设置 ===== import matplotlib as mpl import matplotlib.font_manager as fm from matplotlib import rcParams # 设置中文字体支持 def set_chinese_font(): try: # 尝试使用系统字体 font_list = ['SimHei', 'Microsoft YaHei', 'KaiTi', 'SimSun', 'FangSong', 'STSong', 'STKaiti'] available_fonts = [f.name for f in fm.fontManager.ttflist] # 查找系统支持的中文字体 chinese_font = None for font_name in font_list: if any(font_name in f for f in available_fonts): chinese_font = font_name break # 如果找到中文字体则应用 if chinese_font: rcParams['font.sans-serif'] = [chinese_font] rcParams['axes.unicode_minus'] = False # 解决负号显示问题 print(f"Set Chinese font: {chinese_font}") else: # 尝试从网络下载中文字体 try: import os from urllib.request import urlretrieve font_path = "NotoSansCJK-Regular.ttc" if not os.path.exists(font_path): print("Downloading Chinese font...") urlretrieve("https://github.com/googlefonts/noto-cjk/raw/main/Sans/OTF/Chinese/NotoSansCJK-Regular.ttc", font_path) fm.fontManager.addfont(font_path) rcParams['font.sans-serif'] = ['Noto Sans CJK SC'] rcParams['axes.unicode_minus'] = False print("Set downloaded Chinese font") except Exception as e: print(f"Failed to set Chinese font: {str(e)}") print("Chinese display may be incorrect") except Exception as e: print(f"Font setting error: {str(e)}") # 改进的参照化模态感知网络模型,增加正则化防止过拟合 class ImprovedRMAN(nn.Module): def __init__(self, num_classes=9, dropout_rate=0.3): super(ImprovedRMAN, self).__init__() self.num_classes = num_classes self.dropout_rate = dropout_rate # 特征提取器 - 增加了Dropout和调整了通道数 self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), # 减少初始通道数 nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Dropout2d(p=dropout_rate/2), # 卷积后的Dropout nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), # 减少通道数 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Dropout2d(p=dropout_rate/2), # 卷积后的Dropout ) # 动态计算全连接层输入维度 self.fc_input_dim = self._calculate_fc_input_dim() # 模态感知模块 - 增加Dropout self.modality_aware = nn.Sequential( nn.Linear(self.fc_input_dim, 128), # 减少隐藏层大小 nn.BatchNorm1d(128), nn.ReLU(inplace=True), nn.Dropout(p=dropout_rate), # 全连接后的Dropout ) # 参照向量(每个类别一个) self.reference_vectors = nn.Parameter(torch.randn(num_classes, 128)) # 分类器 self.classifier = nn.Linear(128, num_classes) # 初始化权重 self._initialize_weights() def _initialize_weights(self): # 权重初始化以提高稳定性 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def _calculate_fc_input_dim(self): x = torch.randn(1, 3, 28, 28) x = self.features(x) return x.view(1, -1).size(1) def forward(self, x): # 特征提取 x = self.features(x) x = x.view(x.size(0), -1) # 模态感知特征 features = self.modality_aware(x) # 参照感知计算 # 计算特征与每个参照向量的相似度 similarities = F.cosine_similarity( features.unsqueeze(1), self.reference_vectors.unsqueeze(0), dim=2 ) # 使用相似度加权参照向量 attention_weights = F.softmax(similarities, dim=1) weighted_ref = torch.sum( attention_weights.unsqueeze(2) * self.reference_vectors.unsqueeze(0), dim=1 ) # 特征增强:原始特征 + 加权参照向量 enhanced_features = features + weighted_ref # 分类 out = self.classifier(enhanced_features) return out # 可视化混淆矩阵以分析模型性能 def