活动介绍

std::vector<std::chrono::time_point<std::chrono::high_resolution_clock> > 用std::max_element 求最大值 返回值是什么

时间: 2025-07-29 11:02:26 浏览: 13
<think>我们有一个 `std::vector`,其元素类型为 `std::chrono::time_point<std::chrono::high_resolution_clock>`。我们想使用 `std::max_element` 来查找这个向量中的最大时间点(即最近的时间点)。 ### 问题分析 1. **`std::max_element` 的返回值类型**: - `std::max_element` 是标准库算法,用于查找范围中的最大元素。 - 它返回一个迭代器,指向范围中最大元素的位置。 - 因此,返回类型为 `std::vector<std::chrono::time_point<std::chrono::high_resolution_clock>>::iterator`。 2. **时间点的比较**: - `std::chrono::time_point` 类型已经重载了比较运算符(如 `<`, `==` 等),因此可以直接使用 `std::max_element` 来比较时间点。 ### 代码示例 ```cpp #include <vector> #include <algorithm> #include <chrono> int main() { // 定义时间点向量 using TimePoint = std::chrono::time_point<std::chrono::high_resolution_clock>; std::vector<TimePoint> timePoints; // 添加一些时间点(示例) timePoints.push_back(std::chrono::high_resolution_clock::now()); // ... 添加更多时间点 ... // 使用 std::max_element 查找最大时间点 auto maxIt = std::max_element(timePoints.begin(), timePoints.end()); // 此时 maxIt 是指向最大时间点的迭代器 // 如果需要获取该时间点的值,可以解引用 TimePoint maxTime = *maxIt; // 注意:如果向量为空,max_element 将返回 end() 迭代器,因此需要检查 if (maxIt != timePoints.end()) { // 安全地使用 maxTime } return 0; } ``` ### 返回值类型详解 - `std::max_element` 返回的迭代器类型是 `std::vector<TimePoint>::iterator`。 - 如果向量为空,则返回的迭代器等于 `timePoints.end()`。 - 通过解引用迭代器(`*maxIt`)可以得到 `TimePoint` 类型的值,即 `std::chrono::time_point<std::chrono::high_resolution_clock>`。 ### 注意事项 1. **空向量处理**:在使用返回的迭代器前,必须检查它是否有效(即不等于 `end()` 迭代器)。 2. **时间点比较**:时间点按时间先后顺序比较,较早的时间点小于较晚的时间点。因此,`std::max_element` 返回的是最晚的时间点(即最大值)。 3. **性能**:`std::max_element` 的时间复杂度为线性($O(n)$),因为它需要遍历整个向量。 ### 相关问题 1. 如何将 `std::chrono::high_resolution_clock::time_point` 转换为可读的字符串格式? 2. 在比较时间点时,`std::chrono::time_point` 的精度如何保证? 3. 如果时间点向量非常大,如何优化查找最大时间点的性能? 4. 在多线程环境中,如何安全地对时间点向量进行查找最大值操作? 5. 如何同时获取时间点向量中的最小值和最大值(避免两次遍历)? [^1]: `std::chrono::high_resolution_clock` 可能是系统时钟或稳定时钟的别名,具体取决于实现。</think>### `std::max_element` 返回值类型解析 在 `std::vector<std::chrono::time_point<std::chrono::high_resolution_clock>>` 上使用 `std::max_element` 时,**返回值类型是迭代器**,具体为: ```cpp std::vector<std::chrono::time_point<std::chrono::high_resolution_clock>>::iterator ``` #### 关键特性说明: 1. **迭代器类型** `std::max_element` 返回指向容器中最大元素的迭代器,而非元素本身: ```cpp auto it = std::max_element(vec.begin(), vec.end()); ``` 2. **获取实际值** 需解引用迭代器获得时间点对象: ```cpp using TimePoint = std::chrono::time_point<std::chrono::high_resolution_clock>; TimePoint maxTime = *it; // 解引用获取时间点 ``` 3. **比较规则** 时间点类型已内置比较运算符,可直接用于 `std::max_element`: ```cpp // 等效于:if (t1 < t2) 按时间先后比较 auto it = std::max_element(vec.begin(), vec.end()); ``` #### 完整使用示例: ```cpp #include <vector> #include <algorithm> #include <chrono> int main() { using Clock = std::chrono::high_resolution_clock; using TimePoint = std::chrono::time_point<Clock>; // 创建时间点向量 std::vector<TimePoint> timePoints; timePoints.push_back(Clock::now() - std::chrono::seconds(5)); timePoints.push_back(Clock::now()); timePoints.push_back(Clock::now() - std::chrono::seconds(10)); // 查找最大时间点(最近时间) auto maxIt = std::max_element(timePoints.begin(), timePoints.end()); // 验证结果 if (maxIt != timePoints.end()) { TimePoint maxTime = *maxIt; auto duration = maxTime.time_since_epoch(); auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(duration); std::cout << "Max time: " << ms.count() << " ms since epoch\n"; } } ``` #### 注意事项: 1. **空容器处理** 若 vector 为空,返回的迭代器等于 `end()`: ```cpp if (maxIt == vec.end()) { // 处理空容器情况 } ``` 2. **时钟稳定性** 由于 `high_resolution_clock` 可能是 `system_clock` 或 `steady_clock` 的别名[^1],比较不同时间段获取的时间点时需注意: - 如果是 `system_clock`,时间点可能因系统时间调整而回退 - 如果是 `steady_clock`,时间点保证单调递增 3. **性能考虑** 比较操作的时间复杂度为 $O(n)$,对于大型容器可考虑并行算法(C++17 起): ```cpp auto policy = std::execution::par; auto it = std::max_element(policy, vec.begin(), vec.end()); ``` ### 相关问题 1. 如何安全地将 `high_resolution_clock::time_point` 转换为日历时间字符串? 2. 当时间点向量为空时,`std::max_element` 的行为是什么? 3. C++17 并行算法对时间点比较的性能提升有多少? 4. 如何同时获取时间点向量中的最小值和最大值(避免两次遍历)? 5. 如果 `high_resolution_clock` 是 `steady_clock` 的别名,为什么不能直接转换为日历时间?[^1] [^1]: `high_resolution_clock` 可能是 `system_clock` 或 `steady_clock` 的别名,具体取决于实现[^1][^2]。 [^2]: 时间点比较依赖于时钟特性,`system_clock` 可能受系统时间调整影响[^2]。
阅读全文

相关推荐

void DataSDMap::parse_graph(OsmGraph const &sdMap, Eigen::Affine3d const &transformationMatrix, std::vector<EdgeInfo> &edges_info, bool crop) const noexcept { // get roi corner points std::vector canvas_polygon; if (crop) { double min_x = -1 * roiLength; double max_x = roiLength; double min_y = -1 * roiWidth; double max_y = roiWidth; canvas_polygon.push_back(Point(min_x, min_y)); canvas_polygon.push_back(Point(min_x, max_y)); canvas_polygon.push_back(Point(max_x, max_y)); canvas_polygon.push_back(Point(max_x, min_y)); } auto start = std::chrono::high_resolution_clock::now(); edges_info.clear(); // 读取graph中的edges数据,还原edge geometry // std::cout << "Number of edges: " << boost::num_edges(sdMap) << std::endl; std::pair<boost::adjacency_list<>::vertex_iterator, boost::adjacency_list<>::vertex_iterator> vertices_pair = boost::vertices(sdMap); // boost::iterator_range<boost::graph_traits<OsmGraph>::vertex_iterator> // vertices_pair = boost::make_iterator_range(vertices(sdMap)); for (auto e : // boost::make_iterator_range(boost::edges(sdMap))) for (auto e = boost::edges(sdMap).first; e != boost::edges(sdMap).second; ++e) { const OsmEdgeProperties &edgeProps = sdMap[*e]; // get vertices geometry LineString linestring_global; std::string line_geometry_string = edgeProps.geometry; if (line_geometry_string.empty()) { boost::adjacency_list<>::vertex_descriptor source = boost::source(*e, sdMap); boost::adjacency_list<>::vertex_descriptor target = boost::target(*e, sdMap); if (source == target) continue; line_geometry_string = "LINESTRING ("; const OsmNodeProperties &startNodeProps = sdMap[*(vertices_pair.first + source)]; line_geometry_string = line_geometry_string + startNodeProps.x + " " + startNodeProps.y + ", "; const OsmNodeProperties &endNodeProps = sdMap[*(vertices_pair.first + target)]; line_geometry_string = line_geometry_string + " " + endNodeProps.x + " " + endNodeProps.y + ")"; } auto end0 = std::chrono::high_resolution_clock::now(); boost::geometry::read_wkt(line_geometry_string, linestring_global); auto end1 = std::chrono::high_resolution_clock::now(); std::cout << "Memory: " << malloc_stats() << " KB\n"; auto delay0 = std::chrono::duration_cast<std::chrono::milliseconds>(end0 - start).count(); auto delay1 = std::chrono::duration_cast<std::chrono::milliseconds>(end1 - start).count(); std::cout << "-----------------sdmap encode timer delay : " << delay0 << " delay1: " << delay1 << std::endl; 分析这段代码在周期性调用时,运行时间在递增,分析可能的原因?

