活动介绍

PS D:\anaconda3\envs\hjw\graduation_project> & D:/anaconda3/envs/hjw/python.exe d:/anaconda3/envs/hjw/graduation_project/data_preparation.py Traceback (most recent call last): File "d:/anaconda3/envs/hjw/graduation_project/data_preparation.py", line 1, in <module> from utils.data_utils import process_dataset ImportError: cannot import name 'process_dataset' from 'utils.data_utils' (d:\anaconda3\envs\hjw\graduation_project\utils\data_utils.py) PS D:\anaconda3\envs\hjw\graduation_project> & D:/anaconda3/envs/hjw/python.exe d:/anaconda3/envs/hjw/graduation_project/main.py Traceback (most recent call last): File "d:/anaconda3/envs/hjw/graduation_project/main.py", line 6, in <module> label_processor = LabelProcessor() File "d:\anaconda3\envs\hjw\graduation_project\utils.py", line 7, in __init__ self.char_set = self.load_characters() File "d:\anaconda3\envs\hjw\graduation_project\utils.py", line 12, in load_characters return sorted({'京', '沪', '0', '1',..., 'Z'}) TypeError: '<' not supported between instances of 'ellipsis' and 'str'

时间: 2025-07-08 10:14:23 浏览: 19
<think>嗯,用户遇到了两个Python错误,一个是ImportError,另一个是TypeError。首先,我得仔细看看错误信息,然后逐步分析可能的原因和解决办法。 第一个错误是在运行data_preparation.py时出现的ImportError,无法从utils.data_utils导入process_dataset。这时候需要考虑几个可能性。首先,用户可能没有正确安装或设置utils模块,或者文件路径有问题。检查utils目录是否存在,data_utils.py里是否有process_dataset函数。另外,Python的模块导入机制有时候会因为相对导入的问题导致错误,需要确认导入语句是否正确,比如是否使用了绝对导入还是相对导入。还有可能是文件命名冲突,比如utils.py和标准库中的模块同名,导致导入错误。或者,用户可能在修改代码后没有重新安装或更新环境,导致缓存中的旧版本没有更新,这时候需要清除.pyc文件或重启解释器。 第二个错误是在运行main.py时出现的TypeError,提示在排序集合时出现了'ellipsis'和'str'之间的比较错误。查看代码中的self.char_set = sorted({'京', '沪', '0', '1',..., 'Z'}),这里用户可能用了省略号...来表示中间的其他字符,但Python中的...是Ellipsis对象,会导致类型错误。正确的做法应该是将所有的字符都明确列出,或者使用正确的生成方式,比如字符串拼接或者使用range生成数字和字母。例如,将数字0-9、字母A-Z等用更系统的方式生成,避免手动输入导致错误。 接下来需要给出用户具体的解决步骤。对于第一个ImportError,建议用户检查文件结构,确认data_utils.py的位置,检查process_dataset函数是否存在,检查导入语句是否正确,是否有循环导入,以及是否存在命名冲突。对于第二个TypeError,需要修正字符集合中的省略号,替换为实际的字符,或者使用更高效的方法生成字符集合,比如使用字符串的join方法和列表推导式来生成所有需要的字符。 同时,要提醒用户在修改后重新运行脚本,并确保环境配置正确,比如激活正确的conda环境,安装所有依赖库。如果问题依然存在,可能需要进一步调试或寻求更多帮助。整个过程中,需要保持步骤清晰,语言易懂,避免使用过于专业的术语,让用户能够逐步跟随操作解决问题。</think>从错误信息分析,你遇到了两个关键问题,分步解决如下: $\boxed{\text{问题一:ImportError: cannot import name 'process_dataset'}}$ $\boxed{\text{解决方案}}$ 1. **检查文件结构**:确认项目目录中存在 `utils/data_utils.py` 文件,且文件路径与导入语句匹配 2. **验证函数存在性**:打开 `data_utils.py` 文件,确认其中包含 `def process_dataset(...)` 函数定义 3. **检查导入方式**: ```python # 正确格式示例(绝对导入) from utils.data_utils import process_dataset ``` 4. **排查循环导入**:确保 `data_utils.py` 没有间接导入当前执行脚本的依赖 5. **清除.pyc缓存**:删除 `__pycache__` 目录和所有 `.pyc` 文件后重新运行 $\boxed{\text{问题二:TypeError: '<' not supported between instances of 'ellipsis' and 'str'}}$ $\boxed{\text{错误根源}}$ ```python # 错误代码片段 return sorted({'京', '沪', '0', '1',..., 'Z'}) # 使用了Python的省略号对象(...) ``` $\boxed{\text{修正方案}}$ 1. **完整列举字符集**: ```python chars = {'京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑', '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤', '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'} return sorted(chars) ``` 2. **使用生成式优化**: ```python provinces = [ '京','沪','津','渝','冀','晋','蒙','辽','吉','黑','苏','浙','皖','闽','赣','鲁','豫','鄂','湘','粤','桂','琼','川','贵','云','藏','陕','甘','青','宁','新' ] numbers = [str(i) for i in range(10)] letters = [chr(ord('A')+i) for i in range(26) if chr(ord('A')+i) not in {'I','O'}] return sorted(provinces + numbers + letters) ``` $\boxed{\text{验证步骤}}$ 1. 在Python交互环境中测试字符集生成: ```python >>> test_set = {'京', 'A', '0', 'Z', '9'} >>> sorted(test_set) # 应该返回 ['0', '9', 'A', 'Z', '京'] ``` $\boxed{\text{补充建议}}$ 1. 使用虚拟环境确认依赖一致性: ```bash conda activate hjw pip list | grep utils # 检查是否安装了第三方utils库产生冲突 ``` 2. 在`utils/__init__.py`中添加显式导出: ```python # utils/__init__.py from .data_utils import process_dataset __all__ = ['data_utils', 'process_dataset'] ```
阅读全文

