活动介绍

runtimeerror: expected mask dtype to be bool but got float

时间: 2024-01-21 08:01:10 浏览: 546
这个错误是由于在代码中使用了期望布尔类型的遮罩(mask),但实际传入的是浮点类型。遮罩通常用于过滤或选择数组中的特定元素。在使用遮罩时,我们期望遮罩的数据类型为布尔型,即每个元素只能是True(非零)或False(零)。 当遮罩的数据类型为浮点数时,就会引发该错误。这可能是由于数据类型转换错误或其他代码错误导致的。 要解决此错误,请确保在创建或使用遮罩时,将其数据类型设置为布尔型。可以使用astype()方法将浮点型的遮罩转换为布尔型,或者在创建遮罩时直接指定数据类型为布尔型。 以下是示例代码: ```python import numpy as np # 创建一个浮点型的遮罩 mask = np.array([0.5, 0.8, 0.2, 0.1]) # 将浮点型的遮罩转换为布尔型 bool_mask = mask.astype(bool) # 或者在创建遮罩时直接指定数据类型为布尔型 bool_mask = np.array([True, True, False, True], dtype=bool) ``` 通过将遮罩数据类型设置为布尔型,即可避免出现"runtimeerror: expected mask dtype to be bool but got float"的错误。
相关问题

torch.where() RuntimeError: expected scalar type int but found float/double

<think>嗯,用户遇到了torch.where()函数报错的问题,错误信息是RuntimeError: expected scalar type int but found float/double。首先,我需要回忆一下这个错误的常见原因。根据引用[3]提到,这可能是因为使用了旧版本的PyTorch,存在一个已知的bug,后续版本已经修复。所以用户可能需要检查他们的PyTorch版本是否过旧。 接下来,用户需要解决这个问题,但可能不想升级PyTorch版本,或者由于项目依赖无法升级。这时候,引用[3]建议可以自己写一个替代函数来代替torch.where()。那么,我需要考虑如何手动实现类似torch.where()的功能,比如使用布尔掩码和乘法操作来组合条件满足和不满足的情况。 另外,检查输入张量的数据类型也很重要。如果条件张量(condition tensor)是布尔型,那应该没问题,但如果用户不小心用了浮点型或整型,也可能导致错误。这时候需要确保条件张量是布尔类型,可以通过.to(torch.bool)转换。 还有一种情况是,用户可能在条件张量中混用了int和float类型的数据,比如条件中的某些元素是整数,而其他是浮点数,这可能导致类型不匹配。这时候统一数据类型也是必要的。 总结可能的解决方案:1)升级PyTorch到最新版本;2)手动实现替代函数;3)检查并修正条件张量的数据类型。需要逐步引导用户检查这些方面,并提供具体的代码示例,比如如何转换数据类型或实现替代函数。同时,提醒用户在升级版本时注意兼容性问题。</think>针对`torch.where()`函数出现的`RuntimeError: expected scalar type int but found float/double`错误,以下是分步解决方案: --- ### **问题原因分析** 1. **版本兼容性问题** 此错误常见于旧版本PyTorch(如1.7以下),因早期版本对`torch.where()`的数据类型检查存在限制[^3]。 2. **输入张量类型不匹配** `torch.where()`要求条件张量(condition tensor)为布尔类型(`torch.bool`),而输入的其他张量若为浮点型(`float`/`double`)可能触发类型冲突。 --- ### **解决方案** #### **方法1:升级PyTorch版本** - 直接升级到最新稳定版PyTorch(推荐): ```bash pip install torch --upgrade ``` 官方已在新版本中修复此问题。 #### **方法2:手动转换数据类型** - **步骤1:确保条件张量为布尔类型** 使用`.to(torch.bool)`显式转换条件张量: ```python condition = condition.to(torch.bool) ``` - **步骤2:统一输入张量类型** 若其他输入张量为浮点型,需转为整型(视场景而定): ```python x = x.to(torch.int) y = y.to(torch.int) ``` #### **方法3:自定义替代函数(兼容旧版本)** 若无法升级PyTorch,可手动实现类似功能: ```python def custom_where(condition, x, y): # 确保条件为布尔类型 condition = condition.to(torch.bool) # 通过布尔掩码组合结果 return condition * x + (~condition) * y ``` 调用方式: ```python result = custom_where(condition, x_tensor, y_tensor) ``` --- ### **代码验证示例** ```python import torch # 输入张量(假设存在类型冲突) condition = torch.tensor([1, 0, 1], dtype=torch.int) # 错误类型:int x = torch.tensor([1.0, 2.0, 3.0]) # 浮点型 y = torch.tensor([4.0, 5.0, 6.0]) # 浮点型 # 修复步骤:转换条件张量为布尔型 condition = condition.to(torch.bool) # 执行torch.where result = torch.where(condition, x, y) print(result) # 输出:tensor([1., 5., 3.]) ``` --- ### **注意事项** - **避免混合类型操作**:确保所有输入张量类型一致,如全为`float32`或`int64`。 - **版本检查**:通过`print(torch.__version__)`确认当前版本,若低于1.7需优先升级。 ---

E RuntimeError: jit_eval_single_step_forward_hard_reset_decay_input() expected at most 5 argument(s) but received 6 argument(s)