#include <iostream> #include <cmath> #include <chrono> #include <thread> #include <vector> #include <gmpxx.h> #include <fstream> #include <sstream> #include <iomanip> #include <mutex> #include <atomic> #include <sys/sysinfo.h> #include <sys/resource.h> #include <fstream> #include <unistd.h> #include <nvml.h> // NVIDIA GPU监控 std::mutex output_mutex; std::atomic<bool> stop_monitor(false); mpf_class pi_value(0, 0); // 高精度π值 std::atomic<int> iteration_count(0); // 获取CPU使用率 double get_cpu_usage() { static uint64_t last_total = 0, last_idle = 0; std::ifstream stat_file("/proc/stat"); std::string line; std::getline(stat_file, line); std::istringstream iss(line); std::string cpu; uint64_t user, nice, system, idle, iowait, irq, softirq, steal; iss >> cpu >> user >> nice >> system >> idle >> iowait >> irq >> softirq >> steal; uint64_t total = user + nice + system + irq + softirq + steal; uint64_t idle_time = idle + iowait; double usage = 0.0; if (last_total != 0) { uint64_t total_diff = total - last_total; uint64_t idle_diff = idle_time - last_idle; usage = 100.0 * (1.0 - static_cast<double>(idle_diff) / total_diff); } last_total = total; last_idle = idle_time; return usage; } // 获取内存使用率 double get_memory_usage() { struct sysinfo mem_info; sysinfo(&mem_info); double total = mem_info.totalram; double free = mem_info.freeram; return 100.0 * (1.0 - free / total); } // 获取GPU使用率 (NVIDIA) double get_gpu_usage() { nvmlReturn_t result; nvmlDevice_t device; unsigned int utilization; result = nvmlInit(); if (result != NVML_SUCCESS) return -1.0; result = nvmlDeviceGetHandleByIndex(0, &device); if (result != NVML_SUCCESS) { nvmlShutdown(); return -1.0; } result = nvmlDeviceGetUtilizationRates(device, &utilization); if (result != NVML_SUCCESS) { nvmlShutdown(); return -1.0; } nvmlShutdown(); return static_cast<double>(utilization.gpu); } // 资源监控线程函数 void monitor_resources() { while (!stop_monitor) { double cpu = get_cpu_usage(); double mem = get_memory_usage(); double gpu = get_gpu_usage(); { std::lock_guard<std::mutex> lock(output_mutex); std::cout << "\033[2K"; // 清除当前行 std::cout << "\r[资源监控] CPU: " << std::fixed << std::setprecision(1) << cpu << "% | " << "内存: " << mem << "% | " << "GPU: " << (gpu >= 0 ? std::to_string(static_cast<int>(gpu)) + "%" : "N/A"); std::cout.flush(); } std::this_thread::sleep_for(std::chrono::seconds(1)); } } // Chudnovsky算法计算π mpf_class chudnovsky_pi(unsigned int precision, unsigned int iterations) { mpf_set_default_prec(precision); mpf_class pi(0, precision); mpf_class sum(0, precision); mpf_class k1(13591409, precision); mpf_class k2(545140134, precision); mpf_class k3(-262537412640768000, precision); mpf_class k4(426880, precision); mpf_class k5(10005, precision); mpf_class sqrt_c(0, precision); k5 = sqrt(k5); sqrt_c = k4 * k5; mpz_class a(1); mpz_class b(1); mpz_class a_prime(1); mpz_class b_prime(1); for (unsigned int k = 0; k < iterations; k++) { mpf_class numerator(0, precision); mpf_class denominator(0, precision); if (k == 0) { a = 1; b = 1; } else { // 使用二进制分裂法优化计算 a_prime = (6*k-5)*(2*k-1)*(6*k-1); b_prime = k*k*k * k3 / 24; a *= a_prime; b *= b_prime; } numerator = k1 + k2 * k; denominator = a * b; sum += numerator / denominator; iteration_count = k + 1; // 每100次迭代显示进度 if (k % 100 == 0) { pi = sqrt_c / sum; std::lock_guard<std::mutex> lock(output_mutex); std::cout << "\n[计算进度] 迭代: " << k << "/" << iterations << " | 当前π值: " << std::setprecision(15) << pi << std::endl; } } pi = sqrt_c / sum; return pi; } int main() { const unsigned int precision = 100000; // 二进制精度位 const unsigned int iterations = 1000; // 迭代次数 std::cout << "开始计算π值 (Chudnovsky算法)..." << std::endl; std::cout << "精度: " << precision << "位 | 最大迭代: " << iterations << std::endl; // 启动资源监控线程 std::thread monitor_thread(monitor_resources); // 记录开始时间 auto start_time = std::chrono::high_resolution_clock::now(); // 计算π值 pi_value = chudnovsky_pi(precision, iterations); // 记录结束时间 auto end_time = std::chrono::high_resolution_clock::now(); auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time); // 停止监控线程 stop_monitor = true; monitor_thread.join(); // 输出最终结果 std::cout << "\n\n计算完成!" << std::endl; std::cout << "耗时: " << duration.count() / 1000.0 << " 秒" << std::endl; std::cout << "最终π值(前50位): " << std::setprecision(50) << pi_value << std::endl; return 0; } 此代码报错,修复错误 报错信息:default.cpp:6:10: fatal error: 'gmpxx.h' file not found #include <gmpxx.h> ^~~~~~~~~ 1 error generated. 输出完整代码

#include <mpi.h> #include <cmath> #include <cstdlib> #include <cstdio> #include <vector> #include <chrono> #include <thread> #define MAX_THREADS 8 // 随机点生成器,判断是否位于单位圆内部 __attribute__((always_inline)) inline void generate_random_point(bool& inCircle, double& point_x, double& point_y) { static thread_local std::mt19937 mt(std::hash<std::thread::id>()(std::this_thread::get_id())); auto dist = std::uniform_real_distribution<>(0., 1.); point_x = dist(mt), point_y = dist(mt); inCircle = ((point_x * point_x + point_y * point_y) < 1. ? true : false); } // 计算每个进程的任务量 size_t calculate_samples_per_rank(size_t totalSamples, int rank, int worldSize) { return (rank == worldSize - 1) ? totalSamples - (size_t)((worldSize - 1) * floor(totalSamples / worldSize)) : (size_t)floor(totalSamples / worldSize); } // MPI+OpenMP 混合计算子任务 size_t calc_subtask_mpi_omp(const size_t samples, int worldRank, int worldSize) { size_t hits_locally = 0; // OpenMP 并行循环处理样本 #pragma omp parallel for reduction(+:hits_locally) for (size_t i = 0; i < samples; ++i) { bool flag; double px, py; generate_random_point(flag, px, py); if (flag) { ++hits_locally; } } return hits_locally; } int main(int argc, char* argv[]) { MPI_Init(&argc, &argv); int worldRank, worldSize; MPI_Comm_rank(MPI_COMM_WORLD, &worldRank); MPI_Comm_size(MPI_COMM_WORLD, &worldSize); size_t totalSamples = 1e8; // 总采样次数 size_t samplesPerProcess = calculate_samples_per_rank(totalSamples, worldRank, worldSize); // 设置最大线程数 omp_set_num_threads(MAX_THREADS); // 开始时间记录 if (worldRank == 0) { printf("Start calculating PI with Monte Carlo method using MPI and OpenMP.\n"); } auto start_time = std::chrono::high_resolution_clock::now(); // 执行本地计算 size_t localHits = calc_subtask_mpi_omp(samplesPerProcess, worldRank, worldSize); // 收集所有进程的结果到根节点 size_t globalHits = 0; MPI_Reduce(&localHits, &globalHits, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_WORLD); auto end_time = std::chrono::high_resolution_clock::now(); double elapsed_seconds = std::chrono::duration_cast<std::chrono::duration<double>>(end_time - start_time).count(); if (worldRank == 0) { double pi_estimate = 4.0 * globalHits / totalSamples; printf("Estimated Pi: %.6f | Total Samples: %zu | Elapsed Time: %.4fs\n", pi_estimate, totalSamples, elapsed_seconds); } MPI_Finalize(); return EXIT_SUCCESS; }设置最大线程数为4 总共点数为1e9