相关推荐

Traceback (most recent call last): File "E:\pythonproject\lab1.py", line 49, in <module> import sympy File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\__init__.py", line 51, in <module> from .core import (sympify, SympifyError, cacheit, Basic, Atom, File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\core\__init__.py", line 4, in <module> from .sympify import sympify, SympifyError File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\core\sympify.py", line 9, in <module> from sympy.core.random import choice File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\core\random.py", line 25, in <module> from sympy.utilities.iterables import is_sequence File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\utilities\__init__.py", line 4, in <module> from .iterables import (flatten, group, take, subsets, File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\utilities\iterables.py", line 18, in <module> from sympy.utilities.decorator import deprecated File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\utilities\decorator.py", line 8, in <module> from sympy.testing.runtests import DependencyError, SymPyDocTests, PyTestReporter File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\testing\__init__.py", line 3, in <module> from .runtests import test, doctest File "D:\Anaconda\envs\pythonproject\lib\site-packages\sympy\testing\runtests.py", line 20, in <module> import pdb File "D:\Anaconda\envs\pythonproject\lib\pdb.py", line 74, in <module> import cmd File "D:\Anaconda\envs\pythonproject\lib\cmd.py", line 50, in <module> IDENTCHARS = string.ascii_letters + string.digits + '_' AttributeError: module 'string' has no attribute 'ascii_letters'这是什么错误