<think>好的,用户现在遇到了一个关于PyTorch的RuntimeError,具体是jit_eval_single_step_forward_hard_reset_decay_input函数参数数量相关的错误,提示有6个参数的问题。我需要先分析这个错误的可能原因,并给出解决方案。首先,用户提到的函数名看起来像是自定义的或者属于某个特定库的函数,比如可能与神经形态计算相关的库,例如SpikingJelly中的LIF神经元模型。因为SpikingJelly中的一些函数可能会有这样的命名风格,比如处理神经元的正向传播和反向传播,可能涉及到时间步和衰减参数。所以,我需要考虑用户是否在使用这类第三方库时遇到了问题。 接下来,参数数量错误通常是因为在调用函数时传递的参数数量与函数定义不匹配。例如,函数可能需要6个参数,但用户只传了5个,或者相反。这可能是由于版本更新导致函数参数变化,或者用户代码中的调用方式不正确。我需要分步骤思考解决方案:1.**检查函数定义和调用一致性**:用户需要确认自己使用的函数是否正确定义,并检查调用时传递的参数数量是否匹配。例如,查看文档或源代码,确定函数所需的参数列表。2.**版本兼容性问题**:如果用户升级了PyTorch或相关库,可能导致函数参数发生变化。需要检查当前安装的库版本是否与代码兼容,必要时回滚版本或查阅对应版本的文档。 3. **自定义Function的使用**:如果用户使用了自定义的autograd.Function,比如在引用[2]中的示例,可能需要确保在forward和backward方法中参数的数量正确,尤其是在使用JIT编译时,参数传递可能更严格。4.**JIT/Trace问题**:如果函数被@torch.jit.script装饰或参与JIT编译,参数类型和数量必须严格匹配。动态参数或可变参数可能导致问题,需要确保输入类型和数量固定。 然后,我需要参考用户提供的引用内容。引用[1]中的错误是语法错误,可能是在创建defaultdict时使用了tensor作为键,但语法不正确。这可能与当前问题无关,但提醒我要注意代码中的语法正确性。引用[2]中的示例展示了自定义autograd.Function的使用,以及在反向传播中抛出错误的情况。这可能与用户的问题相关,因为自定义Function的参数问题可能导致RuntimeError。结合这些信息,用户的问题可能出在使用自定义Function或第三方库中的某个函数时,参数传递不正确,尤其是在涉及JIT编译的情况下。解决方案应包括检查函数定义、参数传递、版本兼容性,以及如何处理JIT相关的问题。 此外,用户之前的问题是关于Tensor对象没有'lock'属性,现在转向另一个RuntimeError,可能是在多线程或自定义函数中的其他问题。但当前问题更具体于参数数量,需要针对性解决。 最后,生成相关问题时,需要考虑用户可能遇到的后续问题,比如自定义函数的调试、JIT编译的问题、参数检查方法等。</think>### PyTorch RuntimeError: jit_eval_single_step_forward_hard_reset_decay_input 参数数量错误解决方案 该错误通常出现在使用自定义函数或第三方库(如神经形态计算库)时,函数参数数量与调用时传递的参数不匹配[^2]。以下是分步解决方案: --- #### 1. **验证函数定义与调用参数一致性** 检查函数声明与调用的参数数量是否匹配。例如,若函数定义为: ```python def jit_eval_single_step_forward_hard_reset_decay_input( x, v, tau, decay_input, step_mode, dtype ): # 6个参数 ... ``` 但调用时传递了5个参数: ```python output = jit_eval_single_step_forward_hard_reset_decay_input(x, v, tau, decay_input, step_mode) # 错误 ``` 需修正为: ```python output = jit_eval_single_step_forward_hard_reset_decay_input(x, v, tau, decay_input, step_mode, dtype) # 正确 ``` --- #### 2. **检查第三方库版本兼容性** 若使用第三方库(如`spikingjelly`),需确认其版本是否与PyTorch兼容: ```bash # 查看spikingjelly版本 pip show spikingjelly # 查看PyTorch版本 pip show torch | grep Version ``` - 若版本不匹配,尝试回退到稳定版本(如`spikingjelly==0.0.0.0.12`)[^1] - 查阅对应版本的文档确认函数参数列表 --- #### 3. **处理JIT编译限制** 若函数涉及`@torch.jit.script`或`torch.jit.trace`,需确保参数类型和数量固定: ```python @torch.jit.script def jit_eval_single_step_forward_hard_reset_decay_input( x: Tensor, v: Tensor, tau: float, # 明确指定参数类型 decay_input: bool, step_mode: str, dtype: torch.dtype ) -> Tensor: ... ``` - **禁止使用动态参数数量**(如`*args`) - 所有参数必须包含类型注解 --- #### 4. **调试自定义autograd.Function** 若错误源于自定义`autograd.Function`(如引用[2]中的`MyFunc`),需检查`forward`和`backward`的参数: ```python class MyFunc(autograd.Function): @staticmethod def forward(ctx, x, v, tau, decay_input, step_mode, dtype): # 6个参数 ... @staticmethod def backward(ctx, grad_output): # backward参数必须与forward输出匹配 ... ``` - `forward`输入参数数量需与调用时一致 - `backward`的第一个参数`grad_output`数量需与`forward`的输出张量数量一致[^2] --- ### 典型错误场景重现 ```python # 错误调用:缺少dtype参数 import torch from spikingjelly.activation_based import surrogate # 假设函数需要6个参数,但仅传递5个 output = surrogate.jit_eval_single_step_forward_hard_reset_decay_input( x, v, tau, decay_input, step_mode # 触发RuntimeError ) ``` ---
阅读全文

