活动介绍

"C:\Program Files (x86)\Java\jdk1.8.0_102\bin\java.exe" -agentlib:jdwp=transport=dt_socket,address=127.0.0.1:21096,suspend=y,server=n -javaagent:C:\Users\Administrator\AppData\Local\JetBrains\IntelliJIdea2021.2\captureAgent\debugger-agent.jar=file:/C:/Users/Administrator/AppData/Local/Temp/capture.props -Dfile.encoding=UTF-8 -classpath C:\Users\Administrator\AppData\Local\Temp\classpath849000959.jar com.tongchuang.realtime.mds.ULEDataanomalyanalysis 已连接到目标 VM, 地址: ''127.0.0.1:21096',传输: '套接字'' SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/F:/flink/flinkmaven/repository/org/apache/logging/log4j/log4j-slf4j-impl/2.10.0/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/F:/flink/flinkmaven/repository/org/slf4j/slf4j-log4j12/1.7.25/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] 加载配置: 30 个参数 配置加载完成,检查点时间: Wed Aug 06 07:55:06 CST 2025 广播配置更新完成, 配置项: 30 Exception in thread "main" org.apache.flink.runtime.client.JobExecutionException: Job execution failed. at org.apache.flink.runtime.jobmaster.JobResult.toJobExecutionResult(JobResult.java:144) at org.apache.flink.runtime.minicluster.MiniClusterJobClient.lambda$getJobExecutionResult$3(MiniClusterJobClient.java:137) at java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:602) at java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:577) at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:474) at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1962) at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.lambda$invokeRpc$0(AkkaInvocationHandler.java:237) at java.util.concurrent.CompletableFuture.uniWhenComplete(CompletableFuture.java:760) at java.util.concurrent.CompletableFuture$UniWhenComplete.tryFire(CompletableFuture.java:736) at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:474) at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1962) at org.apache.flink.runtime.concurrent.FutureUtils$1.onComplete(FutureUtils.java:1081) at akka.dispatch.OnComplete.internal(Future.scala:264) at akka.dispatch.OnComplete.internal(Future.scala:261) at akka.dispatch.japi$CallbackBridge.apply(Future.scala:191) at akka.dispatch.japi$CallbackBridge.apply(Future.scala:188) at scala.concurrent.impl.CallbackRunnable.run$$$capture(Promise.scala:60) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala) at org.apache.flink.runtime.concurrent.Executors$DirectExecutionContext.execute(Executors.java:73) at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:68) at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1(Promise.scala:284) at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1$adapted(Promise.scala:284) at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:284) at akka.pattern.PromiseActorRef.$bang(AskSupport.scala:573) at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:22) at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:21) at scala.concurrent.Future.$anonfun$andThen$1(Future.scala:532) at scala.concurrent.impl.Promise.liftedTree1$1(Promise.scala:29) at scala.concurrent.impl.Promise.$anonfun$transform$1(Promise.scala:29) at scala.concurrent.impl.CallbackRunnable.run$$$capture(Promise.scala:60) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala) at akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:55) at akka.dispatch.BatchingExecutor$BlockableBatch.$anonfun$run$1(BatchingExecutor.scala:91) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12) at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:81) at akka.dispatch.BatchingExecutor$BlockableBatch.run(BatchingExecutor.scala:91) at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:40) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(ForkJoinExecutorConfigurator.scala:44) at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Caused by: org.apache.flink.runtime.JobException: Recovery is suppressed by NoRestartBackoffTimeStrategy at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.handleFailure(ExecutionFailureHandler.java:138) at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.getFailureHandlingResult(ExecutionFailureHandler.java:82) at org.apache.flink.runtime.scheduler.DefaultScheduler.handleTaskFailure(DefaultScheduler.java:216) at org.apache.flink.runtime.scheduler.DefaultScheduler.maybeHandleTaskFailure(DefaultScheduler.java:206) at org.apache.flink.runtime.scheduler.DefaultScheduler.updateTaskExecutionStateInternal(DefaultScheduler.java:197) at org.apache.flink.runtime.scheduler.SchedulerBase.updateTaskExecutionState(SchedulerBase.java:682) at org.apache.flink.runtime.scheduler.SchedulerNG.updateTaskExecutionState(SchedulerNG.java:79) at org.apache.flink.runtime.jobmaster.JobMaster.updateTaskExecutionState(JobMaster.java:435) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcInvocation(AkkaRpcActor.java:305) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:212) at org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:77) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:158) at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:26) at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:21) at scala.PartialFunction.applyOrElse(PartialFunction.scala:123) at scala.PartialFunction.applyOrElse$(PartialFunction.scala:122) at akka.japi.pf.UnitCaseStatement.applyOrElse(CaseStatements.scala:21) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172) at akka.actor.Actor.aroundReceive(Actor.scala:517) at akka.actor.Actor.aroundReceive$(Actor.scala:515) at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225) at akka.actor.ActorCell.receiveMessage$$$capture(ActorCell.scala:592) at akka.actor.ActorCell.receiveMessage(ActorCell.scala) at akka.actor.ActorCell.invoke(ActorCell.scala:561) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) at akka.dispatch.Mailbox.run(Mailbox.scala:225) at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ... 4 more Caused by: java.lang.NullPointerException: No key set. This method should not be called outside of a keyed context. at org.apache.flink.util.Preconditions.checkNotNull(Preconditions.java:76) at org.apache.flink.runtime.state.heap.StateTable.checkKeyNamespacePreconditions(StateTable.java:270) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:260) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:143) at org.apache.flink.runtime.state.heap.HeapMapState.get(HeapMapState.java:86) at org.apache.flink.runtime.state.ttl.TtlMapState.lambda$getWrapped$0(TtlMapState.java:64) at org.apache.flink.runtime.state.ttl.AbstractTtlDecorator.getWrappedWithTtlCheckAndUpdate(AbstractTtlDecorator.java:97) at org.apache.flink.runtime.state.ttl.TtlMapState.getWrapped(TtlMapState.java:63) at org.apache.flink.runtime.state.ttl.TtlMapState.contains(TtlMapState.java:96) at org.apache.flink.runtime.state.UserFacingMapState.contains(UserFacingMapState.java:72) at com.tongchuang.realtime.mds.ULEDataanomalyanalysis$OptimizedAnomalyDetectionFunction.processBroadcastElement(ULEDataanomalyanalysis.java:767) at org.apache.flink.streaming.api.operators.co.CoBroadcastWithKeyedOperator.processElement2(CoBroadcastWithKeyedOperator.java:133) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory.processRecord2(StreamTwoInputProcessorFactory.java:221) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory.lambda$create$1(StreamTwoInputProcessorFactory.java:190) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory$StreamTaskNetworkOutput.emitRecord(StreamTwoInputProcessorFactory.java:291) at org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.processElement(AbstractStreamTaskNetworkInput.java:134) at org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.emitNext(AbstractStreamTaskNetworkInput.java:105) at org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessor.processInput(StreamTwoInputProcessor.java:98) at org.apache.flink.streaming.runtime.tasks.StreamTask.processInput(StreamTask.java:423) at org.apache.flink.streaming.runtime.tasks.mailbox.MailboxProcessor.runMailboxLoop(MailboxProcessor.java:204) at org.apache.flink.streaming.runtime.tasks.StreamTask.runMailboxLoop(StreamTask.java:684) at org.apache.flink.streaming.runtime.tasks.StreamTask.executeInvoke(StreamTask.java:639) at org.apache.flink.streaming.runtime.tasks.StreamTask.runWithCleanUpOnFail(StreamTask.java:650) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:623) at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:779) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:566) at java.lang.Thread.run(Thread.java:745) 与目标 VM 断开连接, 地址为: ''127.0.0.1:21096',传输: '套接字'' 进程已结束,退出代码为 1