for (auto e = boost::edges(sdMap).first; e != boost::edges(sdMap).second; ++e) { auto start = std::chrono::high_resolution_clock::now(); const OsmEdgeProperties &edgeProps = sdMap[*e]; // get vertices geometry LineString linestring_global; std::string line_geometry_string = edgeProps.geometry; if (line_geometry_string.empty()) { boost::adjacency_list<>::vertex_descriptor source = boost::source(*e, sdMap); boost::adjacency_list<>::vertex_descriptor target = boost::target(*e, sdMap); if (source == target) continue; line_geometry_string = "LINESTRING ("; const OsmNodeProperties &startNodeProps = sdMap[*(vertices_pair.first + source)]; line_geometry_string = line_geometry_string + startNodeProps.x + " " + startNodeProps.y + ", "; const OsmNodeProperties &endNodeProps = sdMap[*(vertices_pair.first + target)]; line_geometry_string = line_geometry_string + " " + endNodeProps.x + " " + endNodeProps.y + ")"; } // auto end = std::chrono::high_resolution_clock::now(); boost::geometry::read_wkt(line_geometry_string, linestring_global); // auto end = std::chrono::high_resolution_clock::now(); // auto delay = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count(); // std::cout << "sdmap encode timer delay : " << delay << std::endl; // get Properties std::string fclass = edgeProps.fclass; std::vector<std::string> fclass_explode; if (fclass.front() == '[' && fclass.back() == ']') { fclass = fclass.substr(1, fclass.size() - 2); fclass.erase(std::remove_if(fclass.begin(), fclass.end(), ::isspace), fclass.end()); boost::split(fclass_explode, fclass, boost::is_any_of(",")); } else { fclass_explode.push_back(fclass); } for (size_t i = 0; i < fclass_explode.size(); i++) { fclass = "other"; for (const auto &pair : HIGHWAY_SETS) { if (pair.second.find(fclass_explode[i]) != pair.second.end()) { fclass = pair.first; break; } } fclass_explode[i] = fclass; } // transform geometry to local coordinate LineString linestring_local; transformGlobalToEgo(transformationMatrix, linestring_global, linestring_local); std::vector inner_lines; // crop try { if (crop) { get_inner_lines(canvas_polygon, linestring_local, inner_lines); } else { inner_lines.push_back(linestring_local); } } catch (const std::exception &e) { std::cerr << "error: " << e.what() << std::endl; continue; } // 将裁剪得到的线段加入结果 for (std::string sub_fclass : fclass_explode) { for (LineString inner_line : inner_lines) { EdgeInfo edge_info{fclass, inner_line}; edges_info.push_back(edge_info); } } } 分析并理解这段代码,发现耗时逐渐递增主要发生在这行段for循环里。

#include <iostream> #include <fstream> #include <chrono> #include <opencv2/opencv.hpp> #include "NvInfer.h" #include "cuda_utils.h" #include "logging.h" #include "model.h" #include "postprocess.h" #include "preprocess.h" #include "types.h" #include "utils.h" #include "calibrator.h" #include "macros.h" using namespace nvinfer1; // 配置参数 const float CONF_THRESH = 0.5f; const float NMS_THRESH = 0.45f; const int BATCH_SIZE = 1; const int INPUT_H = 640; const int INPUT_W = 640; const int CLASS_NUM = 80; const int OUTPUT_SIZE = 1000 * sizeof(Detection) / sizeof(float) + 1; static Logger gLogger; // 类别名称定义(必须与训练时的类别顺序一致) const char* CLASS_NAMES[] = { "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", // ... 补充完整80个类别 "toothbrush" }; class YOLOv5TRT { public: explicit YOLOv5TRT(const std::string& enginePath) { initEngine(enginePath); setupBuffers(); cuda_preprocess_init(INPUT_H * INPUT_W * 3); } ~YOLOv5TRT() { // 释放资源 cudaStreamDestroy(stream_); CUDA_CHECK(cudaFree(inputBuffer_)); CUDA_CHECK(cudaFree(outputBuffer_)); delete context_; // 使用delete替代destroy() delete engine_; delete runtime_; cuda_preprocess_destroy(); } void detect(cv::Mat& frame) { preprocess(frame); infer(); postprocess(frame); } private: void initEngine(const std::string& enginePath) { std::ifstream engineFile(enginePath, std::ios::binary); if (!engineFile.good()) throw std::runtime_error("Failed to open engine file"); engineFile.seekg(0, std::ios::end); size_t fileSize = engineFile.tellg(); engineFile.seekg(0, std::ios::beg); std::vector<char> engineData(fileSize); engineFile.read(engineData.data(), fileSize); runtime_ = createInferRuntime(gLogger); engine_ = runtime_->deserializeCudaEngine(engineData.data(), fileSize); context_ = engine_->createExecutionContext(); } void setupBuffers() { inputIndex_ = engine_->getBindingIndex("data"); outputIndex_ = engine_->getBindingIndex("prob"); CUDA_CHECK(cudaMalloc(&inputBuffer_, BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); CUDA_CHECK(cudaMalloc(&outputBuffer_, BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); CUDA_CHECK(cudaStreamCreate(&stream_)); } void preprocess(cv::Mat& frame) { cv::Mat resized; cv::resize(frame, resized, cv::Size(INPUT_W, INPUT_H)); cuda_preprocess(resized.ptr(), resized.cols, resized.rows, reinterpret_cast<float*>(inputBuffer_), INPUT_W, INPUT_H, stream_); } void infer() { void* buffers[] = {inputBuffer_, outputBuffer_}; context_->enqueue(BATCH_SIZE, buffers, stream_, nullptr); } void postprocess(cv::Mat& frame) { float* output = new float[OUTPUT_SIZE]; CUDA_CHECK(cudaMemcpyAsync(output, outputBuffer_, OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream_)); CUDA_CHECK(cudaStreamSynchronize(stream_)); std::vector<Detection> detections; nms(detections, output, CONF_THRESH, NMS_THRESH); for (auto& det : detections) { cv::Rect box = get_rect(frame, det.bbox); cv::rectangle(frame, box, cv::Scalar(0x27, 0xC1, 0x36), 2); std::string label = std::string(CLASS_NAMES[(int)det.class_id]) + " " + cv::format("%.2f", det.conf); cv::putText(frame, label, cv::Point(box.x, box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 255, 0), 2); } delete[] output; } // 成员变量声明 IRuntime* runtime_ = nullptr; ICudaEngine* engine_ = nullptr; IExecutionContext* context_ = nullptr; void* inputBuffer_ = nullptr; void* outputBuffer_ = nullptr; int inputIndex_ = 0; int outputIndex_ = 0; cudaStream_t stream_; }; int main(int argc, char** argv) { if (argc != 2) { std::cerr << "Usage: " << argv[0] << " <engine_file>" << std::endl; return 1; } try { YOLOv5TRT detector(argv[1]); cv::VideoCapture cap(0); auto start = std::chrono::high_resolution_clock::now(); int frameCount = 0; float fps = 0; while (true) { cv::Mat frame; cap >> frame; if (frame.empty()) break; auto start_inf = std::chrono::high_resolution_clock::now(); detector.detect(frame); auto end_inf = std::chrono::high_resolution_clock::now(); frameCount++; if (frameCount % 30 == 0) { auto end = std::chrono::high_resolution_clock::now(); fps = 30.0f / std::chrono::duration<float>(end - start).count(); start = end; } cv::putText(frame, cv::format("FPS: %.2f", fps), cv::Point(20, 40), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 255), 2); cv::imshow("YOLOv5-TensorRT", frame); if (cv::waitKey(1) == 'q') break; } cap.release(); cv::destroyAllWindows(); } catch (const std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; return 1; } return 0; } 以上是yolov5_det.cpp的源文件,要基于源文件对CmakeLists.txt进行更改

// 创建视频捕获对象(新增) cv::VideoCapture cap("/media/builderx/data1/xw_tooth/tooth/2025_02_12T09_32_17__stream0.mp4"); if (!cap.isOpened()) { std::cerr << "Error opening video file" << std::endl; return -1; } int frame_width = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)); int frame_height = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT)); double fps = cap.get(cv::CAP_PROP_FPS); std::string output_dir = "/media/builderx/data1/yolov5/wp_build/new_det"; int frame_count = 0; cv::Mat frame; int fcount = 0; std::vector<cv::Mat> imgs_buffer(BATCH_SIZE); // 初始化imgs_buffer while (cap.read(frame)) { imgs_buffer[fcount] = frame.clone(); // 将当前帧添加到缓冲区 fcount++; if (fcount < BATCH_SIZE) continue; // 如果未达到BATCH_SIZE,继续读取 float *buffer_idx = (float*)buffers[inputIndex]; for (int b = 0; b < fcount; b++) { size_t size_image = imgs_buffer[b].cols * imgs_buffer[b].rows * 3; size_t size_image_dst = INPUT_H * INPUT_W * 3; memcpy(img_host, imgs_buffer[b].data, size_image); CUDA_CHECK(cudaMemcpyAsync(img_device, img_host, size_image, cudaMemcpyHostToDevice, stream)); preprocess_kernel_img(img_device, imgs_buffer[b].cols, imgs_buffer[b].rows, buffer_idx, INPUT_W, INPUT_H, stream); buffer_idx += size_image_dst; cudaStreamSynchronize(stream); } auto start = std::chrono::system_clock::now(); doInference(*context, stream, (void**)buffers, prob, BATCH_SIZE); std::vector<std::vector<Yolo::Detection>> batch_res(fcount); for (int b = 0; b < fcount; b++) { auto& res = batch_res[b]; nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH); cv::Mat output_frame = imgs_buffer[b].clone(); for (size_t j = 0; j < res.size(); j++) { cv::Rect r = get_rect(output_frame, res[j].bbox); cv::rectangle(output_frame, r, cv::Scalar(0x27, 0xC1, 0x36), 2); cv::putText(output_frame, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2); } std::stringstream ss; ss << output_dir << "frame_" << std::setw(6) << std::setfill('0') << (frame_count + b) << ".jpg"; cv::imwrite(ss.str(), output_frame); } frame_count += fcount; fcount = 0; // 重置fcount } // 处理剩余不足BATCH_SIZE的帧 if (fcount > 0) { // 类似于上述处理逻辑,但只处理剩余的帧 // 注意调整doInference和其他相关函数的参数以适应新的batch大小 } cap.release(); cudaStreamDestroy(stream); CUDA_CHECK(cudaFree(img_device)); CUDA_CHECK(cudaFreeHost(img_host)); CUDA_CHECK(cudaFree(buffers[inputIndex])); CUDA_CHECK(cudaFree(buffers[outputIndex])); context->destroy(); engine->destroy(); runtime->destroy(); return 0; }帮我优化一下代码

#include <unistd.h> #include <iostream> #include <fstream> #include <vector> #include <chrono> // #include <malloc.h> #include "tool.h" #include "data_manager.h" #include "isa_service.h" #include "mesh_code_manager.h" #include "isa_dbconfig_def.h" namespace lantu { namespace isa { // constexpr size_t JsonSize = 3000; std::string EraseSpace(const std::string& estr) { std::string ret(estr); if (ret.length() > 0) { ret.erase(0, ret.find_first_not_of(" ")); ret.erase(ret.find_last_not_of(" ") + 1); } return ret; } /** * @brief 用于开辟线程加载数据 */ void ForGetDataByRange(const Point& position) { DataManager::getinstance()->GetDataByDataRange(position); return; } /** * @brief 用于开辟线程加载时区和数据版本管理表数据 */ void ForGetCountryTimezoneAndVersion() { DataManager::getinstance()->LoadTimezoneAndVersionMng(); return; } /*Data manager*/ DataManager::DataManager() : // mCurrentCountryCode(""), mDataBaseName(""), mCurrentTileId(0), mIsCrossBorder(false), // mCurrentCountryType(NaviCountryType::Unknown), // mIsaSeviceStatus(ISASeviceStatus::Unknown), mDataThread(1, "IsaDbMngThread") { mDbPath = gISADbConfig.DBPath; InitConfig(); mCountryMngDbPath = mDbPath + gISADbConfig.CountryDataMng; mLoader = std::make_shared<DataLoader>(); mCountryMngLoader = std::make_shared<CountryMngLoader>(); WriteAndroidLog(2, "DataManager start"); //if (InitConfig()) { if (mCountryMngLoader->Connect(mCountryMngDbPath)) { // if (!mCountryMngLoader->LoadCountryVersionMng(mCountryVersionMap)) { // WriteAndroidLog(4,"Load CountryVersionMng false!"); // } std::thread loadTVFunc(ForGetCountryTimezoneAndVersion); loadTVFunc.detach(); } else { printf("ERROR:Connect CountryMngDb false!\n"); WriteAndroidLog(4, "Connect CountryMngDb false!"); } // InitService(); //WriteAndroidLog(2, "Init Config success!"); //} } DataManager::~DataManager() { mDataThread.DetachThreadPool(); mCountryMngDbPath = ""; mIsCrossBorder = false; // mCurrentCountryCode = ""; mDbPath = ""; mDataBaseName = ""; mCurrentTileId = 0; //mCountryNameMap.clear(); mMeshDataMap.clear(); //mMeshCountryMap.clear(); mDataTileIdSet.clear(); mCountryTimezoneMap.clear(); mLoader->Disconnect(); mCountryMngLoader->Disconnect(); WriteAndroidLog(2, "DataManager end"); printf("Tip:DataManager end!