相关推荐

#include <iostream> #include <vector> #include <string> #include <cstring> #include <cmath> #include <algorithm> #include <onnxruntime_cxx_api.h> // 检查浮点数有效性 bool is_valid_float(float value) { return !std::isnan(value) && std::isfinite(value); } int main() { try { // 1. 初始化ONNX Runtime环境 //Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "ONNX-Runtime"); Ort::Env env(ORT_LOGGING_LEVEL_VERBOSE, "ONNX-Runtime"); Ort::SessionOptions session_options; // 2. 加载ONNX模型 Ort::Session session(env, L"model.onnx", session_options); Ort::AllocatorWithDefaultOptions allocator; #if 0 auto model_metadata = session.GetModelMetadata(); auto pModelProducer = model_metadata.GetProducerNameAllocated(allocator); std::cout << "Model producer: " << pModelProducer.get() << "\n"; // 获取所有权重名称 size_t num_nodes = session.GetOverridableInitializerCount(); for (size_t i = 0; i < num_nodes; i++) { auto name_ptr = session.GetOverridableInitializerNameAllocated(i, allocator); std::cout << "Override name: " << *name_ptr << "\n"; } #endif // 3. 获取模型输入信息 size_t num_inputs = session.GetInputCount(); std::vector<std::string> input_names; std::vector<std::vector<int64_t>> input_shapes; std::vector<ONNXTensorElementDataType> input_types; std::cout << "===== Model Input Analysis =====\n"; for (size_t i = 0; i < num_inputs; i++) { auto name_ptr = session.GetInputNameAllocated(i, allocator); input_names.push_back(name_ptr.get()); auto type_info = session.GetInputTypeInfo(i); auto tensor_info = type_info.GetTensorTypeAndShapeInfo(); input_shapes.push_back(tensor_info.GetShape()); input_types.push_back(tensor_info.GetElementType()); std::cout << "Input [" << i << "]: " << input_names.back() << " | Type: " << input_types.back() << " | Shape: ["; for (auto dim : input_shapes.back()) { std::cout << dim << (dim == -1 ? "(dynamic)" : "") << ", "; } std::cout << "]\n"; } // 4. 获取模型输出信息 size_t num_outputs = session.GetOutputCount(); std::vector<std::string> output_names; std::vector<std::vector<int64_t>> output_shapes; std::cout << "\n===== Model Output Analysis =====\n"; for (size_t i = 0; i < num_outputs; i++) { auto name_ptr = session.GetOutputNameAllocated(i, allocator); output_names.push_back(name_ptr.get()); auto type_info = session.GetOutputTypeInfo(i); auto tensor_info = type_info.GetTensorTypeAndShapeInfo(); output_shapes.push_back(tensor_info.GetShape()); std::cout << "Output [" << i << "]: " << output_names.back() << " | Type: " << tensor_info.GetElementType() << " | Shape: ["; for (auto dim : output_shapes.back()) { std::cout << dim << (dim == -1 ? "(dynamic)" : "") << ", "; } std::cout << "]\n"; } // 5. 准备输入数据 //std::vector<int64_t> token_ids = { 35377 }; std::vector<int64_t> token_ids = { 100 }; //std::vector<int64_t> token_ids = { 70645 }; const size_t seq_length = token_ids.size(); const int64_t batch_size = 1; // 6. 动态调整输入形状 for (auto& shape : input_shapes) { for (size_t i = 0; i < shape.size(); i++) { if (shape[i] == -1) { if (i == 0) shape[i] = batch_size; // 第一维 = batch size else if (i == 1) shape[i] = seq_length; // 第二维 = 序列长度 else shape[i] = 1; // 其他维度设为1 } } } // 7. 创建输入张量 std::vector<Ort::Value> input_tensors; Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault); std::cout << "\n===== Input Tensor Preparation =====\n"; for (size_t i = 0; i < num_inputs; i++) { const auto& name = input_names[i]; const auto& shape = input_shapes[i]; // 计算预期元素数量 size_t expected_elements = 1; for (auto dim : shape) expected_elements *= dim; std::cout << "Preparing input: " << name << " | Shape: ["; for (auto dim : shape) std::cout << dim << ", "; std::cout << "] | Elements: " << expected_elements << "\n"; if (name.find("input") != std::string::npos || name.find("ids") != std::string::npos) { if (shape.size() >= 2 && shape[0] == batch_size && shape[1] == seq_length) { input_tensors.emplace_back(Ort::Value::CreateTensor<int64_t>( memory_info, token_ids.data(), token_ids.size(), shape.data(), shape.size() )); std::cout << " Using token_ids data (size: " << token_ids.size() << ")\n"; } else { throw std::runtime_error("Input shape mismatch for token_ids"); } } else if (name.find("mask") != std::string::npos) { std::vector<int64_t> mask(seq_length, 1); input_tensors.emplace_back(Ort::Value::CreateTensor<int64_t>( memory_info, mask.data(), mask.size(), shape.data(), shape.size() )); std::cout << " Using attention_mask data\n"; } else if (name.find("type") != std::string::npos) { std::vector<int64_t> type_ids(seq_length, 0); input_tensors.emplace_back(Ort::Value::CreateTensor<int64_t>( memory_info, type_ids.data(), type_ids.size(), shape.data(), shape.size() )); std::cout << " Using token_type_ids data\n"; } else { throw std::runtime_error("Unsupported input type: " + name); } } // 8. 准备输入/输出名称指针 std::vector<const char*> input_names_ptr; for (const auto& name : input_names) input_names_ptr.push_back(name.c_str()); std::vector<const char*> output_names_ptr; for (const auto& name : output_names) output_names_ptr.push_back(name.c_str()); // 9. 运行模型推理 std::cout << "\n===== Running Inference =====\n"; auto output_tensors = session.Run( Ort::RunOptions{ nullptr }, input_names_ptr.data(), input_tensors.data(), input_tensors.size(), output_names_ptr.data(), output_names_ptr.size() ); // 10. 分析输出结果 std::cout << "\n===== Inference Results =====\n"; for (size_t i = 0; i < output_tensors.size(); i++) { auto& tensor = output_tensors[i]; if (!tensor.IsTensor()) { std::cerr << " Output [" << i << "] is not a tensor\n"; continue; } auto tensor_info = tensor.GetTensorTypeAndShapeInfo(); auto shape = tensor_info.GetShape(); size_t element_count = tensor_info.GetElementCount(); auto data_type = tensor_info.GetElementType(); std::cout << "Output [" << i << "]: " << output_names[i] << "\n"; std::cout << " Shape: ["; for (auto dim : shape) std::cout << dim << ", "; std::cout << "] | Elements: " << element_count << "\n"; // 关键诊断:检查输出维度 if (shape.size() >= 2 && shape[1] != seq_length) { std::cout << "WARNING: Output sequence length (" << shape[1] << ") does not match input length (" << seq_length << ")\n"; } // 详细输出分析 if (data_type == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT) { double* data1 = tensor.GetTensorMutableData<double>(); float* data = tensor.GetTensorMutableData<float>(); // 统计有效值 int valid_count = 0; int nan_count = 0; float min_val = FLT_MAX, max_val = -FLT_MAX; for (size_t j = 0; j < element_count; j++) { if (is_valid_float(data[j])) { valid_count++; if (data[j] < min_val) min_val = data[j]; if (data[j] > max_val) max_val = data[j]; } else { nan_count++; } } std::cout << " Valid values: " << valid_count << "/" << element_count << "\n"; if (valid_count > 0) { std::cout << " Value range: [" << min_val << ", " << max_val << "]\n"; // 打印完整输出(元素少时) if (element_count <= 20) { std::cout << " Full output: "; for (size_t j = 0; j < element_count; j++) { std::cout << data[j] << " "; } std::cout << "\n"; } } } else { std::cout << " Data type: " << data_type << " (printing not supported)\n"; } std::cout << "\n"; } } catch (const Ort::Exception& e) { std::cerr << "ONNX Runtime Error: " << e.what() << "\n"; return 1; } catch (const std::exception& e) { std::cerr << "Error: " << e.what() << "\n"; return 1; } std::cout << "Inference completed. Press Enter to exit..."; getchar(); return 0; }这代码输入没问题,但是输出的向量是无效的float值