时间: 2025-08-06 15:05:26 浏览: 10
<think>我们遇到了一个Flink作业执行失败的问题。从堆栈跟踪中,我们可以看到以下关键错误信息: ``` Caused by: java.lang.NullPointerException: No key set. This method should not be called outside of a keyed context. at org.apache.flink.util.Preconditions.checkNotNull(Preconditions.java:76) at org.apache.flink.runtime.state.heap.StateTable.checkKeyNamespacePreconditions(StateTable.java:270) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:260) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:143) at org.apache.flink.runtime.state.heap.HeapMapState.get(HeapMapState.java:86) at org.apache.flink.runtime.state.ttl.TtlMapState.lambda$getWrapped$0(TtlMapState.java:64) at org.apache.flink.runtime.state.ttl.AbstractTtlDecorator.getWrappedWithTtlCheckAndUpdate(AbstractTtlDecorator.java:97) at org.apache.flink.runtime.state.ttl.TtlMapState.getWrapped(TtlMapState.java:63) at org.apache.flink.runtime.state.ttl.TtlMapState.contains(TtlMapState.java:96) at org.apache.flink.runtime.state.UserFacingMapState.contains(UserFacingMapState.java:72) at com.tongchuang.realtime.mds.ULEDataanomalyanalysis$OptimizedAnomalyDetectionFunction.processBroadcastElement(ULEDataanomalyanalysis.java:767) ``` 错误发生在`com.tongchuang.realtime.mds.ULEDataanomalyanalysis$OptimizedAnomalyDetectionFunction.processBroadcastElement`方法的第767行。具体错误是:尝试在非keyed上下文中访问keyed state(MapState)。 在Flink中,Keyed State(如MapState)只能在KeyedStream的上下文中使用。也就是说,只能在`KeyedProcessFunction`、`RichFlatMapFunction`(应用于KeyedStream)等函数中,或者在使用`apply`到KeyedStream时使用。 这里,我们有一个`CoBroadcastWithKeyedOperator`,它处理两个流:一个是KeyedStream,另一个是广播流。在广播流的处理函数中(即`processBroadcastElement`方法),我们尝试访问了MapState,但是此时没有当前key(因为广播流不是keyed流),所以抛出了异常。 ### 解决方案 在广播处理函数中,我们无法直接访问Keyed State,因为广播元素会被发送到所有并发的算子实例,而每个算子实例可能处理多个key。因此,在`processBroadcastElement`方法中,我们不知道当前是哪个key。 但是,我们可能需要在广播流到达时更新所有key的状态。我们可以通过以下方式之一解决: 1. **遍历所有key并更新状态**:在`processBroadcastElement`方法中,我们可以获取状态后端,然后遍历所有key,为每个key更新状态。但是,Flink没有直接提供遍历所有key的API,而且这样做可能会影响性能。 2. **使用`BroadcastState`**:广播状态(Broadcast State)是Flink提供的一种特殊状态,用于将广播流的状态(广播状态)与另一流(可以是KeyedStream)的状态进行连接。广播状态是Operator State,因此它不绑定到特定的key,可以在广播处理函数中访问。 根据错误上下文,我们使用的是`MapState`,并且是在一个`KeyedBroadcastProcessFunction`(或类似函数)中。但是,我们可能错误地在广播处理部分使用了Keyed State。 正确的做法是: - 对于需要每个key单独维护的状态,使用Keyed State(在`processElement`方法中访问)。 - 对于广播流带来的全局状态,使用Broadcast State(在`processBroadcastElement`方法中访问)。 ### 代码修改建议 假设我们有一个`KeyedBroadcastProcessFunction`,它有两个状态: - 一个Keyed State(比如`MapState`),用于存储每个key的数据。 - 一个Broadcast State(`MapStateDescriptor`定义),用于存储广播流的数据。 在`processBroadcastElement`方法中,我们只能访问Broadcast State和全局的Operator State,而不能访问Keyed State。如果我们需要根据广播流更新每个key的状态,那么应该在`processElement`方法中监听Broadcast State的变化,然后更新Keyed State。 但是,有时我们确实需要在广播流到达时触发对所有key的操作。这时,我们可以: - 在`processBroadcastElement`方法中,将广播数据放入Broadcast State。 - 同时,我们也可以在这个方法中设置一个标志(比如在另一个Broadcast State中)表明有新的广播数据到达,然后当处理每个key的元素时(在`processElement`中)检查这个标志,并更新Keyed State。但是这样需要等到每个key有新的元素到达时才会更新。 另一种方法是使用`Context`的`applyToKeyedState`方法(如果可用)。