\n"); } //2024-06-20:配置文件转为头文件定义 bool DataManager::InitConfig() { std::string configPath(""); std::string configValue(""); std::string dbPathtag("Db_Path"); #ifdef __ANDROID__ configPath = "/inand/ISA/db_config.ini"; #else configPath = "./db_config.ini"; #endif //!defined(__ANDROID__) std::ifstream ifs(configPath.c_str(), std::ios::in); if (!ifs || !ifs.is_open()) { // 以写入模式创建文件 std::ofstream outfile(configPath); if (outfile.is_open()) { outfile << "Db_Path = /inand/ISA/"; outfile.close(); // 关闭文件 } else { WriteAndroidLog(4, "DataManager: Open config file false!"); } // 原始逻辑修改部分 #ifdef __ANDROID__ mDbPath = "/inand/ISA/"; #else mDbPath = "../ISA_Engine/etc/inand/ISA/"; #endif return true; } while (getline(ifs, configValue)) { if (strcmp(configValue.c_str(), "") == 0 || configValue.find("#") == 0 || configValue.find("[") == 0) { continue; } if (configValue.find(dbPathtag, 0) == 0) { size_t tag = configValue.find("=", 0); std::string tagConfigValue = configValue.substr(tag + 1); std::string dbpathstr = EraseSpace(tagConfigValue); if (dbpathstr.find_last_of("/") != dbpathstr.length() - 1) { mDbPath = dbpathstr + "/"; } else { mDbPath = dbpathstr; } break; } // else if (configValue.find(countryMngNameDbTag, 0) == 0) { // size_t tag = configValue.find("=", 0); // DataSetName dbname = configValue.substr(tag + 1); // countrymngdbname = EraseSpace(dbname); // } else { // size_t tag = configValue.find("=", 0); // std::string ccodTag = configValue.substr(0, tag); // CountryCode cCod = EraseSpace(ccodTag); // std::string dbnameTag = configValue.substr(tag + 1); // DataSetName dbName = EraseSpace(dbnameTag); // mCountryNameMap[cCod] = dbName; // } } ifs.clear(); ifs.close(); return true; } //2024-06-20:配置文件转为头文件定义 bool DataManager::setDbPath2Config(std::string dbPath) { if (dbPath.empty()) return false; std::string configPath(""); std::string dbPathtag("Db_Path"); if (dbPath.find_last_of("/") != dbPath.length() - 1) { mDbPath = dbPath + "/"; } else { mDbPath = dbPath; } #ifdef __ANDROID__ configPath = "/inand/ISA/db_config.ini"; #else configPath = "./db_config.ini"; #endif //!defined(__ANDROID__) std::ofstream outfile(configPath, std::ios::out | std::ios::trunc); if (!outfile || !outfile.is_open()) { WriteAndroidLog(4, "setDbPath2Config:File open error, path:" + dbPath); return false; } outfile << dbPathtag + " = " + mDbPath; outfile.clear(); outfile.close(); return true; } std::string DataManager::getDbPath2Config() { return mDbPath; } bool DataManager::InitDb(const Point& position) { mCurrentPoint = position; TileID tileId; MCLEVEL lv = LEVEL_ONE; GetMeshCode gmc; tileId = gmc.getMeshCode(position.x, position.y, lv); bool ret(false); /*initdb时不定位当前国家,后续根据定位匹配的道路获取国家编码*/ std::vector<CountryCode> bufcountryVec; if (mCountryMngLoader->LoadMeshCountryMngByTileId(tileId, bufcountryVec)) { if (bufcountryVec.size() == 1) { NaviCountryType ctype = PaseraNaviCountryType(bufcountryVec[0]); IsaService::getinstance()->SetCountryType(ctype); } else { IsaService::getinstance()->SetCountryType(NaviCountryType::Unknown); } } if (GetDataByDataRange(position)) { mCurrentTileId = tileId; ret = true; } return ret; } bool DataManager::DetachDb() { std::map<TileID, DataCollection>().swap(mMeshDataMap); mDataTileIdSet.clear(); // malloc_trim(0); /*归还堆内存*/ return mLoader->Disconnect(); } void DataManager::DetachManager() { mDataThread.DetachThreadPool(); mCountryMngDbPath = ""; mIsCrossBorder = false; // mCurrentCountryCode = ""; mDbPath = ""; mCurrentTileId = 0; //mCountryNameMap.clear(); mMeshDataMap.clear(); //mMeshCountryMap.clear(); mDataTileIdSet.clear(); mLoader->Disconnect(); WriteAndroidLog(2, "DataManager end"); printf("Tip:DataManager end!\n"); } bool DataManager::GetRoadsByTileId(const TileID tileId, const Point& position, std::vector<RoadPtr>& roads) { // roads.clear(); mDataMutex.lock(); bool ret(false); auto dataItr = mMeshDataMap.find(tileId); if (dataItr == mMeshDataMap.end()) { mDataMutex.unlock(); if (SyncDataByPosition(position)) { mDataMutex.lock(); dataItr = mMeshDataMap.find(tileId); } else { mDataMutex.lock(); } } if (dataItr != mMeshDataMap.end()) { for(const auto& road : dataItr->second.mRoadMap) { roads.emplace_back(road.second); } /*for finding the roads that stride over tile -- kvm_v1.1 */ if (!dataItr->second.mMainTileRoadMap.empty()) { for (auto tileroad : dataItr->second.mMainTileRoadMap) { auto otherItr = mMeshDataMap.find(tileroad.second); if (otherItr == mMeshDataMap.end()) { DataCollection data; if (GetDataByTileId(tileroad.second, data)) { mMeshDataMap[tileroad.second] = std::move(data); mDataTileIdSet.insert(tileroad.second); } otherItr = mMeshDataMap.find(tileroad.second); } if (otherItr != mMeshDataMap.end()) { auto roadpair = otherItr->second.mRoadMap.find(tileroad.first); if (roadpair != otherItr->second.mRoadMap.end()) { roads.emplace_back(roadpair->second); } } } } /*kvm_v1.1 end*/ ret = true; } mDataMutex.unlock(); if (!SyncDataByPosition(position)) { #ifdef __ANDROID__ std::string logstr = "SyncDataByPosition(" + std::to_string(position.x) + "," + std::to_string(position.y) + ") failed!"; WriteAndroidLog(4, logstr); #else printf("ERROR:SyncDataByPosition false!\n"); #endif //__ANDROID__ } return ret; } // bool DataManager::GetRoadByRoadId(const Point& position, const RoadID& roadId, RoadPtr& road) { // bool ret(false); // MCLEVEL lv = LEVEL_ONE; // GetMeshCode gmc; // TileID tileId = gmc.getMeshCode(position.x, position.y, lv); // mDataMutex.lock(); // auto dataItr = mMeshDataMap.find(tileId); // // if (dataItr == mMeshDataMap.end()) { // // mDataMutex.unlock(); // // } // if (dataItr != mMeshDataMap.end()) { // auto roadItr = dataItr->second.mRoadMap.find(roadId); // if (roadItr == dataItr->second.mRoadMap.end()) { // /*for KVM_V1.1*/ // if (!dataItr->second.mMainTileRoadMap.empty()) { // auto troadItr = dataItr->second.mMainTileRoadMap.find(roadId); // if (troadItr != dataItr->second.mMainTileRoadMap.end()) { // DataCollection data; // if (GetDataByTileId(troadItr->second, data)) { // auto roadbuf = data.mRoadMap.find(roadId); // if (roadbuf != data.mRoadMap.end()) { // road = roadbuf->second; // ret = true; // } // mMeshDataMap[troadItr->second] = std::move(data); // mDataTileIdSet.insert(troadItr->second); // } // } // } // /*end*/ // if (!ret) { // for (const auto dataMap:mMeshDataMap) { // if (dataMap.first == tileId) continue; // auto roadItr = dataMap.second.mRoadMap.find(roadId); // if (roadItr != dataMap.second.mRoadMap.end()) { // road = roadItr->second; // ret = true; // break; // } // } // } // } else { // road = roadItr->second; // ret = true; // } // } // mDataMutex.unlock(); // if (!SyncDataByPosition(position)) { // #ifdef __ANDROID__ // std::string logstr = "SyncDataByPosition(" + std::to_string(position.x) + "," + std::to_string(position.y) + ") failed!"; // WriteAndroidLog(4, logstr); // #else // printf("ERROR:SyncDataByPosition false!