robot@robot-NUC7CJYH:~$ rosrun abot_vlm vlm_node.py Traceback (most recent call last): File "/home/robot/catkin_ws/src/abot_vlm/scripts/vlm_node.py", line 11, in <module> import openai ImportError: No module named openai robot@robot-NUC7CJYH:~$ pip install openai Requirement already satisfied: openai in ./anaconda3/envs/vlm/lib/python3.8/site-packages (1.65.4) Requirement already satisfied: anyio<5,>=3.5.0 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (4.5.2) Requirement already satisfied: distro<2,>=1.7.0 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (1.9.0) Requirement already satisfied: httpx<1,>=0.23.0 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (0.28.1) Requirement already satisfied: jiter<1,>=0.4.0 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (0.8.2) Requirement already satisfied: pydantic<3,>=1.9.0 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (2.10.6) Requirement already satisfied: sniffio in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (1.3.1) Requirement already satisfied: tqdm>4 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (4.67.1) Requirement already satisfied: typing-extensions<5,>=4.11 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from openai) (4.12.2) Requirement already satisfied: idna>=2.8 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from anyio<5,>=3.5.0->openai) (3.10) Requirement already satisfied: exceptiongroup>=1.0.2 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from anyio<5,>=3.5.0->openai) (1.2.2) Requirement already satisfied: certifi in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from httpx<1,>=0.23.0->openai) (2025.1.31) Requirement already satisfied: httpcore==1.* in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from httpx<1,>=0.23.0->openai) (1.0.7) Requirement already satisfied: h11<0.15,>=0.13 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai) (0.14.0) Requirement already satisfied: annotated-types>=0.6.0 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from pydantic<3,>=1.9.0->openai) (0.7.0) Requirement already satisfied: pydantic-core==2.27.2 in ./anaconda3/envs/vlm/lib/python3.8/site-packages (from pydantic<3,>=1.9.0->openai) (2.27.2) robot@robot-NUC7CJYH:~$

FAILED: /home/ros1/GraspNet_ros/knn/build/temp.linux-x86_64-cpython-38/home/ros1/GraspNet_ros/knn/src/vision.o c++ -MMD -MF /home/ros1/GraspNet_ros/knn/build/temp.linux-x86_64-cpython-38/home/ros1/GraspNet_ros/knn/src/vision.o.d -pthread -B /home/ros1/anaconda3/envs/yolo/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -DWITH_CUDA -I/home/ros1/GraspNet_ros/knn/src -I/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include -I/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/TH -I/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/THC -I/usr/local/cuda-11.4/include -I/home/ros1/anaconda3/envs/yolo/include/python3.8 -c -c /home/ros1/GraspNet_ros/knn/src/vision.cpp -o /home/ros1/GraspNet_ros/knn/build/temp.linux-x86_64-cpython-38/home/ros1/GraspNet_ros/knn/src/vision.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=knn_pytorch -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14 cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ In file included from /home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/ATen/Parallel.h:140, from /home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/utils.h:3, from /home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/nn/cloneable.h:5, from /home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/nn.h:3, from /home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/all.h:13, from /home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/torch/extension.h:4, from /home/ros1/GraspNet_ros/knn/src/cpu/vision.h:2, from /home/ros1/GraspNet_ros/knn/src/knn.h:2, from /home/ros1/GraspNet_ros/knn/src/vision.cpp:1: /home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/include/ATen/ParallelOpenMP.h:83: warning: ignoring #pragma omp parallel [-Wunknown-pragmas] 83 | #pragma omp parallel for if ((end - begin) >= grain_size) | In file included from /home/ros1/GraspNet_ros/knn/src/vision.cpp:1: /home/ros1/GraspNet_ros/knn/src/knn.h: In function ‘int knn(at::Tensor&, at::Tensor&, at::Tensor&)’: /home/ros1/GraspNet_ros/knn/src/knn.h:36:42: error: ‘c10::cuda::CUDACachingAllocator’ has not been declared 36 | float *dist_dev = (float*)c10::cuda::CUDACachingAllocator::raw_alloc(ref_nb * query_nb * sizeof(float)); | ^~~~~~~~~~~~~~~~~~~~ /home/ros1/GraspNet_ros/knn/src/knn.h:45:16: error: ‘c10::cuda::CUDACachingAllocator’ has not been declared 45 | c10::cuda::CUDACachingAllocator::raw_delete(dist_dev); | ^~~~~~~~~~~~~~~~~~~~ ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1667, in _run_ninja_build subprocess.run( File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/subprocess.py", line 516, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "setup.py", line 62, in <module> setup( File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 183, in setup return run_commands(dist) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 199, in run_commands dist.run_commands() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 954, in run_commands self.run_command(cmd) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/dist.py", line 950, in run_command super().run_command(command) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/command/install.py", line 97, in run self.do_egg_install() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/command/install.py", line 149, in do_egg_install self.run_command('bdist_egg') File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/dist.py", line 950, in run_command super().run_command(command) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/command/bdist_egg.py", line 168, in run cmd = self.call_command('install_lib', warn_dir=False) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/command/bdist_egg.py", line 154, in call_command self.run_command(cmdname) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/dist.py", line 950, in run_command super().run_command(command) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/command/install_lib.py", line 19, in run self.build() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/command/install_lib.py", line 110, in build self.run_command('build_ext') File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/dist.py", line 950, in run_command super().run_command(command) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 98, in run _build_ext.run(self) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in run self.build_extensions() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 708, in build_extensions build_ext.build_extensions(self) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/Cython/Distutils/build_ext.py", line 136, in build_extension super().build_extension(ext) File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 557, in build_extension objects = self.compiler.compile( File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 529, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1354, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/home/ros1/anaconda3/envs/yolo/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1683, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension

Traceback (most recent call last): File "D:/pythonProject/DATA/jaffeim.ages(1)/test3.py", line 8, in <module> data=pd.read_csv('D:\pythonProject\preprocessing\face_test.csv',index_col=0) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\util\_decorators.py", line 311, in wrapper return func(*args, **kwargs) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\io\parsers\readers.py", line 586, in read_csv return _read(filepath_or_buffer, kwds) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\io\parsers\readers.py", line 482, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\io\parsers\readers.py", line 811, in __init__ self._engine = self._make_engine(self.engine) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\io\parsers\readers.py", line 1040, in _make_engine return mapping[engine](self.f, **self.options) # type: ignore[call-arg] File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 51, in __init__ self._open_handles(src, kwds) File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\io\parsers\base_parser.py", line 229, in _open_handles errors=kwds.get("encoding_errors", "strict"), File "C:\ProgramData\Anaconda3\envs\pythonProject\lib\site-packages\pandas\io\common.py", line 707, in get_handle newline="", OSError: [Errno 22] Invalid argument: 'D:\\pythonProject\\preprocessing\x0cace_test.csv'

/Users/zhengyaqi/opt/anaconda3/envs/py/bin/python /Users/zhengyaqi/PycharmProjects/pythonProject13/main.py Traceback (most recent call last): File "/Users/zhengyaqi/PycharmProjects/pythonProject13/main.py", line 32, in <module> find_and_copy_files(source_folder, target_folder, excel_file) File "/Users/zhengyaqi/PycharmProjects/pythonProject13/main.py", line 7, in find_and_copy_files excel_data = pd.read_excel(excel_file, engine='xlrd') File "/Users/zhengyaqi/opt/anaconda3/envs/py/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 478, in read_excel io = ExcelFile(io, storage_options=storage_options, engine=engine) File "/Users/zhengyaqi/opt/anaconda3/envs/py/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 1513, in __init__ self._reader = self._engines[engine](self._io, storage_options=storage_options) File "/Users/zhengyaqi/opt/anaconda3/envs/py/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py", line 35, in __init__ super().__init__(filepath_or_buffer, storage_options=storage_options) File "/Users/zhengyaqi/opt/anaconda3/envs/py/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 540, in __init__ self.book = self.load_workbook(self.handles.handle) File "/Users/zhengyaqi/opt/anaconda3/envs/py/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py", line 48, in load_workbook return open_workbook(file_contents=data) File "/Users/zhengyaqi/opt/anaconda3/envs/py/lib/python3.10/site-packages/xlrd/__init__.py", line 170, in open_workbook raise XLRDError(FILE_FORMAT_DESCRIPTIONS[file_format]+'; not supported') xlrd.biffh.XLRDError: Excel xlsx file; not supported报错结果