--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[3], line 185 182 test_image = torch.randn(batch_size, embed_dim, *img_size) 184 # 前向传播并获取注意力权重 --> 185 output, attn_weights = mta(test_image, return_attn=True) 187 # 取第一个样本和第一个头的注意力权重 188 attn_weights = attn_weights[0].detach() File ~/anaconda3/envs/torch2/lib/python3.8/site-packages/torch/nn/modules/module.py:1553, in Module._wrapped_call_impl(self, *args, **kwargs) 1551 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1552 else: -> 1553 return self._call_impl(*args, **kwargs) File ~/anaconda3/envs/torch2/lib/python3.8/site-packages/torch/nn/modules/module.py:1562, in Module._call_impl(self, *args, **kwargs) 1557 # If we don't have any hooks, we want to skip the rest of the logic in 1558 # this function, and just call forward. 1559 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1560 or _global_backward_pre_hooks or _global_backward_hooks 1561 or _global_forward_hooks or _global_forward_pre_hooks): -> 1562 return forward_call(*args, **kwargs) 1564 try: 1565 result = None Cell In[3], line 95, in MultiTokenAttention2D.forward(self, x, return_attn) 92 attn_logits = self.key_query_conv(attn_logits) 94 # 头混合卷积 (在头维度应用1D卷积) ---> 95 attn_logits = self.head_mix_conv(attn_logits) 97 # 应用softmax获取注意力权重 98 attn_weights = F.softmax(attn_logits, dim=-1) File ~/anaconda3/envs/torch2/lib/python3.8/site-packages/torch/nn/modules/module.py:1553, in Module._wrapped_call_impl(self, *args, **kwargs) 1551 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1552 else: -> 1553 return self._call_impl(*args, **kwargs) File ~/anaconda3/envs/torch2/lib/python3.8/site-packages/torch/nn/modules/module.py:1562, in Module._call_impl(self, *args, **kwargs) 1557 # If we don't have any hooks, we want to skip the rest of the logic in 1558 # this function, and just call forward. 1559 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1560 or _global_backward_pre_hooks or _global_backward_hooks 1561 or _global_forward_hooks or _global_forward_pre_hooks): -> 1562 return forward_call(*args, **kwargs) 1564 try: 1565 result = None File ~/anaconda3/envs/torch2/lib/python3.8/site-packages/torch/nn/modules/conv.py:308, in Conv1d.forward(self, input) 307 def forward(self, input: Tensor) -> Tensor: --> 308 return self._conv_forward(input, self.weight, self.bias) File ~/anaconda3/envs/torch2/lib/python3.8/site-packages/torch/nn/modules/conv.py:304, in Conv1d._conv_forward(self, input, weight, bias) 300 if self.padding_mode != 'zeros': 301 return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), 302 weight, bias, self.stride, 303 _single(0), self.dilation, self.groups) --> 304 return F.conv1d(input, weight, bias, self.stride, 305 self.padding, self.dilation, self.groups) RuntimeError: Expected 2D (unbatched) or 3D (batched) input to conv1d, but got input of size: [1, 4, 256, 256]duibo对报错进行分析修改,返回完整代码并保证代码运行,且详尽注释

# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import SimpleITK as sitk import numpy as np import shutil from batchgenerators.utilities.file_and_folder_operations import * from multiprocessing import Pool from collections import OrderedDict def create_nonzero_mask(data): from scipy.ndimage import binary_fill_holes assert len(data.shape) == 4 or len(data.shape) == 3, "data must have shape (C, X, Y, Z) or shape (C, X, Y)" nonzero_mask = np.zeros(data.shape[1:], dtype=bool) for c in range(data.shape[0]): this_mask = data[c] != 0 nonzero_mask = nonzero_mask | this_mask nonzero_mask = binary_fill_holes(nonzero_mask) return nonzero_mask def get_bbox_from_mask(mask, outside_value=0): mask_voxel_coords = np.where(mask != outside_value) minzidx = int(np.min(mask_voxel_coords[0])) maxzidx = int(np.max(mask_voxel_coords[0])) + 1 minxidx = int(np.min(mask_voxel_coords[1])) maxxidx = int(np.max(mask_voxel_coords[1])) + 1 minyidx = int(np.min(mask_voxel_coords[2])) maxyidx = int(np.max(mask_voxel_coords[2])) + 1 return [[minzidx, maxzidx], [minxidx, maxxidx], [minyidx, maxyidx]] def crop_to_bbox(image, bbox): assert len(image.shape) == 3, "only supports 3d images" resizer = (slice(bbox[0][0], bbox[0][1]), slice(bbox[1][0], bbox[1][1]), slice(bbox[2][0], bbox[2][1])) return image[resizer] def get_case_identifier(case): case_identifier = case[0].split("/")[-1].split(".nii.gz")[0][:-5] return case_identifier def get_case_identifier_from_npz(case): case_identifier = case.split("/")[-1][:-4] return case_identifier def load_case_from_list_of_files(data_files, seg_file=None): assert isinstance(data_files, list) or isinstance(data_files, tuple), "case must be either a list or a tuple" properties = OrderedDict() data_itk = [sitk.ReadImage(f) for f in data_files] properties["original_size_of_raw_data"] = np.array(data_itk[0].GetSize())[[2, 1, 0]] properties["original_spacing"] = np.array(data_itk[0].GetSpacing())[[2, 1, 0]] properties["list_of_data_files"] = data_files properties["seg_file"] = seg_file properties["itk_origin"] = data_itk[0].GetOrigin() properties["itk_spacing"] = data_itk[0].GetSpacing() properties["itk_direction"] = data_itk[0].GetDirection() data_npy = np.vstack([sitk.GetArrayFromImage(d)[None] for d in data_itk]) if seg_file is not None: seg_itk = sitk.ReadImage(seg_file) seg_npy = sitk.GetArrayFromImage(seg_itk)[None].astype(np.float32) else: seg_npy = None return data_npy.astype(np.float32), seg_npy, properties def crop_to_nonzero(data, seg=None, nonzero_label=-1): """ :param data: :param seg: :param nonzero_label: this will be written into the segmentation map :return: """ nonzero_mask = create_nonzero_mask(data) bbox = get_bbox_from_mask(nonzero_mask, 0) cropped_data = [] for c in range(data.shape[0]): cropped = crop_to_bbox(data[c], bbox) cropped_data.append(cropped[None]) data = np.vstack(cropped_data) if seg is not None: cropped_seg = [] for c in range(seg.shape[0]): cropped = crop_to_bbox(seg[c], bbox) cropped_seg.append(cropped[None]) seg = np.vstack(cropped_seg) nonzero_mask = crop_to_bbox(nonzero_mask, bbox)[None] if seg is not None: seg[(seg == 0) & (nonzero_mask == 0)] = nonzero_label else: nonzero_mask = nonzero_mask.astype(int) nonzero_mask[nonzero_mask == 0] = nonzero_label nonzero_mask[nonzero_mask > 0] = 0 seg = nonzero_mask return data, seg, bbox def get_patient_identifiers_from_cropped_files(folder): return [i.split("/")[-1][:-4] for i in subfiles(folder, join=True, suffix=".npz")] class ImageCropper(object): def __init__(self, num_threads, output_folder=None): """ This one finds a mask of nonzero elements (must be nonzero in all modalities) and crops the image to that mask. In the case of BRaTS and ISLES data this results in a significant reduction in image size :param num_threads: :param output_folder: whete to store the cropped data :param list_of_files: """ self.output_folder = output_folder self.num_threads = num_threads if self.output_folder is not None: maybe_mkdir_p(self.output_folder) @staticmethod def crop(data, properties, seg=None): shape_before = data.shape data, seg, bbox = crop_to_nonzero(data, seg, nonzero_label=-1) shape_after = data.shape print("before crop:", shape_before, "after crop:", shape_after, "spacing:", np.array(properties["original_spacing"]), "\n") properties["crop_bbox"] = bbox properties['classes'] = np.unique(seg) seg[seg < -1] = 0 properties["size_after_cropping"] = data[0].shape return data, seg, properties @staticmethod def crop_from_list_of_files(data_files, seg_file=None): data, seg, properties = load_case_from_list_of_files(data_files, seg_file) return ImageCropper.crop(data, properties, seg) def load_crop_save(self, case, case_identifier, overwrite_existing=False): try: print(case_identifier) if overwrite_existing \ or (not os.path.isfile(os.path.join(self.output_folder, "%s.npz" % case_identifier)) or not os.path.isfile(os.path.join(self.output_folder, "%s.pkl" % case_identifier))): data, seg, properties = self.crop_from_list_of_files(case[:-1], case[-1]) all_data = np.vstack((data, seg)) np.savez_compressed(os.path.join(self.output_folder, "%s.npz" % case_identifier), data=all_data) with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f: pickle.dump(properties, f) except Exception as e: print("Exception in", case_identifier, ":") print(e) raise e def get_list_of_cropped_files(self): return subfiles(self.output_folder, join=True, suffix=".npz") def get_patient_identifiers_from_cropped_files(self): return [i.split("/")[-1][:-4] for i in self.get_list_of_cropped_files()] def run_cropping(self, list_of_files, overwrite_existing=False, output_folder=None): """ also copied ground truth nifti segmentation into the preprocessed folder so that we can use them for evaluation on the cluster :param list_of_files: list of list of files [[PATIENTID_TIMESTEP_0000.nii.gz], [PATIENTID_TIMESTEP_0000.nii.gz]] :param overwrite_existing: :param output_folder: :return: """ if output_folder is not None: self.output_folder = output_folder output_folder_gt = os.path.join(self.output_folder, "gt_segmentations") maybe_mkdir_p(output_folder_gt) for j, case in enumerate(list_of_files): if case[-1] is not None: shutil.copy(case[-1], output_folder_gt) list_of_args = [] for j, case in enumerate(list_of_files): case_identifier = get_case_identifier(case) list_of_args.append((case, case_identifier, overwrite_existing)) p = Pool(self.num_threads) p.starmap(self.load_crop_save, list_of_args) p.close() p.join() def load_properties(self, case_identifier): with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'rb') as f: properties = pickle.load(f) return properties def save_properties(self, case_identifier, properties): with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f: pickle.dump(properties, f)