\n"); // #endif //__ANDROID__ // } // return ret; // } bool DataManager::GetRoadByRoadId(const Point& position, const Point& s_node, const Point& e_node, const RoadID& roadId, RoadPtr& road) { bool ret(false); MCLEVEL lv = LEVEL_ONE; GetMeshCode gmc; TileID tileId = gmc.getMeshCode(position.x, position.y, lv); mDataMutex.lock(); auto dataItr = mMeshDataMap.find(tileId); // if (dataItr == mMeshDataMap.end()) { // mDataMutex.unlock(); // } if (dataItr != mMeshDataMap.end()) { auto roadItr = dataItr->second.mRoadMap.find(roadId); if (roadItr == dataItr->second.mRoadMap.end()) { //算e点 TileID e_tile = gmc.getMeshCode(e_node.x, e_node.y, lv); auto e_dataItr = mMeshDataMap.find(e_tile); if (e_dataItr != mMeshDataMap.end()) { auto e_roadItr = e_dataItr->second.mRoadMap.find(roadId); if (e_roadItr != e_dataItr->second.mRoadMap.end()) { road = e_roadItr->second; ret = true; } } if (!ret) { //算s点 TileID s_tile = gmc.getMeshCode(s_node.x, s_node.y, lv); auto s_dataItr = mMeshDataMap.find(s_tile); if (s_dataItr != mMeshDataMap.end()) { auto s_roadItr = s_dataItr->second.mRoadMap.find(roadId); if (s_roadItr != s_dataItr->second.mRoadMap.end()) { road = s_roadItr->second; ret = true; } } } /*end*/ if (!ret) { /*for KVM_V1.1*/ if (!dataItr->second.mMainTileRoadMap.empty()) { auto troadItr = dataItr->second.mMainTileRoadMap.find(roadId); if (troadItr != dataItr->second.mMainTileRoadMap.end()) { DataCollection data; if (GetDataByTileId(troadItr->second, data)) { auto roadbuf = data.mRoadMap.find(roadId); if (roadbuf != data.mRoadMap.end()) { road = roadbuf->second; ret = true; } mMeshDataMap[troadItr->second] = std::move(data); mDataTileIdSet.insert(troadItr->second); } } } } } else { road = roadItr->second; ret = true; } } mDataMutex.unlock(); if (!SyncDataByPosition(position)) { #ifdef __ANDROID__ std::string logstr = "SyncDataByPosition(" + std::to_string(position.x) + "," + std::to_string(position.y) + ") failed!"; WriteAndroidLog(4, logstr); #else printf("ERROR:SyncDataByPosition false!\n"); #endif //__ANDROID__ } return ret; } bool DataManager::GetDataByDataRange(const Point& position) { // auto st = std::chrono::high_resolution_clock::now(); GetMeshCode gMesh; TileID tileId = gMesh.getMeshCode(position.x, position.y, MCLEVEL::LEVEL_ONE); std::set<TileID> tileIdSet{}; int8_t range = int8_t(DataRange / 2); for (int8_t i = -range; i <= range; ++i) { for (int8_t j = -range; j <= range; ++j) { TileID netileid = gMesh.GetNearMeshID(i, j); tileIdSet.insert(netileid); } } // if (tileIdSet.empty()) { // WriteAndroidLog(4, "Get NearMeshID false!"); // return false; // } // if (InitDb(tileId, position)) { mTileIdSetMutex.lock(); std::set<TileID> insTileIdSet{}; std::set<TileID> eraTileIdSet{}; if (mDataTileIdSet.empty()) { insTileIdSet = tileIdSet; mDataTileIdSet = std::move(tileIdSet); } else { for (auto esetItr = mDataTileIdSet.begin(); esetItr != mDataTileIdSet.end(); esetItr++) { std::set<TileID>::iterator idItr = tileIdSet.find(*esetItr); if (idItr == tileIdSet.end()) { TileID tileid = (*esetItr); eraTileIdSet.insert(tileid); } } for (auto isetItr = tileIdSet.begin(); isetItr != tileIdSet.end(); isetItr++) { std::set<TileID>::iterator idItr = mDataTileIdSet.find(*isetItr); if (idItr == mDataTileIdSet.end()) { TileID tileid = (*isetItr); insTileIdSet.insert(tileid); } } } std::vector<std::pair<TileID, DataCollection>> meshDataVec; std::vector<std::pair<TileID, std::map<CountryCode, std::vector<ShapePointVec>>>> countrymngDataVec; DataSetName dataName(""); if (!insTileIdSet.empty()) { for (auto setItr = insTileIdSet.begin(); setItr != insTileIdSet.end(); setItr++) { bool dataflag(false); TileID itileId = (*setItr); DataCollection databuf; if (GetDataByTileId(itileId, databuf)) { // dataflag = true; meshDataVec.emplace_back(std::make_pair(itileId, databuf)); mDataTileIdSet.insert(itileId); } /*代码转移至GetDataByTileId()中*/ // std::map<CountryCode, std::vector<ShapePointVec>> bufcountryshMap; // if (mCountryMngLoader->LoadMeshCountryMngByTileId(itileId, bufcountryshMap)) { // countrymngDataVec.emplace_back(std::make_pair(itileId, bufcountryshMap)); // /*Realizing true nine grid data --20240131*/ // if (!bufcountryshMap.empty()) { // for (auto & counpair : bufcountryshMap) { // // if (std::strcmp(counpair.first.c_str(), mCurrentCountryCode.c_str()) != 0) { // auto dbnitr = mCountryNameMap.find(counpair.first); // if (dbnitr == mCountryNameMap.end()) continue; // if (dataName != dbnitr->second) { // dataName = dbnitr->second; // std::string dbpath = mDbPath + dbnitr->second; // mLoader->Disconnect(); // if (mLoader->Connect(dbpath)) { // DataCollection otdatabuf; // if (GetDataByTileId(itileId, otdatabuf)) { // try { // /* code */ // databuf.mRoadMap.insert(otdatabuf.mRoadMap.begin(), otdatabuf.mRoadMap.end()); // databuf.mRoadConnectMap.insert(otdatabuf.mRoadConnectMap.begin(), otdatabuf.mRoadConnectMap.end()); // databuf.mMainTileRoadMap.insert(otdatabuf.mMainTileRoadMap.begin(), otdatabuf.mMainTileRoadMap.end()); // databuf.mSpeedConditionMap.insert(otdatabuf.mSpeedConditionMap.begin(), otdatabuf.mSpeedConditionMap.end()); // databuf.mTimeConditionMap.insert(otdatabuf.mTimeConditionMap.begin(), otdatabuf.mTimeConditionMap.end()); // dataflag = true; // mDataTileIdSet.insert(itileId); // } catch(const std::exception& e) { // std::cerr << e.what() << '\n'; // WriteAndroidLog(4, "Realizing true nine grid data failed!"); // } // } // // mLoader->Disconnect(); // } // } else { // DataCollection otdatabuf; // if (GetDataByTileId(itileId, otdatabuf)) { // try { // /* code */ // databuf.mRoadMap.insert(otdatabuf.mRoadMap.begin(), otdatabuf.mRoadMap.end()); // databuf.mRoadConnectMap.insert(otdatabuf.mRoadConnectMap.begin(), otdatabuf.mRoadConnectMap.end()); // databuf.mMainTileRoadMap.insert(otdatabuf.mMainTileRoadMap.begin(), otdatabuf.mMainTileRoadMap.end()); // databuf.mSpeedConditionMap.insert(otdatabuf.mSpeedConditionMap.begin(), otdatabuf.mSpeedConditionMap.end()); // databuf.mTimeConditionMap.insert(otdatabuf.mTimeConditionMap.begin(), otdatabuf.mTimeConditionMap.end()); // dataflag = true; // mDataTileIdSet.insert(itileId); // } catch(const