但是,在Flink的`KeyedBroadcastProcessFunction`中,`processBroadcastElement`方法提供的`Context`有一个方法`applyToKeyedState`,可以让我们对每个key的状态进行操作。 ### 示例代码 以下是一个示例,展示如何在广播事件中更新所有key的状态: ```java public class MyKeyedBroadcastProcessFunction extends KeyedBroadcastProcessFunction<KeyType, InputType, BroadcastType, OutputType> { // 定义Keyed State private MapStateDescriptor<String, Double> keyedStateDesc; // 定义广播状态描述符 private MapStateDescriptor<String, Double> broadcastStateDesc; @Override public void open(Configuration parameters) { keyedStateDesc = new MapStateDescriptor<>("keyed-state", String.class, Double.class); broadcastStateDesc = new MapStateDescriptor<>("broadcast-state", String.class, Double.class); } @Override public void processElement(InputType value, ReadOnlyContext ctx, Collector<OutputType> out) throws Exception { // 处理普通流元素,可以访问Keyed State和只读的Broadcast State ReadOnlyBroadcastState<String, Double> broadcastState = ctx.getBroadcastState(broadcastStateDesc); // 使用广播状态和keyed state进行一些处理 // ... } @Override public void processBroadcastElement(BroadcastType value, Context ctx, Collector<OutputType> out) throws Exception { // 更新广播状态 BroadcastState<String, Double> broadcastState = ctx.getBroadcastState(broadcastStateDesc); // 根据value更新broadcastState // 然后,我们想要更新所有key的keyed state,可以使用applyToKeyedState ctx.applyToKeyedState(keyedStateDesc, (key, state) -> { // 这里state是每个key的MapState // 根据广播数据更新这个key的状态 // 例如:state.put(...); }); } } ``` 注意:`applyToKeyedState`方法会遍历所有key,并对每个key的状态执行给定的函数。这是一个昂贵的操作,因此要谨慎使用。 ### 针对当前错误的修改 根据错误堆栈,我们是在`processBroadcastElement`方法中直接访问了Keyed State(MapState),这导致了错误。我们应该改为: 1. 如果这个状态是每个key的,那么应该在`processElement`中访问,或者使用`applyToKeyedState`来遍历所有key。 2. 或者,将需要广播的数据放入Broadcast State,然后在`processElement`中结合Keyed State和Broadcast State进行处理。 ### 具体到代码行 在`ULEDataanomalyanalysis.java`的第767行,我们在`processBroadcastElement`方法中调用了`MapState.contains(...)`。我们需要修改这部分代码,避免在广播处理函数中直接访问Keyed State。 ### 修改建议 1. 检查`OptimizedAnomalyDetectionFunction`是否继承自`KeyedBroadcastProcessFunction`。 2. 在`processBroadcastElement`方法中,不要直接访问Keyed State(如MapState)。如果确实需要更新所有key的状态,使用`context.applyToKeyedState`方法。 3. 或者,将需要的信息存入Broadcast State,然后在`processElement`中读取Broadcast State并更新Keyed State。 ### 示例修改 假设原来的`processBroadcastElement`中有这样的代码: ```java MapState<String, Double> state = getRuntimeContext().getMapState(keyedStateDesc); if (state.contains(someKey)) { // ... } ``` 这会导致错误,因为此时没有key。我们需要改为使用`applyToKeyedState`或者改变设计。 ### 总结 根本原因是在广播处理函数中错误地访问了Keyed State。解决方案是使用Broadcast State来存储广播数据,并在处理每个元素时结合Keyed State使用,或者使用`applyToKeyedState`来更新所有key的状态。 由于没有完整的代码,无法给出具体的修改。但根据错误信息,我们需要修改`ULEDataanomalyanalysis.java`的第767行附近代码。 ### 相关问题 §§相关问题§§: 1. 在Flink中,Keyed State和Operator State有什么区别? 2. 如何使用Flink的Broadcast State模式? 3. 在KeyedBroadcastProcessFunction中,如何安全地更新所有key的状态? 4. Flink中的状态管理有哪些最佳实践?</think>### 问题分析 从错误日志看,核心问题是 `java.lang.NullPointerException: No key set. This method should not be called outside of a keyed context`。