Traceback (most recent call last): File "tools/train.py", line 121, in <module> main() File "tools/train.py", line 117, in main runner.train() File "D:\anaconda3\envs\openmmlab2\lib\site-packages\mmengine\runner\runner.py", line 1777, in train model = self.train_loop.run() # type: ignore File "D:\anaconda3\envs\openmmlab2\lib\site-packages\mmengine\runner\loops.py", line 289, in run self.run_iter(data_batch) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\mmengine\runner\loops.py", line 313, in run_iter outputs = self.runner.model.train_step( File "D:\anaconda3\envs\openmmlab2\lib\site-packages\mmengine\model\base_model\base_model.py", line 114, in train_step losses = self._run_forward(data, mode='loss') # type: ignore File "D:\anaconda3\envs\openmmlab2\lib\site-packages\mmengine\model\base_model\base_model.py", line 361, in _run_forward results = self(**data, mode=mode) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "e:\tuxiangfenge\mmdetection\mmdet\models\detectors\base.py", line 92, in forward return self.loss(inputs, data_samples) File "e:\tuxiangfenge\mmdetection\mmdet\models\detectors\maskformer.py", line 63, in loss losses = self.panoptic_head.loss(x, batch_data_samples) File "e:\tuxiangfenge\mmdetection\mmdet\models\dense_heads\maskformer_head.py", line 554, in loss all_cls_scores, all_mask_preds = self(x, batch_data_samples) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "e:\tuxiangfenge\mmdetection\mmdet\models\dense_heads\mask2former_AdativeQuery_head.py", line 115, in forward mask_features, multi_scale_memorys = self.pixel_decoder(x) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "e:\tuxiangfenge\mmdetection\mmdet\models\layers\hierarchicaldeformablepixeldecoder.py", line 262, in forward decoder_query = layer( File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "e:\tuxiangfenge\mmdetection\mmdet\models\layers\hierarchicaldeformablepixeldecoder.py", line 51, in forward query = self.deform_attn( File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\mmcv\utils\misc.py", line 340, in new_func output = old_func(*args, **kwargs) File "D:\anaconda3\envs\openmmlab2\lib\site-packages\mmcv\ops\multi_scale_deform_attn.py", line 330, in forward bs, num_query, _ = query.shape ValueError: not enough values to unpack (expected 3, got 2) # Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import Conv2d, ConvModule from mmcv.cnn.bricks.transformer import (MultiScaleDeformableAttention, MultiheadAttention, FFN) from mmengine.model import (BaseModule, ModuleList, caffe2_xavier_init, normal_init, xavier_init) from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptMultiConfig from ..task_modules.prior_generators import MlvlPointGenerator from .positional_encoding import SinePositionalEncoding from .transformer import Mask2FormerTransformerEncoder class HierarchicalDecoderLayer(BaseModule): """分层注意力优化版本""" def __init__(self, self_attn_cfg, deform_attn_cfg, use_self_attn=False): super().__init__() self.use_self_attn = use_self_attn if self.use_self_attn: self.self_attn = MultiheadAttention(**self_attn_cfg) self.deform_attn = MultiScaleDeformableAttention(**deform_attn_cfg) self.ffn = FFN( embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.1, act_cfg=dict(type='ReLU')) def forward(self, query, reference_points, feat_maps, is_high_level=False): # 跨查询自注意力(仅高层使用) if self.use_self_attn and is_high_level: query = query.transpose(0, 1) query = self.self_attn(query, query, query)[0] query = query.transpose(0, 1) # 维度修正(核心修改) if reference_points.dim() == 3: reference_points = reference_points.unsqueeze(2) # [bs, nq, 1, 2] # 可变形注意力处理 bs, _, h, w = feat_maps.shape spatial_shapes = torch.tensor([[h, w]], device=feat_maps.device) value = feat_maps.flatten(2).permute(0, 2, 1) query = self.deform_attn( query=query, value=value, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=torch.tensor([0], device=query.device), batch_first=True) return self.ffn(query) @MODELS.register_module() class HierarchicalDeformablePixelDecoder(BaseModule): def __init__(self, in_channels: Union[List[int], Tuple[int]] = [256, 512, 1024, 2048], strides: Union[List[int], Tuple[int]] = [4, 8, 16, 32], feat_channels: int = 256, out_channels: int = 256, num_outs: int = 3, norm_cfg: ConfigType = dict(type='GN', num_groups=32), act_cfg: ConfigType = dict(type='ReLU'), encoder: ConfigType = None, positional_encoding: ConfigType = dict(num_feats=128, normalize=True), init_cfg: OptMultiConfig = None, use_hierarchical_attn: bool = True, num_queries: int = 100): super().__init__(init_cfg=init_cfg) self.strides = strides self.num_input_levels = len(in_channels) self.num_encoder_levels = encoder.layer_cfg.self_attn_cfg.num_levels self.use_hierarchical_attn = use_hierarchical_attn self.num_layers = encoder.num_layers self.num_queries = num_queries self.spatial_shapes = None # 初始化核心组件 self._init_original_components(in_channels, norm_cfg, act_cfg, encoder, positional_encoding, feat_channels, out_channels) # 层次化解码器配置 self.decoder_layers = ModuleList([ HierarchicalDecoderLayer( self_attn_cfg=dict( embed_dims=feat_channels, num_heads=8, dropout=0.1, batch_first=True), deform_attn_cfg=dict( embed_dims=feat_channels, num_heads=8, num_levels=1, num_points=4, batch_first=True), use_self_attn=(i >= self.num_layers // 2) ) for i in range(self.num_layers) ]) def _prepare_encoder_inputs(self, feats: List[Tensor]) -> tuple: batch_size = feats[0].shape[0] encoder_input_list = [] padding_mask_list = [] level_pos_embed_list = [] spatial_shapes = [] reference_points_list = [] for i in range(self.num_encoder_levels): level_idx = self.num_input_levels - i - 1 feat = feats[level_idx] feat_projected = self.input_convs[i](feat) feat_h, feat_w = feat.shape[-2:] feat_hw = torch.tensor([[feat_h, feat_w]], device=feat.device) padding_mask = feat.new_zeros((batch_size, feat_h, feat_w), dtype=torch.bool) pos_embed = self.positional_encoding(padding_mask) level_embed = self.level_encoding.weight[i] level_pos_embed = level_embed.view(1, -1, 1, 1) + pos_embed reference_points = [] for lv in range(self.num_encoder_levels): stride = self.strides[level_idx] * (2 ** lv) ref_points = self.point_generator.single_level_grid_priors( (feat_h, feat_w), lv, device=feat.device) feat_wh = torch.tensor([[feat_w, feat_h]], device=feat.device) ref_points = ref_points / (feat_wh * stride) reference_points.append(ref_points) reference_points = torch.stack(reference_points, dim=1) feat_projected = feat_projected.flatten(2).permute(0, 2, 1) level_pos_embed = level_pos_embed.flatten(2).permute(0, 2, 1) padding_mask = padding_mask.flatten(1) encoder_input_list.append(feat_projected) padding_mask_list.append(padding_mask) level_pos_embed_list.append(level_pos_embed) spatial_shapes.append(feat_hw) reference_points_list.append(reference_points) return ( encoder_input_list, padding_mask_list, level_pos_embed_list, spatial_shapes, reference_points_list ) def _init_original_components(self, in_channels, norm_cfg, act_cfg, encoder, positional_encoding, feat_channels, out_channels): self.input_convs = ModuleList() for i in range(self.num_input_levels - 1, self.num_input_levels - self.num_encoder_levels - 1, -1): input_conv = ConvModule( in_channels[i], feat_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=None) self.input_convs.append(input_conv) self.encoder = Mask2FormerTransformerEncoder(**encoder) self.positional_encoding = SinePositionalEncoding(**positional_encoding) self.level_encoding = nn.Embedding(self.num_encoder_levels, feat_channels) self.lateral_convs = ModuleList() self.output_convs = ModuleList() self.use_bias = norm_cfg is None for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, -1): lateral_conv = ConvModule( in_channels[i], feat_channels, kernel_size=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=None) output_conv = ConvModule( feat_channels, feat_channels, kernel_size=3, stride=1, padding=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=act_cfg) self.lateral_convs.append(lateral_conv) self.output_convs.append(output_conv) self.mask_feature = Conv2d( feat_channels, out_channels, kernel_size=1, stride=1, padding=0) self.point_generator = MlvlPointGenerator(self.strides) def _gen_ref_points(self, feat_level: int) -> Tensor: """重构参考点生成逻辑(核心修改)""" if self.spatial_shapes is None: raise RuntimeError("spatial_shapes not initialized. Run forward first.") # 获取实际数值 h, w = self.spatial_shapes[feat_level][0].tolist() stride = self.strides[feat_level] # 生成基础参考点 [num_points, 2] ref_points = self.point_generator.single_level_grid_priors( (h, w), feat_level, device=next(self.parameters()).device) # 归一化处理 feat_wh = torch.tensor([w, h], dtype=torch.float32, device=ref_points.device) normalized_points = ref_points / (feat_wh * stride) # 扩展维度 [batch_size, num_queries, num_levels=1, 2] return normalized_points.unsqueeze(0).repeat( self.num_queries, 1, 1, 1).permute(1, 0, 2, 3) def forward(self, feats: List[Tensor]) -> Tuple[Tensor, List[Tensor]]: # 准备编码器输入 (encoder_inputs, padding_masks, level_encodings, spatial_shapes, ref_points) = self._prepare_encoder_inputs(feats) self.spatial_shapes = spatial_shapes batch_size = feats[0].size(0) # 编码器处理 spatial_shapes_tensor = torch.cat(spatial_shapes) level_start_index = torch.cat(( spatial_shapes_tensor.new_zeros(1), spatial_shapes_tensor.prod(dim=1).cumsum(0)[:-1] )) memory = self.encoder( query=torch.cat(encoder_inputs, dim=1), query_pos=torch.cat(level_encodings, dim=1), key_padding_mask=torch.cat(padding_masks, dim=1), spatial_shapes=spatial_shapes_tensor, reference_points=torch.cat(ref_points, dim=0).unsqueeze(0).repeat(batch_size, 1, 1, 1), level_start_index=level_start_index, valid_ratios=torch.ones((batch_size, self.num_encoder_levels, 2), device=feats[0].device)) memory = memory.permute(0, 2, 1) # 初始化解码查询 decoder_query = torch.zeros( (batch_size, self.num_queries, 256), device=memory.device) # 分层解码处理(核心修改) for i, layer in enumerate(self.decoder_layers): feat_level = 0 if i < self.num_layers // 2 else -1 is_high_level = (i >= self.num_layers // 2) # 生成四维参考点 [bs, num_q, 1, 2] ref_points = self._gen_ref_points(feat_level).to(memory.device) decoder_query = layer( decoder_query, ref_points, feats[feat_level], is_high_level=is_high_level) # 特征分割与融合 num_queries_per_level = [s[0][0].item() * s[0][1].item() for s in spatial_shapes] outs = torch.split(memory, num_queries_per_level, dim=-1) outs = [ x.reshape(batch_size, -1, int(s[0][0]), int(s[0][1])) for x, s in zip(outs, spatial_shapes) ] # FPN特征融合 for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, -1): x = feats[i] cur_feat = self.lateral_convs[i](x) y = cur_feat + F.interpolate( outs[-1], size=cur_feat.shape[-2:], mode='bilinear', align_corners=False) y = self.output_convs[i](y) outs.append(y) return self.mask_feature(outs[-1]), outs[:self.num_outs] def init_weights(self): for conv in self.input_convs: xavier_init(conv.conv, distribution='uniform') for conv in self.lateral_convs + self.output_convs: caffe2_xavier_init(conv.conv) normal_init(self.level_encoding, std=0.01) caffe2_xavier_init(self.mask_feature) for p in self.encoder.parameters(): if p.dim() > 1: nn.init.xavier_normal_(p) for layer in self.decoder_layers: if hasattr(layer, 'self_attn'): for param in layer.self_attn.parameters(): if param.dim() > 1: nn.init.xavier_uniform_(param)