plot_confusion_matrix(all_labels, all_preds, class_names): from sklearn.metrics import confusion_matrix, classification_report import seaborn as sns cm = confusion_matrix(all_labels, all_preds) plt.figure(figsize=(10, 8)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class_names, yticklabels=class_names) plt.xlabel('Predicted') plt.ylabel('True') plt.title('Confusion Matrix') plt.tight_layout() plt.savefig('confusion_matrix.png') plt.show() # 打印分类报告 print("\nClassification Report:") print(classification_report(all_labels, all_preds, target_names=class_names)) # 可视化随机预测 def visualize_predictions(model, dataset, mean, std, num_samples=5): class_names = dataset.dataset.classes indices = random.sample(range(len(dataset)), num_samples) model.eval() plt.figure(figsize=(15, 10)) for i, idx in enumerate(indices): image, true_label = dataset[idx] image_batch = image.unsqueeze(0).to(next(model.parameters()).device) with torch.no_grad(): output = model(image_batch) _, pred_label_idx = torch.max(output, 1) pred_label = pred_label_idx.item() # 反标准化 image_np = image.permute(1, 2, 0).cpu().numpy() image_np = image_np * std.cpu().numpy() + mean.cpu().numpy() image_np = np.clip(image_np, 0, 1) plt.subplot(1, num_samples, i+1) plt.imshow(image_np) plt.title(f"真实: {class_names[true_label]}\n预测: {class_names[pred_label]}") plt.axis('off') plt.tight_layout() plt.savefig('predictions.png') plt.show() # 可视化训练过程 def plot_training_history(train_losses, test_losses, train_accs, test_accs): epochs = range(1, len(train_losses)+1) # 创建1行2列的子图布局 plt.figure(figsize=(18, 6)) # 左子图:损失曲线 plt.subplot(1, 2, 1) plt.plot(epochs, train_losses, 'b-', linewidth=2, label='训练损失') plt.plot(epochs, test_losses, 'r-', linewidth=2, label='验证损失') plt.title('训练与验证损失', fontsize=16) plt.xlabel('轮次', fontsize=12) plt.ylabel('损失', fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.legend(fontsize=12) # 添加每个点的数值标签 for i, (tl, vl) in enumerate(zip(train_losses, test_losses)): if i % 3 == 0 or i == len(train_losses)-1: # 每3个点或最后一个点添加标签 plt.annotate(f'{tl:.4f}', xy=(i+1, tl), xytext=(i+1, tl+0.01), fontsize=8, ha='center') plt.annotate(f'{vl:.4f}', xy=(i+1, vl), xytext=(i+1, vl+0.01), fontsize=8, ha='center') # 右子图:准确率曲线 plt.subplot(1, 2, 2) plt.plot(epochs, train_accs, 'b-', linewidth=2, label='训练准确率') plt.plot(epochs, test_accs, 'r-', linewidth=2, label='验证准确率') plt.title('训练与验证准确率', fontsize=16) plt.xlabel('轮次', fontsize=12) plt.ylabel('准确率 (%)', fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.legend(fontsize=12) # 添加每个点的数值标签 for i, (ta, va) in enumerate(zip(train_accs, test_accs)): if i % 3 == 0 or i == len(train_accs)-1: # 每3个点或最后一个点添加标签 plt.annotate(f'{ta:.2f}%', xy=(i+1, ta), xytext=(i+1, ta+1), fontsize=8, ha='center') plt.annotate(f'{va:.2f}%', xy=(i+1, va), xytext=(i+1, va+1), fontsize=8, ha='center') plt.tight_layout() plt.savefig('training_history.png', dpi=300, bbox_inches='tight') plt.show() # 主函数 def main(): # 调用字体设置函数 set_chinese_font() # 数据目录 data_dir = r'D:\Codes\新' # 确定操作系统,设置合适的num_workers system = platform.system() if system == 'Windows': num_workers = 0 # Windows系统上使用0避免多进程问题 else: num_workers = 2 # 其他系统可以使用多进程加速 # 加载数据集计算均值和标准差 full_dataset = datasets.ImageFolder(root=data_dir, transform=transforms.ToTensor()) train_size = int(0.8 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, _ = random_split(full_dataset, [train_size, test_size]) train_loader_for_stats = DataLoader(train_dataset, batch_size=len(train_dataset), shuffle=False, num_workers=num_workers) data, _ = next(iter(train_loader_for_stats)) mean = data.mean(dim=(0, 2, 3)) std = data.std(dim=(0, 2, 3)) # 增强数据增强以减少过拟合 train_transform = transforms.Compose([ transforms.Resize((32, 32)), # 稍大尺寸以便更多裁剪 transforms.RandomCrop(28, padding=4), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomVerticalFlip(p=0.2), # 增加垂直翻转 transforms.RandomRotation(20), # 增加旋转角度 transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.15), # 增强颜色抖动 transforms.RandomAffine(degrees=0, translate=(0.15, 0.15), scale=(0.85, 1.15)), transforms.RandomGrayscale(p=0.1), # 增加灰度转换 transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), transforms.RandomErasing(p=0.2, scale=(0.02, 0.25)) # 增加随机擦除 ]) test_transform = transforms.Compose([ transforms.Resize((28, 28)), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) # 创建数据集 full_dataset = datasets.ImageFolder(root=data_dir, transform=train_transform) train_size = int(0.8 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = random_split(full_dataset, [train_size, test_size]) test_dataset.dataset.transform = test_transform # 数据加载器 batch_size = 64 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) # 初始化模型与设备 model = ImprovedRMAN(num_classes=9, dropout_rate=0.4) # 适当的dropout率 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) print(f"Using device: {device}") # 损失函数与优化器 - 增加L2正则化 criterion = nn.CrossEntropyLoss() # 增加weight_decay增强正则化 optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4) # 使用更智能的学习率调度器 scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=3) # 训练记录 train_losses = [] train_accuracies = [] test_losses = [] test_accuracies = [] # 训练循环 - 改为20轮 num_epochs = 30 best_accuracy = 0.0 patience = 6 # 增加早停耐心值 early_stopping_counter = 0 # 创建主进度条 main_pbar = tqdm(range(num_epochs), desc="Overall Training", position=0, leave=True) for epoch in main_pbar: model.train() running_loss = 0.0 correct_train = 0 total_train = 0 # 创建训练批次进度条 train_pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} [Training]", leave=False, position=1) for images, labels in train_pbar: images, labels = images.to(device), labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播 optimizer.zero_grad() loss.backward() # 添加梯度裁剪防止梯度爆炸 torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() running_loss += loss.item() # 计算准确率 _, predicted = torch.max(outputs.data, 1) total_train += labels.size(0) correct_train += (predicted == labels).sum().item() # 更新训练进度条信息 current_loss = loss.item() current_acc = 100 * (predicted == labels).sum().item() / labels.size(0) train_pbar.set_postfix(loss=f"{current_loss:.4f}", acc=f"{current_acc:.2f}%") # 