这表示在 Flink 的 `processBroadcastElement` 方法中尝试访问 Keyed State(如 `MapState`),但此时没有有效的 key 上下文。具体发生在 `ULEDataanomalyanalysis$OptimizedAnomalyDetectionFunction.processBroadcastElement` 的第 767 行。 ### 根本原因 在 Flink 的广播处理函数中: 1. **广播流处理** (`processBroadcastElement`) 运行在**非 keyed 上下文**中 2. **Keyed State** (如 `MapState`) 只能在 `processElement` 方法中访问(keyed 上下文) 3. 当在 `processBroadcastElement` 中直接访问 `MapState.contains()` 时,Flink 无法确定当前 key,导致 `NullPointerException` ### 解决方案 #### 方法 1:使用 `applyToKeyedState` API(推荐) 在广播处理中通过上下文遍历所有 key 的状态: ```java // 修改后的 processBroadcastElement 方法 @Override public void processBroadcastElement( BroadcastElement value, Context ctx, Collector<Output> out ) throws Exception { // 1. 更新广播状态 ctx.getBroadcastState(broadcastStateDescriptor).put(value.key(), value); // 2. 安全访问所有Keyed State ctx.applyToKeyedState(keyedStateDescriptor, (key, state) -> { if (state.contains(value.key())) { // 安全执行状态操作 state.put(value.key(), transform(value)); } }); } ``` #### 方法 2:通过主数据流触发状态更新 ```java // 在 processElement 中处理状态更新 @Override public void processElement( DataElement value, ReadOnlyContext ctx, Collector<Output> out ) throws Exception { // 1. 获取广播状态 ReadOnlyBroadcastState<String, Config> broadcastState = ctx.getBroadcastState(broadcastStateDescriptor); // 2. 当广播状态更新时触发操作 if (broadcastState.contains(value.getConfigKey())) { MapState<String, Double> keyedState = getRuntimeContext().getMapState(keyedStateDescriptor); keyedState.put(value.getKey(), calculate(value, broadcastState)); } } ``` ### 关键修改点 1. **状态访问分离**: - `processBroadcastElement` → 只操作 `BroadcastState` - `processElement` → 操作 `KeyedState` 2. **状态描述符**: ```java // 正确定义两种状态 private final MapStateDescriptor<String, Double> keyedStateDescriptor = new MapStateDescriptor<>("keyedState", String.class, Double.class); private final MapStateDescriptor<String, Config> broadcastStateDescriptor = new MapStateDescriptor<>("broadcastConfig", String.class, Config.class); ``` 3. **函数注册**: ```java // 在open方法中初始化状态 @Override public void open(Configuration parameters) { keyedState = getRuntimeContext().getMapState(keyedStateDescriptor); } ``` ### 错误代码定位 问题出现在 `ULEDataanomalyanalysis.java` 第 767 行: ```java // 错误示例(在广播处理中直接访问KeyedState) if (keyedState.contains(configKey)) { // 此行引发NPE keyedState.put(configKey, newValue); } ``` ### 预防措施 1. **状态访问规则**: - ✅ 在 `processElement` 中访问 `KeyedState` - ✅ 在 `processBroadcastElement` 中访问 `BroadcastState` - ❌ 禁止跨上下文访问状态 2. **单元测试**: ```java // 测试广播状态更新是否触发KeyedState变更 @Test public void testBroadcastUpdateTriggersKeyedState() { // 1. 发送广播数据 broadcastStream.add(new BroadcastElement("config_update")); // 2. 发送主数据流元素 dataStream.add(new DataElement("key1")); // 3. 验证keyedState是否更新 assertThat(keyedState.get("key1"), equalTo(expectedValue)); } ``` ### 总结 该错误是由于在广播处理函数中错误地访问了 Keyed State 导致的。解决方案需要严格遵循 Flink 的状态访问规则: 1. Keyed State 只能在 `processElement` 中访问 2. 广播状态更新需通过 `applyToKeyedState` 或主数据流触发 3. 两种状态类型需明确定义和使用
阅读全文