Traceback (most recent call last): File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/env.py", line 373, in get_module module = tf.load_op_library(str(module_file)) File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/tensorflow/python/framework/load_library.py", line 54, in load_op_library lib_handle = py_tf.TF_LoadLibrary(library_filename) tensorflow.python.framework.errors_impl.NotFoundError: /home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/op/libdeepmd_op.so: undefined symbol: _ZN6deepmd33prod_env_mat_a_nvnmd_quantize_cpuIdEEvPT_S2_S2_PiPKS1_PKiRKNS_10InputNlistEiS5_S5_iiffSt6vectorIiSaIiEE The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/chb/anaconda3/envs/deepmd2/bin/dp", line 7, in <module> from deepmd.entrypoints.main import main File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/__init__.py", line 10, in <module> import deepmd.utils.network as network File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/utils/__init__.py", line 2, in <module> from .data import ( File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/utils/data.py", line 11, in <module> from deepmd.env import ( File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/env.py", line 459, in <module> op_module = get_module("deepmd_op") File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/env.py", line 430, in get_module raise RuntimeError(error_message) from e RuntimeError: This deepmd-kit package is inconsitent with TensorFlow Runtime, thus an error is raised when loading deepmd_op. You need to rebuild deepmd-kit against this TensorFlow runtime. WARNING: devtoolset on RHEL6 and RHEL7 does not support _GLIBCXX_USE_CXX11_ABI=1. See https://bugzilla.redhat.com/show_bug.cgi?id=1546704

最新推荐

recommend-type

三菱FX3U三轴伺服电机与威纶通触摸屏组合程序详解:轴点动、回零与定位控制及全流程解析

三菱FX3U三轴伺服电机与威纶通触摸屏的程序编写方法及其应用。主要内容涵盖伺服电机主控程序、触摸屏程序、轴点动、回零及定位程序、通讯模块程序以及威纶显示器程序的分析。通过对各个模块的深入探讨,帮助读者理解每个部分的功能和实现方式,确保机械运动控制的准确性、高效性和稳定性。此外,文章还提供了关于程序编写过程中可能遇到的问题及解决方案。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对三菱FX3U三轴伺服电机和威纶通触摸屏有实际操作需求的专业人士。 使用场景及目标:适用于工业自动化项目中,旨在提高对三菱FX3U三轴伺服电机和威纶通触摸屏的理解和应用能力,掌握模块化编程技巧,解决实际工程中的编程难题。 其他说明:文中不仅讲解了各模块的具体实现细节,还强调了程序的安全性和可靠性,为项目的成功实施提供了有力的支持。
recommend-type

职业介绍与人才招聘综合管理系统-基于宏达数据库信息管理开发平台的专业人力资源服务软件-包含基本信息设置-用人单位管理-求职人员登记-数据查询-统计分析-报表生成-打印输出-权限控制.zip

cursor免费次数用完职业介绍与人才招聘综合管理系统_基于宏达数据库信息管理开发平台的专业人力资源服务软件_包含基本信息设置_用人单位管理_求职人员登记_数据查询_统计分析_报表生成_打印输出_权限控制.zip
recommend-type

基于Spark2x分布式计算框架的实时新闻大数据分析可视化系统-实现用户浏览日志采集与实时处理-新闻话题热度排名统计-时段流量峰值分析-新闻曝光量监控-数据可视化展示-采用Kaf.zip

基于Spark2x分布式计算框架的实时新闻大数据分析可视化系统_实现用户浏览日志采集与实时处理_新闻话题热度排名统计_时段流量峰值分析_新闻曝光量监控_数据可视化展示_采用Kaf.zip大数据实战项目
recommend-type