关闭训练批次进度条 train_pbar.close() # 计算训练指标 avg_train_loss = running_loss / len(train_loader) train_accuracy = 100 * correct_train / total_train train_losses.append(avg_train_loss) train_accuracies.append(train_accuracy) # 更新主进度条信息 main_pbar.set_postfix( train_loss=f"{avg_train_loss:.4f}", train_acc=f"{train_accuracy:.2f}%" ) # 验证 model.eval() test_loss = 0.0 correct_test = 0 total_test = 0 # 创建验证进度条 test_pbar = tqdm(test_loader, desc=f"Epoch {epoch+1}/{num_epochs} [Validation]", leave=False, position=1) with torch.no_grad(): for images, labels in test_pbar: images, labels = images.to(device), labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total_test += labels.size(0) correct_test += (predicted == labels).sum().item() # 更新验证进度条信息 current_test_acc = 100 * (predicted == labels).sum().item() / labels.size(0) test_pbar.set_postfix(acc=f"{current_test_acc:.2f}%") # 关闭验证进度条 test_pbar.close() avg_test_loss = test_loss / len(test_loader) test_accuracy = 100 * correct_test / total_test test_losses.append(avg_test_loss) test_accuracies.append(test_accuracy) # 更新主进度条信息 main_pbar.set_postfix( train_loss=f"{avg_train_loss:.4f}", train_acc=f"{train_accuracy:.2f}%", test_loss=f"{avg_test_loss:.4f}", test_acc=f"{test_accuracy:.2f}%" ) # 更新学习率(基于验证准确率) scheduler.step(test_accuracy) # 早停机制 if test_accuracy > best_accuracy: best_accuracy = test_accuracy early_stopping_counter = 0 torch.save(model.state_dict(), 'best_improved_rman_model.pth') tqdm.write(f'Epoch [{epoch+1}/{num_epochs}]: New best model saved with accuracy: {best_accuracy:.2f}%') else: early_stopping_counter += 1 if early_stopping_counter >= patience: tqdm.write(f'Epoch [{epoch+1}/{num_epochs}]: Early stopping after {patience} epochs without improvement') break # 关闭主进度条 main_pbar.close() # 加载最佳模型 model.load_state_dict(torch.load('best_improved_rman_model.pth')) model.eval() # 最终评估 correct = 0 total = 0 all_labels = [] all_preds = [] # 创建最终评估进度条 eval_pbar = tqdm(test_loader, desc="Final Evaluation", position=0, leave=True) with torch.no_grad(): for images, labels in eval_pbar: images, labels = images.to(device), labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() all_labels.extend(labels.cpu().numpy()) all_preds.extend(predicted.cpu().numpy()) # 更新评估进度条信息 current_acc = 100 * (predicted == labels).sum().item() / labels.size(0) eval_pbar.set_postfix(acc=f"{current_acc:.2f}%") # 关闭评估进度条 eval_pbar.close() accuracy = 100 * correct / total print(f'Final Test Accuracy: {accuracy:.2f}%') # 执行可视化和保存模型 class_names = full_dataset.classes visualize_predictions(model, test_dataset, mean, std, num_samples=5) plot_training_history(train_losses, test_losses, train_accuracies, test_accuracies) plot_confusion_matrix(all_labels, all_preds, class_names) torch.save(model.state_dict(), 'final_improved_rman_model.pth') print("模型已保存为 'final_improved_rman_model.pth'") if __name__ == '__main__': # 在Windows上使用多进程时需要的保护措施 import multiprocessing multiprocessing.freeze_support() main() 优化此模型,使得测试准确率达到97.5%左右