相关推荐

zip
资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用

大家在看

recommend-type

基于ADS的微带滤波器设计

微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
recommend-type

Pixhawk4飞控驱动.zip

已安装成功
recommend-type

ztecfg中兴配置加解密工具3.0版本.rar

中兴光猫配置文件加解密工具3.0 .\ztecfg.exe -d AESCBC -i .\(要解密的文件名)db_user_cfg.xml -o (解密后文件名)123.cfg
recommend-type

配置车辆-feedback systems_an introduction for scientists and engineers

5.2 道路场景 从界面右侧的道路场景列表中,双击载入所需的道路场景(如 Fld_FreeWay)。 PanoSim提供了 ADAS标准(ISO、Euro NCAP)典型场景库,如高速公路、乡村道路、 城镇、坡道、换道、停车场、高速出入口等。我们可根据用户需要定制丰富场景库。 PanoSim提供专门的道路场景设计工具,可通过常用工具栏\Tools\FieldBuilder 来创建自己的道路场景。 5.3 天气和光照 从右侧的实验环境列表栏中,通过双击载入所需的实验天气和光照。天气有多 云、雾天、雨天、雪天、晴天,光照有白天和夜晚,相关实验信息(如所选场景、天 气、车辆等),可在左侧实验信息栏中查看。 5.4 配置车辆 点击“Forward”,进入实验参数设置主界面(图 5-2)。
recommend-type

xilinx.com_user_IIC_AXI_1.0.zip

可以直接用在vivado 2017.4版本里。查看各个寄存器就知道用来干什么了,一号寄存器分频系数,二号的start、stop信号,三号寄存器8bit数据,四号寄存器只读,返回IIC状态和ACK信号,其中二号的一个bit可以用来不等待从机ACK,方便使用。

最新推荐

recommend-type

开发界面语义化:声控 + 画图协同生成代码.doc

开发界面语义化:声控 + 画图协同生成代码.doc
recommend-type

LABVIEW与三菱PLC通信:实现数据批量读写的高效库解决方案

如何通过LabVIEW与三菱PLC建立高效的通信桥梁,实现数据批量读写。首先概述了LabVIEW和三菱PLC的基本概念及其在工业自动化中的重要性。接着重点讲解了利用Modbus RTU协议构建通信连接的具体步骤和技术细节,包括初始化通信、发送读写请求、处理响应数据和关闭连接等功能。文中还提供了一个简化的代码示例,展示了如何在LabVIEW环境中实现这一过程。最后对这项技术进行了总结和展望,强调其在提高数据交互效率方面的潜力以及未来的广泛应用前景。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些熟悉LabVIEW或三菱PLC的人士。 使用场景及目标:适用于需要频繁进行数据交互的工业控制系统,如生产线监控、设备状态监测等场合。主要目的是提升数据传输的速度和可靠性,从而优化整个系统的运行效率。 阅读建议:读者可以通过本文深入了解LabVIEW与三菱PLC通信的实现方法,掌握批量数据读写库的设计思路,并将其应用于实际工程项目中。建议边阅读边尝试动手实践相关代码,以便更好地理解和吸收所学知识。
recommend-type