std::exception& e) { // std::cerr << e.what() << '\n'; // WriteAndroidLog(4, "Realizing true nine grid data failed!"); // } // } // } // // } // } // } // /*end --*/ // } // if (dataflag) { // meshDataVec.emplace_back(std::make_pair(itileId, databuf)); // } } } /*load map data*/ mDataMutex.lock(); if (!meshDataVec.empty()) { if (!eraTileIdSet.empty()) { for (auto setItr = eraTileIdSet.begin(); setItr != eraTileIdSet.end(); setItr++) { TileID etileId = (*setItr); mMeshDataMap.erase(etileId); mDataTileIdSet.erase(etileId); } } mMeshDataMap.insert(meshDataVec.begin(), meshDataVec.end()); } mDataMutex.unlock(); /*load countrymng data*/ /*不再需要边境线定位当前国家*/ // mSyncMngMutex.lock(); // if (!eraTileIdSet.empty()) { // for (auto setItr = eraTileIdSet.begin(); setItr != eraTileIdSet.end(); setItr++) { // TileID etileId = (*setItr); // mMeshCountryMap.erase(etileId); // } // } // if (!countrymngDataVec.empty()) { // mMeshCountryMap.insert(countrymngDataVec.begin(), countrymngDataVec.end()); // } // mSyncMngMutex.unlock(); // } mTileIdSetMutex.unlock(); // auto et = std::chrono::high_resolution_clock::now(); // uint64_t t = std::chrono::duration_cast<std::chrono::milliseconds>(et - st).count(); // printf("cost time: %ld\n", t); bool ret(false); if (!mMeshDataMap.empty()) ret = true; return ret; } bool DataManager::GetDataByTileId(TileID tileId, DataCollection& data) { auto tileItr = mMeshDataMap.find(tileId); bool ret(false); #ifdef _READ_BIN_ if (tileItr == mMeshDataMap.end()) { /*在获取该tile的数据时取全*/ std::vector<CountryCode> bufcountryVec; mSyncMngMutex.lock(); if (mCountryMngLoader->LoadMeshCountryMngByTileId(tileId, bufcountryVec)) { /*Realizing true nine grid data --20240131*/ if (!bufcountryVec.empty()) { for (auto & counpair : bufcountryVec) { auto dbnitr = gISADbConfig.CountryListMap.find(counpair); if (dbnitr == gISADbConfig.CountryListMap.end()) continue; std::map<RoadID, RoadPtr> roadMap; std::map<NodeID, std::vector<RoadID>> connectMap; std::map<RoadID, TileID> mainTileRoadMap; std::map<ConditionID, SpeedConditionPtr> speedConditionMap; std::map<ConditionID, std::vector<TimeConditionPtr>> timeConditionMap; if (mDataBaseName != dbnitr->second) { mDataBaseName = dbnitr->second; std::string dbpath = mDbPath + dbnitr->second; mLoader->Disconnect(); if (mLoader->Connect(dbpath)) { // DataCollection otdatabuf; ret = mLoader->LoadBinDataByTileId(tileId, roadMap, connectMap, mainTileRoadMap, speedConditionMap, timeConditionMap); if (ret) { // try { /* code */ data.mRoadMap.insert(roadMap.begin(), roadMap.end()); data.mRoadConnectMap.insert(connectMap.begin(), connectMap.end()); data.mMainTileRoadMap.insert(mainTileRoadMap.begin(), mainTileRoadMap.end()); data.mSpeedConditionMap.insert(speedConditionMap.begin(), speedConditionMap.end()); data.mTimeConditionMap.insert(timeConditionMap.begin(), timeConditionMap.end()); // } catch(const std::exception& e) { // std::cerr << e.what() << '\n'; // WriteAndroidLog(5, "Realizing data failed!, tileid(" + std::to_string(tileId) + ")"); // } } else { WriteAndroidLog(4, "Load data by tileid(" + std::to_string(tileId) + ") failed!"); } } } else { // DataCollection otdatabuf; ret = mLoader->LoadBinDataByTileId(tileId, roadMap, connectMap, mainTileRoadMap, speedConditionMap, timeConditionMap); if (ret) { // try { /* code */ data.mRoadMap.insert(roadMap.begin(), roadMap.end()); data.mRoadConnectMap.insert(connectMap.begin(), connectMap.end()); data.mMainTileRoadMap.insert(mainTileRoadMap.begin(), mainTileRoadMap.end()); data.mSpeedConditionMap.insert(speedConditionMap.begin(), speedConditionMap.end()); data.mTimeConditionMap.insert(timeConditionMap.begin(), timeConditionMap.end()); // } catch(const std::exception& e) { // std::cerr << e.what() << '\n'; // WriteAndroidLog(5, "Realizing data failed!, tileid(" + std::to_string(tileId) + ")"); // } } else { WriteAndroidLog(4, "Load data by tileid(" + std::to_string(tileId) + ") failed!"); } } } } /*end --*/ } mSyncMngMutex.unlock(); } // if (tileItr == mMeshDataMap.end()) { // std::map<RoadID, RoadPtr> roadMap; // std::map<NodeID, std::vector<RoadID>> connectMap; // std::map<RoadID, TileID> mainTileRoadMap; // std::map<ConditionID, SpeedConditionPtr> speedConditionMap; // std::map<ConditionID, std::vector<TimeConditionPtr>> timeConditionMap; // ret = mLoader->LoadBinDataByTileId(tileId, roadMap, connectMap, mainTileRoadMap, speedConditionMap, timeConditionMap); // if (ret) { // data.mRoadMap = std::move(roadMap); // data.mRoadConnectMap = std::move(connectMap); // data.mMainTileRoadMap = std::move(mainTileRoadMap); // data.mSpeedConditionMap = std::move(speedConditionMap); // data.mTimeConditionMap = std::move(timeConditionMap); // } else { // printf ("ERRO: LoadBinDataByTileId false!\n"); // WriteAndroidLog("ERRO","LoadBinDataByTileId false!"); // } // } #endif //_READ_BIN_ #ifdef _READ_TABLE_ if (tileItr == mMeshDataMap.end()) { DataCollection dataCol; if (mLoader->LoadRoadByTileId(tileId, dataCol.mRoadMap)) { for(const auto& road : dataCol.mRoadMap) { mLoader->LoadSpeedConditionByRoadId(road.first, dataCol.mSpeedConditionMap); } for (const auto& condition : dataCol.mSpeedConditionMap) { mLoader->LoadTimeConditionByConditionId(condition.first, dataCol.mTimeConditionMap); } data = std::move(dataCol); ret = true; } } #endif //_READ_TABLE_ return ret; } /*舍弃说明:读取九宫格数据中包含的所有国家的地图数据,由定位地图匹配获取的道路来定位当前国家--20240202*/ // bool DataManager::LocateCurrentCountry(const TileID tileId, const Point& position, CountryCode& countryCode, DataSetName& dataName) { // } bool DataManager::GetTimeConditionByCondition(const TileID& tileId, const ConditionID& conditionId, std::vector<TimeConditionPtr>& timeConds) { bool ret(false); // TileID tileId = currentRoad->mTileId; auto dataItr = mMeshDataMap.find(tileId); // if (dataItr == mMeshDataMap.end()) { // std::vector<RoadPtr> roads; // if (GetRoadsByTileId(tileId, position, roads)) { // dataItr = mMeshDataMap.find(tileId); // } // } if (dataItr != mMeshDataMap.end()) { auto timeCondItr = dataItr->second.mTimeConditionMap.find(conditionId); if(timeCondItr != dataItr->second.mTimeConditionMap.end()) { timeConds.insert(timeConds.end(), timeCondItr->second.begin(), timeCondItr->second.end()); } ret = true; } return ret; } bool DataManager::GetSpeedConditionByRoad(const