最新推荐

recommend-type

基于深度强化学习的德州扑克AI算法优化.zip

基于深度强化学习的德州扑克AI算法优化.zip
recommend-type

【scratch2.0少儿编程-游戏原型-动画-项目源码】取款机.zip

资源说明: 1:本资料仅用作交流学习参考,请切勿用于商业用途。更多精品资源请访问 https://blog.csdn.net/ashyyyy/article/details/146464041 2:一套精品实用scratch2.0少儿编程游戏、动画源码资源,无论是入门练手还是项目复用都超实用,省去重复开发时间,让开发少走弯路!
recommend-type

【scratch2.0少儿编程-游戏原型-动画-项目源码】流星雨.zip

资源说明: 1:本资料仅用作交流学习参考,请切勿用于商业用途。更多精品资源请访问 https://blog.csdn.net/ashyyyy/article/details/146464041 2:一套精品实用scratch2.0少儿编程游戏、动画源码资源,无论是入门练手还是项目复用都超实用,省去重复开发时间,让开发少走弯路!
recommend-type

研究Matlab影响下的神经数值可复制性

### Matlab代码影响神经数值可复制性 #### 标题解读 标题为“matlab代码影响-neural-numerical-replicability:神经数值可复制性”,该标题暗示了研究的主题集中在Matlab代码对神经数值可复制性的影响。在神经科学研究中,数值可复制性指的是在不同计算环境下使用相同的算法与数据能够获得一致或相近的计算结果。这对于科学实验的可靠性和结果的可验证性至关重要。 #### 描述解读 描述中提到的“该项目”着重于提供工具来分析不同平台下由于数值不精确性导致的影响。项目以霍奇金-赫克斯利(Hodgkin-Huxley)型神经元组成的简单神经网络为例,这是生物物理神经建模中常见的模型,用于模拟动作电位的产生和传播。 描述中提及的`JCN_2019_v4.0_appendix_Eqs_Parameters.pdf`文件详细描述了仿真模型的参数与方程。这些内容对于理解模型的细节和确保其他研究者复制该研究是必不可少的。 该研究的实现工具选用了C/C++程序语言。这表明了研究的复杂性和对性能的高要求,因为C/C++在科学计算领域内以其高效性和灵活性而广受欢迎。 使用了Runge–Kutta四阶方法(RK4)求解常微分方程(ODE),这是一种广泛应用于求解初值问题的数值方法。RK4方法的精度和稳定性使其成为众多科学计算问题的首选。RK4方法的实现借助了Boost C++库中的`Boost.Numeric.Odeint`模块,这进一步表明项目对数值算法的实现和性能有较高要求。 #### 软件要求 为了能够运行该项目,需要满足一系列软件要求: - C/C++编译器:例如GCC,这是编译C/C++代码的重要工具。 - Boost C++库:一个强大的跨平台C++库,提供了许多标准库之外的组件,尤其是数值计算相关的部分。 - ODEint模块:用于求解常微分方程,是Boost库的一部分,已包含在项目提供的文件中。 #### 项目文件结构 从提供的文件列表中,我们可以推测出项目的文件结构包含以下几个部分: - **项目树源代码目录**:存放项目的主要源代码文件。 - `checkActualPrecision.h`:一个头文件,可能用于检测和评估实际的数值精度。 - `HH_BBT2017_allP.cpp`:源代码文件,包含用于模拟霍奇金-赫克斯利神经元网络的代码。 - `iappDist_allP.cpp` 和 `iappDist_allP.h`:源代码和头文件,可能用于实现某种算法或者数据的分布。 - `Makefile.win`:针对Windows系统的编译脚本文件,用于自动化编译过程。 - `SpikeTrain_allP.cpp` 和 `SpikeTrain_allP.h`:源代码和头文件,可能与动作电位的生成和传播相关。 - **人物目录**:可能包含项目成员的简介、联系方式或其他相关信息。 - **Matlab脚本文件**: - `图1_as.m`、`图2_as.m`、`图2_rp`:这些文件名中的"as"可能表示"assembled",而"rp"可能指"reproduction"。这些脚本文件很可能用于绘制图表、图形,以及对模拟结果进行后处理和复现实验。 #### 开源系统标签 标签“系统开源”指的是该项目作为一个开源项目被开发,意味着其源代码是公开的,任何个人或组织都可以自由获取、修改和重新分发。这对于科学计算来说尤为重要,因为开放代码库可以增进协作,加速科学发现,并确保实验结果的透明度和可验证性。 #### 总结 在理解了文件中提供的信息后,可以认识到本项目聚焦于通过提供准确的数值计算工具,来保证神经科学研究中模型仿真的可复制性。通过选择合适的编程语言和算法,利用开源的库和工具,研究者们可以确保其研究结果的精确性和可靠性。这不仅有助于神经科学领域的深入研究,还为其他需要高精度数值计算的科研领域提供了宝贵的经验和方法。
recommend-type

MySQL数据库索引失效案例分析与解决方案(索引失效大揭秘)

# 摘要 MySQL索引失效是数据库性能优化中的关键问题,直接影响查询效率与系统响应速度。本文系统分析了索引的基本机制与失效原理,包括B+树结构、执行计划解析及查询优化器的工作逻辑,深入探讨了索引失效的典型场景,如不规范SQL写法、复合索引设计不当以及统
recommend-type