Python程序TXLWizard生成TXL文件及转换工具介绍

### 知识点详细说明: #### 1. 图形旋转与TXL向导 图形旋转是图形学领域的一个基本操作,用于改变图形的方向。在本上下文中,TXL向导(TXLWizard)是由Esteban Marin编写的Python程序,它实现了特定的图形旋转功能,主要用于电子束光刻掩模的生成。光刻掩模是半导体制造过程中非常关键的一个环节,它确定了在硅片上沉积材料的精确位置。TXL向导通过生成特定格式的TXL文件来辅助这一过程。 #### 2. TXL文件格式与用途 TXL文件格式是一种基于文本的文件格式,它设计得易于使用,并且可以通过各种脚本语言如Python和Matlab生成。这种格式通常用于电子束光刻中,因为它的文本形式使得它可以通过编程快速创建复杂的掩模设计。TXL文件格式支持引用对象和复制对象数组(如SREF和AREF),这些特性可以用于优化电子束光刻设备的性能。 #### 3. TXLWizard的特性与优势 - **结构化的Python脚本:** TXLWizard 使用结构良好的脚本来创建遮罩,这有助于开发者创建清晰、易于维护的代码。 - **灵活的Python脚本:** 作为Python程序,TXLWizard 可以利用Python语言的灵活性和强大的库集合来编写复杂的掩模生成逻辑。 - **可读性和可重用性:** 生成的掩码代码易于阅读,开发者可以轻松地重用和修改以适应不同的需求。 - **自动标签生成:** TXLWizard 还包括自动为图形对象生成标签的功能,这在管理复杂图形时非常有用。 #### 4. TXL转换器的功能 - **查看.TXL文件:** TXL转换器(TXLConverter)允许用户将TXL文件转换成HTML或SVG格式,这样用户就可以使用任何现代浏览器或矢量图形应用程序来查看文件。 - **缩放和平移:** 转换后的文件支持缩放和平移功能,这使得用户在图形界面中更容易查看细节和整体结构。 - **快速转换:** TXL转换器还提供快速的文件转换功能,以实现有效的蒙版开发工作流程。 #### 5. 应用场景与技术参考 TXLWizard的应用场景主要集中在电子束光刻技术中,特别是用于设计和制作半导体器件时所需的掩模。TXLWizard作为一个向导,不仅提供了生成TXL文件的基础框架,还提供了一种方式来优化掩模设计,提高光刻过程的效率和精度。对于需要进行光刻掩模设计的工程师和研究人员来说,TXLWizard提供了一种有效的方法来实现他们的设计目标。 #### 6. 系统开源特性 标签“系统开源”表明TXLWizard遵循开放源代码的原则,这意味着源代码对所有人开放,允许用户自由地查看、修改和分发软件。开源项目通常拥有活跃的社区,社区成员可以合作改进软件,添加新功能,或帮助解决遇到的问题。这种开放性促进了技术创新,并允许用户根据自己的需求定制软件。 #### 7. 压缩包子文件的文件名称列表 文件名称列表中的“txlwizard-master”可能指的是TXLWizard项目的主版本库或主分支。这个名称表明了这是项目源代码的中心点,其他开发者会从这个主分支拉取代码进行合作开发或部署。以“-master”结尾通常是版本控制系统中表示主要开发线路的常见约定,例如Git中的master(现在更常被称为main)分支。 通过这些知识点的详细解释,我们可以看到TXLWizard不仅是一个用于生成TXL文件的工具,它还整合了一系列的功能,使得电子束光刻掩模的设计工作更为高效和直观。同时,作为一个开源项目,它能够借助社区的力量不断进步,为用户带来更多的便利和创新。
recommend-type

【创新图生成:扣子平台的技术前沿与创新思维】:引领图像生成技术的新潮流

# 1. 扣子平台的图像生成技术概述 在当今数字化时代,图像生成技术正成为推动技术创新和社会变革的关键力量。扣子平台正是这一技术革新的代表。本章将对扣子平台的图像生成技术进行一个全面概述,探究它如何将理论技术转化为实际应用,并带来显著的社会影响。 扣子平台运用了先进的图像生成技术,将现实世界和数字空间无缝融合,打造了沉浸式的视觉体验。其技术的核心是通过高度复杂的算法模型,快速生成高质
recommend-type