基于springboot小型哺乳类宠物诊所管理系统-4339s0c8【附万字论文+PPT+包部署+录制讲解视频】.zip

基于springboot小型哺乳类宠物诊所管理系统-4339s0c8【附万字论文+PPT+包部署+录制讲解视频】.zip
recommend-type

Pansophica开源项目:智能Web搜索代理的探索

Pansophica开源项目是一个相对较新且具有创新性的智能Web搜索代理,它突破了传统搜索引擎的界限,提供了一种全新的交互方式。首先,我们来探讨“智能Web搜索代理”这一概念。智能Web搜索代理是一个软件程序或服务,它可以根据用户的查询自动执行Web搜索,并尝试根据用户的兴趣、历史搜索记录或其他输入来提供个性化的搜索结果。 Pansophica所代表的不仅仅是搜索结果的展示,它还强调了一个交互式的体验,在动态和交互式虚拟现实中呈现搜索结果。这种呈现方式与现有的搜索体验有着根本的不同。目前的搜索引擎,如Google、Bing和Baidu等,多以静态文本和链接列表的形式展示结果。而Pansophica通过提供一个虚拟现实环境,使得搜索者可以“扭转”视角,进行“飞行”探索,以及“弹网”来浏览不同的内容。这种多维度的交互方式使得信息的浏览变得更加快速和直观,有望改变用户与网络信息互动的方式。 接着,我们关注Pansophica的“开源”属性。所谓开源,指的是软件的源代码可以被公众获取,任何个人或组织都可以自由地使用、学习、修改和分发这些代码。开源软件通常由社区进行开发和维护,这样的模式鼓励了协作创新并减少了重复性劳动,因为全世界的开发者都可以贡献自己的力量。Pansophica项目作为开源软件,意味着其他开发者可以访问和使用其源代码,进一步改进和扩展其功能,甚至可以为Pansophica构建新的应用或服务。 最后,文件名称“Pansophica-src-1.3”表明了我们讨论的特定版本的Pansophica开源代码。数字“1.3”很可能指的是该版本号,表明这是Pansophica项目的第1.3个公开版本。这个版本号对于开发者来说很重要,因为它可以帮助他们追踪更新的进度、比较版本间的差异以及选择最适合其项目的版本。 综合以上信息,Pansophica开源项目不仅在搜索代理领域引入了创新的交互方式,而且通过开源的方式,提供了技术共享和协作的可能性。对于IT行业来说,开源项目是推动技术发展的重要力量,它激发了社区的活力,促进了知识的传播和技术的进步。通过构建一个开源社区,Pansophica可以吸引来自世界各地的开发者和研究人员,共同探索如何将搜索技术与交互式虚拟现实技术结合起来,为用户带来更加丰富和有效的信息检索体验。同时,Pansophica的开源性质也使其更容易适应未来技术的发展,随着社区的不断贡献和反馈,这一平台有望在功能和性能上得到持续的优化和增强。
recommend-type

跨平台内容提取无忧:coze工作流应对社交媒体挑战

# 1. 社交媒体内容提取的必要性与挑战 ## 1.1 内容提取的必要性 在数字时代,社交媒体内容是信息与数据流动的主干道,公司、个人和研究者都在寻求从这些信息中提取价值。无论是为了市场趋势分析、品牌监控、消费者洞察还是公共舆论监测,有效的社交媒体内容提取变得至关重要。这不仅有助于企业做出数据驱动的决策,也能使个人更好地理
recommend-type

vrrp主设备发送的免费arp

<think>好的,我现在需要回答用户关于VRRP主设备发送免费ARP的目的和工作原理的问题。首先,我得回忆一下VRRP的基本概念和工作机制。VRRP,虚拟路由冗余协议,主要用于在局域网中提供默认网关的冗余备份,确保网络的高可用性。主设备(Master)负责转发流量,而备用设备(Backup)则在主设备故障时接管工作。 用户的问题集中在主设备发送免费ARP的目的和机制上。根据引用[2],免费ARP用于通知下游设备虚拟MAC地址的变更。当主设备被选举出来后,它需要让局域网内的其他设备知道虚拟IP对应的MAC地址已经指向自己,这样流量才会被正确路由到主设备。免费ARP的作用应该就是更新这些设备的
recommend-type