TS语言

### TypeScript 简介 TypeScript 是一种由 Microsoft 开发的开源编程语言,它是 JavaScript 的超集,这意味着所有的 JavaScript 代码都是合法的 TypeScript 代码。TypeScript 扩展了 JavaScript 的语法,并通过类型注解提供编译时的静态类型检查,从而使得代码更易于维护、理解和调试。TypeScript 可以在任何操作系统上运行,并且可以编译出纯净、简洁的 JavaScript 代码,这些代码可以在任何浏览器上、Node.js 环境中,或者任何支持 ECMAScript 3(或更高版本)的 JavaScript 引
recommend-type

Leaflet.Graticule插件:创建经纬度网格刻度

标题“Leaflet.Graticule:经纬线网格”指向的是Leaflet.js的一个插件,它用于在地图上生成经纬度网格线,以辅助进行地图定位与参考。从描述中,我们可以提取到几个关键知识点: 1. Leaflet.Graticule插件的使用目的和功能:该插件的主要作用是在基于Leaflet.js库的地图上绘制经纬度网格线。这可以帮助用户在地图上直观地看到经纬度划分,对于地理信息系统(GIS)相关工作尤为重要。 2. 插件的构造函数和参数:`L.graticule(options)`是创建Graticule图层的JavaScript代码片段。其中`options`是一个对象,可以用来设置网格线的显示样式和间隔等属性。这表明了插件的灵活性,允许用户根据自己的需求调整网格线的显示。 3. interval参数的含义:`interval`参数决定了网格线的间隔大小,以度为单位。例如,若设置为20,则每20度间隔显示一条网格线;若设置为10,则每10度显示一条网格线。这一参数对于调节网格线密度至关重要。 4. style参数的作用:`style`参数用于定义网格线的样式。插件提供了自定义线的样式的能力,包括颜色、粗细等,使得开发者可以根据地图的整体风格和个人喜好来定制网格线的外观。 5. 实例化和添加到地图上的例子:提供了两种使用插件的方式。第一种是直接创建一个基本的网格层并将其添加到地图上,这种方式使用了插件的默认设置。第二种是创建一个自定义间隔的网格层,并同样将其添加到地图上。这展示了如何在不同的使用场景下灵活运用插件。 6. JavaScript标签的含义:标题中“JavaScript”这一标签强调了该插件是使用JavaScript语言开发的,它是前端技术栈中重要的部分,特别是在Web开发中扮演着核心角色。 7. 压缩包子文件的文件名称列表“Leaflet.Graticule-master”暗示了插件的项目文件结构。文件名表明,这是一个典型的GitHub仓库的命名方式,其中“master”可能代表主分支。通常,开发者可以在如GitHub这样的代码托管平台上找到该项目的源代码和文档,以便下载、安装和使用。 综上所述,可以得知,Leaflet.Graticule插件是一个专为Leaflet地图库设计的扩展工具,它允许用户添加自定义的经纬度网格线到地图上,以帮助进行地图的可视化分析。开发者可以根据特定需求通过参数化选项来定制网格线的属性,使其适应不同的应用场景。通过学习和使用该插件,可以增强地图的交互性和信息的传递效率。
recommend-type

【MySQL数据库性能提升秘籍】:揭秘性能下降幕后真凶及解决策略

# 摘要 MySQL性能问题在实际应用中普遍存在,但其表象复杂且易引发认知误区。本文系统分析了导致MySQL性能下降的核心原因,涵盖查询语句结构、数据库配置、表结构设计等多个技术层面,并结合性能监控工具与执行计划解析,提供了全面的问题诊断方法。在此基础上,文章深入探讨了索引优化、查询重写、分库分表等高级调优策略,并通过真实案例总结了可行的最佳实践
recommend-type