海康威视机器视觉工程师考核

<think>好的,我现在需要帮助用户了解海康威视机器视觉工程师的考核内容和要求。根据用户提供的引用资料,特别是引用[1]和[2],里面提到了考核素材包分为初级和中级,涵盖理论、算法、应用案例等。首先,我要整理这些信息,确保结构清晰,符合用户要求的格式。 接下来,我需要确认素材包的具体内容,比如初级和中级的不同点。引用[2]提到初级包含基础理论、算法实现和实际案例,中级则增加复杂算法和项目分析。这部分需要分点说明,方便用户理解层次。 另外,用户可能想知道如何准备考核,比如下载素材、学习顺序、模拟考核等,引用[2]中有使用说明和注意事项,这部分也要涵盖进去。同时要注意提醒用户考核窗口已关闭,
recommend-type

Linux环境下Docker Hub公共容器映像检测工具集

在给出的知识点中,我们需要详细解释有关Docker Hub、公共容器映像、容器编排器以及如何与这些工具交互的详细信息。同时,我们会涵盖Linux系统下的相关操作和工具使用,以及如何在ECS和Kubernetes等容器编排工具中运用这些检测工具。 ### Docker Hub 和公共容器映像 Docker Hub是Docker公司提供的一项服务,它允许用户存储、管理以及分享Docker镜像。Docker镜像可以视为应用程序或服务的“快照”,包含了运行特定软件所需的所有必要文件和配置。公共容器映像指的是那些被标记为公开可见的Docker镜像,任何用户都可以拉取并使用这些镜像。 ### 静态和动态标识工具 静态和动态标识工具在Docker Hub上用于识别和分析公共容器映像。静态标识通常指的是在不运行镜像的情况下分析镜像的元数据和内容,例如检查Dockerfile中的指令、环境变量、端口映射等。动态标识则需要在容器运行时对容器的行为和性能进行监控和分析,如资源使用率、网络通信等。 ### 容器编排器与Docker映像 容器编排器是用于自动化容器部署、管理和扩展的工具。在Docker环境中,容器编排器能够自动化地启动、停止以及管理容器的生命周期。常见的容器编排器包括ECS和Kubernetes。 - **ECS (Elastic Container Service)**:是由亚马逊提供的容器编排服务,支持Docker容器,并提供了一种简单的方式来运行、停止以及管理容器化应用程序。 - **Kubernetes**:是一个开源平台,用于自动化容器化应用程序的部署、扩展和操作。它已经成为容器编排领域的事实标准。 ### 如何使用静态和动态标识工具 要使用这些静态和动态标识工具,首先需要获取并安装它们。从给定信息中了解到,可以通过克隆仓库或下载压缩包并解压到本地系统中。之后,根据需要针对不同的容器编排环境(如Dockerfile、ECS、Kubernetes)编写配置,以集成和使用这些检测工具。 ### Dockerfile中的工具使用 在Dockerfile中使用工具意味着将检测工具的指令嵌入到构建过程中。这可能包括安装检测工具的命令、运行容器扫描的步骤,以及将扫描结果集成到镜像构建流程中,确保只有通过安全和合规检查的容器镜像才能被构建和部署。 ### ECS与Kubernetes中的工具集成 在ECS或Kubernetes环境中,工具的集成可能涉及到创建特定的配置文件、定义服务和部署策略,以及编写脚本或控制器来自动执行检测任务。这样可以在容器编排的过程中实现实时监控,确保容器编排器只使用符合预期的、安全的容器镜像。 ### Linux系统下的操作 在Linux系统下操作这些工具,用户可能需要具备一定的系统管理和配置能力。这包括使用Linux命令行工具、管理文件系统权限、配置网络以及安装和配置软件包等。 ### 总结 综上所述,Docker Hub上的静态和动态标识工具提供了一种方法来检测和分析公共容器映像,确保这些镜像的安全性和可靠性。这些工具在Linux开发环境中尤为重要,因为它们帮助开发人员和运维人员确保他们的容器映像满足安全要求。通过在Dockerfile、ECS和Kubernetes中正确使用这些工具,可以提高应用程序的安全性,减少由于使用不安全的容器镜像带来的风险。此外,掌握Linux系统下的操作技能,可以更好地管理和维护这些工具,确保它们能够有效地发挥作用。
recommend-type

【扣子平台图像艺术探究:理论与实践的完美结合】:深入学习图像生成的艺术

# 1. 图像艺术的理论基础 艺术领域的每一个流派和技巧都有其理论基础。在图像艺术中,理论基础不仅是对艺术表现形式的认知,也是掌握艺术创作内在逻辑的关键。深入理解图像艺术的理论基础,能够帮助艺术家们在创作过程中更加明确地表达自己的艺术意图,以及更好地与观众沟通。 图像艺术的理论
recommend-type