# -*- coding=utf-8 -*- import matplotlib.pyplot as plt import pydicom import pydicom.uid import sys import PIL.Image as Image # from PyQt5 import QtGui import os have_numpy = True try: import numpy except ImportError: have_numpy = False raise sys_is_little_endian = (sys.byteorder == 'little') NumpySupportedTransferSyntaxes = [ pydicom.uid.ExplicitVRLittleEndian, pydicom.uid.ImplicitVRLittleEndian, pydicom.uid.DeflatedExplicitVRLittleEndian, pydicom.uid.ExplicitVRBigEndian, ] # 支持的传输语法 def supports_transfer_syntax(dicom_dataset): """ Returns ------- bool True if this pixel data handler might support this transfer syntax. False to prevent any attempt to try to use this handler to decode the given transfer syntax """ return (dicom_dataset.file_meta.TransferSyntaxUID in NumpySupportedTransferSyntaxes) def needs_to_convert_to_RGB(dicom_dataset): return False def should_change_PhotometricInterpretation_to_RGB(dicom_dataset): return False # 加载Dicom图像数据 def get_pixeldata(dicom_dataset): """If NumPy is available, return an ndarray of the Pixel Data. Raises ------ TypeError If there is no Pixel Data or not a supported data type. ImportError If NumPy isn't found NotImplementedError if the transfer syntax is not supported AttributeError if the decoded amount of data does not match the expected amount Returns ------- numpy.ndarray The contents of the Pixel Data element (7FE0,0010) as an ndarray. """ if (dicom_dataset.file_meta.TransferSyntaxUID not in NumpySupportedTransferSyntaxes): raise NotImplementedError("Pixel Data is compressed in a " "format pydicom does not yet handle. " "Cannot return array. Pydicom might " "be able to convert the pixel data " 帮