为Ghost博客平台打造的Meteor流星包装使用指南

从给定文件信息中,我们可以提炼出以下IT知识点: ### 标题知识点:流星Ghost软件包 1. **流星Ghost软件包的用途**:流星Ghost软件包是专为Ghost博客平台设计的流星(Meteor)应用程序。流星是一个开源的全栈JavaScript平台,用于开发高性能和易于编写的Web应用程序。Ghost是一个开源博客平台,它提供了一个简单且专业的写作环境。 2. **软件包的作用**:流星Ghost软件包允许用户在流星平台上轻松集成Ghost博客。这样做的好处是可以利用流星的实时特性以及易于开发和部署的应用程序框架,同时还能享受到Ghost博客系统的便利和美观。 ### 描述知识点:流星Ghost软件包的使用方法 1. **软件包安装方式**:用户可以通过流星的命令行工具添加名为`mrt:ghost`的软件包。`mrt`是流星的一个命令行工具,用于添加、管理以及配置软件包。 2. **初始化Ghost服务器**:描述中提供了如何在服务器启动时运行Ghost的基本代码示例。这段代码使用了JavaScript的Promise异步操作,`ghost().then(function (ghostServer) {...})`这行代码表示当Ghost服务器初始化完成后,会在Promise的回调函数中提供一个Ghost服务器实例。 3. **配置Ghost博客**:在`then`方法中,首先会获取到Ghost服务器的配置对象`config`,用户可以在此处进行自定义设置,例如修改主题、配置等。 4. **启动Ghost服务器**:在配置完成之后,通过调用`ghostServer.start()`来启动Ghost服务,使其能够处理博客相关的请求。 5. **Web浏览器导航**:一旦流星服务器启动并运行,用户便可以通过Web浏览器访问Ghost博客平台。 ### 标签知识点:JavaScript 1. **JavaScript作为流星Ghost软件包的开发语言**:标签指出流星Ghost软件包是使用JavaScript语言开发的。JavaScript是一种在浏览器端广泛使用的脚本语言,它也是流星平台的基础编程语言。 2. **流星和Ghost共同使用的语言**:JavaScript同样也是Ghost博客平台的开发语言。这表明流星Ghost软件包可以无缝集成,因为底层技术栈相同。 ### 压缩包子文件的文件名称列表知识点:meteor-ghost-master 1. **版本控制和软件包结构**:文件名称`meteor-ghost-master`暗示了该软件包可能托管在像GitHub这样的版本控制系统上。文件名中的`master`通常指的是主分支或主版本。 2. **软件包的目录结构**:通过文件名称可以推断出该软件包可能拥有一个标准的流星软件包结构,包含了初始化、配置、运行等必要的模块和文件。 3. **软件包的维护状态**:由于文件名没有包含特定的版本号,我们无法直接得知软件包的最新更新情况。通常,软件包维护者会将最新的版本代码放在`master`分支上。 ### 总结 流星Ghost软件包提供了一个有效的解决方案,使得流星平台的开发者能够在他们的应用中添加Ghost博客功能。软件包的使用简便,通过流星的命令行工具安装,并通过JavaScript代码配置和启动Ghost服务。通过流星Ghost软件包,开发者能够享受流星的实时特性以及Ghost博客系统的便利性。此外,软件包的命名和结构也暗示了其维护和版本控制的模式,有助于开发者更好地理解如何使用和维护这一软件包。
recommend-type

抖音标题生成自动化:用coze工作流释放创意

# 1. 抖音标题生成自动化的重要性 随着社交媒体平台的崛起,内容的吸引力很大程度上取决于标题的创意与精准性。抖音作为一个日活亿级的短视频平台,高质量的标题能够有效提高视频的点击率,增加内容的传播。但是,人工撰写标题不仅耗时耗力,而且很难做到快速响应热点,自动化标题生成工具应运而生。coze工作流,作为一种实现自动化生成抖音标题的工具,其重要性不言而喻。它能够利用大数据分析和机器学习技术,提高标题的吸引
recommend-type

spss消费结构因子分析

<think>好的,我现在需要帮助用户在SPSS中进行消费结构的因子分析。首先,我要回忆一下因子分析的基本步骤和SPSS的操作流程。用户可能对SPSS不太熟悉,所以步骤要详细,同时需要结合他们提供的引用内容,特别是引用[2]中的适用条件和检验方法。 首先,用户提到了消费结构的数据,这可能包括多个变量,如食品、住房、交通等支出。因子分析适用于这种情况,可以降维并找出潜在因子。根据引用[2],需要检查样本量是否足够,变量间是否有相关性,以及KMO和Bartlett检验的结果。 接下来,我需要按照步骤组织回答:数据准备、适用性检验、因子提取、因子旋转、命名解释、计算得分。每个步骤都要简明扼要,说