增广路定理的证明

<think>嗯,用户想查找增广路定理的证明,关于图论和网络流算法的。我得先理解增广路定理是什么,然后找到相关的证明方法。根据之前的引用,尤其是引用5提到最大流最小割定理,里面有三个等价条件,其中第二个是残余网络中没有增广路径时,流就是最大流。这可能和增广路定理相关,也就是当残余网络中没有增广路时,当前流就是最大流,这可能就是增广路定理的内容。 首先,我需要明确增广路定理的陈述。根据引用5,增广路定理可能指的是:一个流是最大流当且仅当残余网络中不存在增广路径。这个定理的证明需要用到最大流最小割定理,也就是第三个条件,即最大流的流量等于最小割的容量。 证明的步骤可能需要分为两个方向:必要性(
recommend-type

Pulse:基于SwiftUI的Apple平台高效日志记录与网络监控

从给定文件信息中,我们可以提取出以下IT知识点进行详细阐述: **Pulse概览:** Pulse是一个专门针对Apple平台(如iOS、iPadOS、macOS等)的功能强大的日志记录系统。其设计目的是为了简化开发者在这些平台上调试网络请求和应用日志的过程。Pulse的核心特色是它使用SwiftUI来构建,这有助于开发者利用现代Swift语言的声明式UI优势来快速开发和维护。 **SwiftUI框架:** SwiftUI是一种声明式框架,由苹果公司推出,用于构建用户界面。与传统的UIKit相比,SwiftUI使用更加简洁的代码来描述界面和界面元素,它允许开发者以声明的方式定义视图和界面布局。SwiftUI支持跨平台,这意味着同一套代码可以在不同的Apple设备上运行,大大提高了开发效率和复用性。Pulse选择使用SwiftUI构建,显示了其对现代化、高效率开发的支持。 **Network Inspector功能:** Pulse具备Network Inspector功能,这个功能使得开发者能够在开发iOS应用时,直接从应用内记录和检查网络请求和日志。这种内嵌式的网络诊断能力非常有助于快速定位网络请求中的问题,如不正确的URL、不返回预期响应等。与传统的需要外部工具来抓包和分析的方式相比,这样的内嵌式工具大大减少了调试的复杂性。 **日志记录和隐私保护:** Pulse强调日志是本地记录的,并保证不会离开设备。这种做法对隐私保护至关重要,尤其是考虑到当前数据保护法规如GDPR等的严格要求。因此,Pulse的设计在帮助开发者进行问题诊断的同时,也确保了用户数据的安全性。 **集成和框架支持:** Pulse不仅仅是一个工具,它更是一个框架。它能够记录来自URLSession的事件,这意味着它可以与任何使用URLSession进行网络通信的应用或框架配合使用,包括但不限于Apple官方的网络库。此外,Pulse与使用它的框架(例如Alamofire)也能够良好配合,Alamofire是一个流行的网络请求库,广泛应用于Swift开发中。Pulse提供了一个PulseUI视图组件,开发者可以将其集成到自己的应用中,从而展示网络请求和其他事件。 **跨平台体验:** 开发者不仅可以在iOS应用中使用Pulse Console记录日志,还可以在macOS上通过Pulse应用程序查看和共享这些日志。这种跨平台的能力意味着开发者可以在不同的设备上进行日志分析,增强了开发和调试的灵活性。 **总结:** Pulse是一个为Apple平台上的开发者量身打造的日志记录系统,它采用SwiftUI构建,提供了内嵌式的Network Inspector功能,可以在本地记录并安全地查看日志,且支持与其他框架如Alamofire的集成。它不仅提升了调试的便捷性和效率,同时也顾及到了用户的隐私保护。Pulse的跨平台查看能力也是其一大亮点,使得开发者能够在一个统一的环境中处理iOS和macOS上的日志数据。对于使用Swift开发Apple应用的开发者而言,Pulse无疑是一个强大的调试辅助工具。
recommend-type

【深入扣子平台:图像生成机制全揭秘】:掌握背后技术,提升图像生成效率

# 1. 图像生成技术概述 图像生成技术是一门融合了计算机视觉、机器学习、图形学等多个领域知识的前沿技术。它通过算法模拟生成人工图像,广泛应用于艺术创作、游戏设计、医学影像等领域。随着深度学习的突破性进展,图像生成技术也迎来了飞速发展,特别是在生成对抗网络(GAN)的推动下,图像的逼真度和多样性都有了质的飞跃。 本章将对图像生成技术的概念、发展历史进行简要介绍,并分析其在社会中的