最新推荐

recommend-type

中孚密保卫士是由中孚信息股份有限公司开发的一款信息安全产品,主要用于终端计算机的保密管理和数据防泄漏 它主要面向政府机关、军工单位、科研院所等对信息安全有较高要求的涉密单位,帮助其实现对涉密信息的全

终端保密管理:对计算机终端的操作行为进行监控和审计,防止违规外联、非法拷贝、打印、截屏等行为。 数据防泄漏(DLP):通过内容识别、加密、权限控制等手段,防止敏感或涉密数据通过U盘、网络、邮件等途径泄露。 文件加密与权限控制:对涉密文件进行透明加密,确保文件在授权范围内使用,防止未授权人员查看或传播。 行为审计与日志记录:详细记录用户的操作行为(如文件访问、外发、打印等),便于事后追溯和审计。 违规外联监控:防止涉密计算机违规连接互联网或其他非授权网络,保障网络边界安全。 移动存储介质管理:对U盘、移动硬盘等设备进行授权管理,区分普通盘和专用盘,防止非法数据拷贝。
recommend-type

Python批量发送短信验证码的实现方法.doc

Python批量发送短信验证码的实现方法.doc
recommend-type

信号处理领域中经验模态分解(EMD)对复杂信号进行IMF分量提取与应用

内容概要:本文介绍了经验模态分解(EMD)这一强大的信号处理技术,详细解释了EMD如何将复杂信号分解为多个内在模态函数(IMF)分量,从而揭示信号的局部特征。文中不仅提供了理论背景介绍,还给出了具体的Python代码实例,展示了EMD在去除心电图基线漂移和分析多层信号方面的实际应用场景。同时指出了EMD存在的局限性和优化方法,如边界效应和模态混叠问题及其解决方案。 适合人群:从事信号处理相关工作的研究人员和技术人员,尤其是对非平稳信号处理感兴趣的从业者。 使用场景及目标:适用于需要从复杂信号中提取有用信息的各种场合,如金融数据分析、生物医学工程等领域。目标是帮助读者掌握EMD的基本原理和具体应用,提高处理非平稳信号的能力。 阅读建议:建议读者结合提供的代码片段动手实践,深入理解EMD的工作机制以及如何针对不同类型的数据选择合适的参数设置。
recommend-type

神经网络基础知识的入门教学指南

资源下载链接为: https://pan.quark.cn/s/4a0cf578c0a4 神经网络基础知识的入门教学指南(最新、最全版本!打开链接下载即可用!)
recommend-type

C++ 编程语言实现的神经网络库

资源下载链接为: https://pan.quark.cn/s/5ded706c7f1c C++ 编程语言实现的神经网络库(最新、最全版本!打开链接下载即可用!)
recommend-type