51小车循迹红外

基于51单片机的红外循迹小车的实现方法,主要涉及硬件连接、传感器模块的使用以及程序设计三个方面。 ### 红外循迹模块的选择与连接 红外循迹模块通常由多个红外发射和接收对管组成,用于检测地面上的黑线。常见的模块有四路红外循迹模块,其工作原理是通过检测红外光的反射强度来判断是否处于黑线上。红外模块的VCC和GND分别连接到51单片机的+5V和GND端,而IN1至IN4则连接到单片机的对应引脚上。红外发射接收器应安装在小车前方下端,并且离地面的距离不宜过远,以确保能够有效检测到黑线[^2]。 ### 硬件电路设计 在硬件设计方面,需要考虑电机驱动、电源管理、以及红外传感器的接口设计。51单片机
recommend-type

AMEF图像去雾技术:Matlab实现与应用

AMEF(Artificial Multi-Exposure Fusion)方法是一种用于图像去雾的技术,其核心思想是将多张曝光不足的图像融合成一张清晰无雾的图片。在讨论这个技术的Matlab实现之前,让我们先了解图像去雾和多重曝光融合的背景知识。 图像去雾技术的目标是恢复在雾中拍摄的图像的清晰度,增强图像的对比度和颜色饱和度,使得原本因雾气影响而模糊的图像变得清晰。这种技术在自动驾驶、无人机导航、视频监控、卫星图像处理等领域有着重要的应用。 多重曝光技术源自摄影领域,通过拍摄同一场景的多张照片,再将这些照片通过特定算法融合,获得一张综合了多张照片信息的图像。多重曝光融合技术在提高图像质量方面发挥着重要作用,例如增加图片的动态范围,提升细节和亮度,消除噪点等。 在介绍的AMEF去雾方法中,该技术被应用于通过人工创建的多重曝光图像进行融合,以产生清晰的无雾图像。由于单一图像在光照不均匀或天气条件不佳的情况下可能会产生图像质量低下的问题,因此使用多重曝光融合可以有效地解决这些问题。 在Matlab代码实现方面,AMEF的Matlab实现包括了一个名为amef_demo.m的演示脚本。用户可以通过修改该脚本中的图像名称来处理他们自己的图像。在该代码中,clip_range是一个重要的参数,它决定了在去雾处理过程中,对于图像像素亮度值的裁剪范围。在大多数实验中,该参数被设定为c=0.010,但用户也可以根据自己的需求进行调整。较大的clip_range值会尝试保留更多的图像细节,但同时也可能引入更多噪声,因此需要根据图像的具体情况做出适当选择。 AMEF方法的理论基础和实验过程均来自于Adrian Galdran在2018年发表于《信号处理》期刊的文章,题为“Image Dehazing by Artificial Multi-Exposure Image Fusion”。同时,该Matlab代码的融合部分的理论基础则来自于2007年Pacific Graphics会议记录中由Tom Mertens, Jan Kautz和Frank Van Reeth提出的工作,题目为“Exposure Fusion”。因此,如果读者在实际应用中使用了这段代码,适当的引用这些工作是必要的学术礼仪。 此外,标签“系统开源”表明了该项目遵循开源精神,允许研究者、开发者及用户自由地访问、使用、修改和共享源代码。这一特点使得AMEF方法具有广泛的可访问性和可扩展性,鼓励了更广泛的研究和应用。 从压缩包子文件的文件名称列表中,我们可以看到AMEF去雾方法的Matlab实现的项目名为“amef_dehazing-master”。这表明了这是一个有主分支的项目,其主分支被标识为“master”,这通常意味着它是项目维护者认可的稳定版本,也是用户在使用时应该选择的版本。 总的来说,AMEF去雾方法及其Matlab实现为图像处理领域提供了快速且有效的解决方案,能够在图像被雾气影响时恢复出高质量的清晰图像,这对于相关领域的研究和应用具有重要的意义。