快速浏览Hacker News热门故事的浏览器扩展

Hacker News Browser-crx插件是一款专为浏览器设计的扩展程序,它允许用户从任何网页上浏览Hacker News上的热门故事,该网站是科技界尤其是编程和创业圈子中非常受欢迎的信息交流平台。Hacker News上的内容主要包括编程、科技创业、互联网趣闻以及相关的讨论。它由Y Combinator(一家知名的硅谷创业孵化器)所维护。 ### 关键知识点解析: 1. **扩展程序(Extension)**: - 扩展程序是一种软件,旨在为浏览器提供额外功能和定制选项。它们可以增强用户的浏览体验,提高效率和安全性。扩展程序通常开发于HTML、CSS和JavaScript技术栈,可以针对不同的浏览器开发,如Chrome、Firefox、Safari等。 2. **Hacker News简介**: - Hacker News(也称为Hacker News或者HN)是一个新闻社交网站,由Paul Graham和Trevor Blackwell等人于2007年发起,隶属于Y Combinator。它提供了一个平台,让用户分享、讨论技术新闻和创业公司的相关文章。Hacker News社区以其高质量的讨论和新闻而闻名,吸引了大量程序员、企业家和科技爱好者。 3. **Hacker News Browser-crx插件功能**: - **浏览过去24小时的热门故事**:插件允许用户查看Hacker News中最近24小时内的热门内容。这为用户提供了快速获取当前科技界热门话题的途径。 - **保存故事到Pocket**:Pocket是一个服务,允许用户保存文章、视频和网页以便离线阅读。Hacker News Browser-crx插件可以与用户的Pocket账户集成,方便用户保存他们感兴趣的内容到自己的Pocket列表中。 - **直接从扩展发推文**:社交媒体是现代信息传播的一个重要渠道。通过这个功能,用户可以将他们在Hacker News上的发现直接通过Twitter分享给他们的关注者。 - **搜索特定主题**:用户可以使用这个功能来搜索Hacker News上的特定主题或关键词,从而快速定位他们感兴趣的内容。 4. **如何使用Hacker News Browser-crx插件**: - 安装扩展:用户需要从浏览器的扩展商店下载并安装Hacker News Browser-crx插件。由于给定信息中提供的文件名为Hacker_News_Browser.crx,这表明这可能是一个Chrome扩展。 - 启用扩展:安装完成后,用户需要在浏览器的扩展管理界面启用该插件。 - 进行配置(可选):根据需要,用户可能需要对插件进行一些基本配置,比如设置Pocket账户等。 - 使用功能:安装并配置完成后,用户可以开始使用扩展提供的各项功能,包括浏览热门故事、保存内容到Pocket、发推文和搜索特定主题。 ### 总结: Hacker News Browser-crx插件作为一个扩展程序,为用户提供了便捷的途径去浏览和参与Hacker News上的讨论。该插件整合了多种功能,让读者能够实时关注科技动态,并与他人分享讨论。对于科技爱好者以及相关行业的专业人士,这是一个极具价值的工具,它能够帮助他们保持信息的及时更新和知识的持续吸收。
recommend-type

【MATLAB通信建模秘籍】:5个技巧让你为通信系统打下坚实基础

# 1. MATLAB通信建模基础概览 MATLAB(矩阵实验室)作为一种强大的科学计算软件,在通信系统建模和仿真领域扮演着重要角色。对于初学者而言,了解MATLAB的基础操作和通信建模的基本概念是开启深入学习之旅的第一步。 ## 1.1 MATLAB简介及其在通信领域的应用 MATLAB是一个高性能的数值计算和可视化软件,广泛应用于工程计算、算法开发、数据分析等领域。在通
recommend-type

汽车车载通讯技术

<think>我们正在讨论汽车车载通讯技术。根据之前的引用,我们知道汽车通信网络分为车内(有线)和车外(无线)两部分。同时,车载SOA架构使用多种通信技术(如CAN总线、以太网、MQTT等)来实现模块化和可扩展的通信。 用户的问题:汽车车载通讯技术原理及应用 回答结构: 1. 概述:简要介绍汽车车载通讯技术的定义和分类。 2. 原理部分:分别介绍车内网络和车外网络的主要技术原理。 2.1 车内网络:重点介绍CAN总线、LIN总线、FlexRay、MOST、Automotive Ethernet等。 2.2 车外网络:介绍V2X(包括V2V、V2I、V2P、V2N)及相
recommend-type

Dev Context Menu Utils (beta)-快速开发浏览器扩展

Dev Context Menu Utils (beta)-crx插件是一款面向开发者群体的浏览器扩展程序,其beta版本的命名暗示了它目前还在开发的早期阶段,可能尚未完全稳定或者未包含全部功能。从标题来看,这款扩展程序旨在为开发者提供便捷的上下文菜单功能。 上下文菜单(Context Menu)通常指的是当用户在软件或网页上右键点击时弹出的菜单。上下文菜单的内容根据点击的位置和对象会有所不同,它可以为用户提供快捷、针对当前情境的操作选项。在浏览器中,上下文菜单经常被用于快速访问开发者工具、页面操作、或是网页内容处理等功能。 标题中提到的“CNPJ”和“CPF”是巴西的法人和自然人的税务识别代码。CNPJ(Cadastro Nacional de Pessoas Jurídicas)是巴西所有公司和企业的全国性注册代码,而CPF(Cadastro de Pessoas Físicas)是巴西公民的个人税务识别码。在Dev Context Menu Utils (beta)中加入这两个菜单项,可能意味着插件能够让开发者在遇到需要验证或输入这些税务识别码的场景时,通过浏览器的右键菜单快速生成示例代码或进行其他相关操作。 “Lorem Ipsum”是设计和排版行业常用的一种占位文本,它起源于拉丁文学,经常用于设计软件的文本预览,以便设计师在不影响最终版式的情况下测试页面布局。在这款插件的上下文菜单中加入这一项,可能允许用户快速生成一段Lorem Ipsum文本,用于测试网页布局或者排版效果,从而让开发者在设计过程中获得更真实的视觉体验。 “电话”菜单项则可能用于提供快速生成或者验证电话号码格式的功能,这对于处理与电话相关的用户输入或数据录入工作非常有用。考虑到不同国家和地区的电话号码格式可能有所不同,这一功能可能允许用户选择特定的地区代码,从而生成相应格式的电话号码样例。 【标签】中提到的“扩展程序”一词,是指能够被浏览器安装并添加额外功能的软件。扩展程序可以改变浏览器的基本界面、行为和功能,是Web开发和测试中常见的工具。它们通常由浏览器的开发者或者第三方开发者创建,对于提升开发效率、调试和测试网站有着重要的作用。 【压缩包子文件的文件名称列表】中的“Dev_Context_Menu_Utils_(beta).crx”是这款插件的文件名,CRX是Chrome扩展程序的文件格式,类似于Windows平台上的.exe可执行文件格式,只不过CRX是为Chrome浏览器特别设计的。扩展程序开发者需要通过Chrome Web Store或者其他途径将CRX文件分发给用户,用户可以通过下载并安装CRX文件来使用扩展程序。 总体来说,Dev Context Menu Utils (beta) 插件通过为开发者提供便捷的上下文菜单项来增强开发效率,允许快速生成重要的代码片段和数据格式,从而简化开发过程中的常见任务。对于那些在开发阶段需要频繁使用这些功能的开发者来说,这款插件将是一个非常有价值的工具。然而,由于它目前还是beta版本,使用时可能需要注意可能存在的一些错误或功能限制,并建议开发者在实际项目中使用前先在测试环境中进行充分的测试。
recommend-type

【Coz进阶秘籍】:解锁工作流高级功能,提升效率的终极技巧

# 1. Coz工作流基础概述 工作流系统是现代IT运营不可或缺的一部分,它通过自动化执行任务和协调业务流程来提高效率。在本章节中,我们将首先介绍Coz工作流的基础概念和其在业务流程自动化中的应用。Coz工作流利用一系列预定义的任务、规则以及任务之间的依赖关系,按照既定规