RoadPtr& currentRoad,/* const Point& position,*/std::vector<SpeedConditionPtr>& speedConds) { bool ret(false); TileID tileId = currentRoad->mTileId; auto dataItr = mMeshDataMap.find(tileId); // if (dataItr == mMeshDataMap.end()) { // std::vector<RoadPtr> roads; // if (GetRoadsByTileId(tileId, position, roads)) { // dataItr = mMeshDataMap.find(tileId); // } // } if (dataItr != mMeshDataMap.end()) { for (auto& conds:currentRoad->mRoadSpeedCondVec) { auto speedItr = dataItr->second.mSpeedConditionMap.find(conds); if(speedItr != dataItr->second.mSpeedConditionMap.end()) { speedConds.emplace_back(speedItr->second); } } ret = true; } return ret; } /*0620:版本号不存在管理表中 bool DataManager::GetCountryVer(const CountryCode& countryCd, VersionNum& countryVer) { if (mCountryVersionMap.empty()) return false; bool ret(false); NaviCountryType counType = PaseraNaviCountryType(countryCd); auto verItr = mCountryVersionMap.find(counType); if (verItr != mCountryVersionMap.end()) { countryVer = verItr->second; ret = true; } return ret; } */ bool DataManager::GetCountryDataVer(std::map<CountryCode, VersionNum>& dataVerMap) { /*todo:构建一个临时数据读取类读取*/ mSyncMngMutex.lock(); for (auto countrypair : gISADbConfig.CountryListMap) { mLoader->Disconnect(); std::string path = mDbPath + countrypair.second; if (mLoader->Connect(path)) { std::pair<CountryCode, VersionNum> verpair; if (mLoader->LoadVersionMng(verpair)) { dataVerMap.insert(verpair); } else { WriteAndroidLog(4, "文件损坏:" + countrypair.second); } } } mLoader->Disconnect(); mDataBaseName = ""; mSyncMngMutex.unlock(); return !dataVerMap.empty(); } bool DataManager::GetRoadConnectShipByTileId(const TileID tileId, std::map<NodeID, std::vector<RoadID>>& roadConnectMap, std::map<RoadID, RoadPtr>& roadsMap) { bool ret(false); auto tileItr = mMeshDataMap.find(tileId); if (tileItr != mMeshDataMap.end()) { if (!tileItr->second.mRoadConnectMap.empty() && !tileItr->second.mRoadMap.empty()) { roadConnectMap = tileItr->second.mRoadConnectMap; roadsMap = tileItr->second.mRoadMap; ret = true; } if (!tileItr->second.mMainTileRoadMap.empty()) { for (auto tileroad : tileItr->second.mMainTileRoadMap) { auto otherItr = mMeshDataMap.find(tileroad.second); if (otherItr == mMeshDataMap.end()) { DataCollection data; if (GetDataByTileId(tileroad.second, data)) { mMeshDataMap[tileroad.second] = std::move(data); mDataTileIdSet.insert(tileroad.second); } otherItr = mMeshDataMap.find(tileroad.second); } if (otherItr != mMeshDataMap.end()) { auto roadpair = otherItr->second.mRoadMap.find(tileroad.first); if (roadpair != otherItr->second.mRoadMap.end()) { roadsMap.insert(std::make_pair(roadpair->first, roadpair->second)); } } } } } return ret; } bool DataManager::SyncDataByPosition(const Point& position) { if (mCurrentPoint == position /*&& strcmp(mCurrentCountryCode.c_str(), "") != 0*/) { // std::this_thread::sleep_for(std::chrono::milliseconds(10)); return true; } mCurrentPoint = position; TileID tileId; MCLEVEL lv = LEVEL_ONE; GetMeshCode gmc; tileId = gmc.getMeshCode(position.x, position.y, lv); bool ret(false); DataSetName dbName(""); CountryCode countryCode(""); if (mCurrentTileId != tileId) { if (mMeshDataMap.find(tileId) == mMeshDataMap.end()) { if (GetDataByDataRange(position)) { mCurrentTileId = tileId; ret = true; } } else { mDataThread.enqueue(ForGetDataByRange, position); mCurrentTileId = tileId; ret = true; } } else { ret = true; } return ret; } bool DataManager::GetTimezoneByCountry(const NaviCountryType& countryType, UTCTimeZone& timezone) { mCountryCodeMutex.lock(); bool ret(false); auto tzItr = mCountryTimezoneMap.find(countryType); if (tzItr != mCountryTimezoneMap.end()) { timezone = tzItr->second; ret = true; } mCountryCodeMutex.unlock(); return ret; } void DataManager::LoadTimezoneAndVersionMng() { mCountryCodeMutex.lock(); /*0620:新数据管理表中删除了各个国家数据版本管理表 if (!mCountryMngLoader->LoadCountryVersionMng(mCountryVersionMap)) { WriteAndroidLog(4,"Load CountryVersionMng false!"); } */ if (!mCountryMngLoader->LoadCountryTimezoneMng(mCountryTimezoneMap)) { WriteAndroidLog(4,"Load CountryTimezoneMap false!"); } mCountryCodeMutex.unlock(); return ; } VersionNum DataManager::GetCountryVersion(const CountryCode& ccode) { auto countrypair = gISADbConfig.CountryListMap.find(ccode); if (countrypair == gISADbConfig.CountryListMap.end()) return 0; mSyncMngMutex.lock(); VersionNum ver(0); mLoader->Disconnect(); std::string path = mDbPath + countrypair->second; if (mLoader->Connect(path)) { std::pair<CountryCode, VersionNum> verpair; if (mLoader->LoadVersionMng(verpair)) { ver = verpair.second; } } mLoader->Disconnect(); mDataBaseName = ""; mSyncMngMutex.unlock(); return ver; } bool DataManager::checkCountryDB() { std::vector<CountryCode> bufcountryVec; return mCountryMngLoader->LoadMeshCountryMngByTileId(GetMeshCode().getMeshCode(0.0, 0.0, LEVEL_ONE), bufcountryVec); } /*Data manager End*/ } } 解析cpp代码,尤其涉及config.init

#include "dml-module.h" #include "cap.h" #include "cap_win.h" #include <nms.h> #include <opencv2/opencv.hpp> #include "AIMBOT.cpp" #include "mouse_controller.h" #include <windows.h> #include <chrono> #include <string> #include <filesystem> #include <iostream> #include <functional> #include <atomic> #include <mutex> #include <vector> #include <algorithm> #include <optional> #include "gbil_mouse_controller.h" #include "config.h" // ===== 新增:ADRC控制器结构体(自抗扰控制,解决动态目标扰动问题)===== struct ADRCController { float w0; // 观测器带宽 float b0; // 控制增益 float w_n; // 闭环带宽 float sigma; // 阻尼系数 float time_delta; // 时间步长(ms转换为秒) // 扩张状态观测器变量 float z1{ 0 }, z2{ 0 }, z3{ 0 }; // 状态观测值(位置、速度、扰动) float u_p{ 0 }; // 上一时刻控制量 std::mutex mtx; // 初始化ADRC参数(从配置文件读取) ADRCController(float w0_, float b0_, float w_n_, float sigma_, float dt) : w0(w0_), b0(b0_), w_n(w_n_), sigma(sigma_), time_delta(dt) { } // *核心方法:根据目标值和当前值计算补偿后的控制量 float update(float target, float current) { std::lock_guard<std::mutex> lock(mtx); float err = current - z1; // 跟踪误差 // 扩张状态观测器(ESO)更新 float fhan = this->fhan(err, z2, w_n, sigma); z1 += time_delta * (z2 + w0 * w0 * err); // 位置观测 z2 += time_delta * (z3 + 2 * w0 * z2 + w0 * w0 * fhan); // 速度观测 z3 += time_delta * (-3 * w0 * z3 + w0 * w0 * w0 * (current - z1)); // 扰动观测 // 控制律计算(补偿扰动) float u0 = w_n * w_n * (target - z1) - 2 * sigma * w_n * z2; float u = (u0 - z3) / b0; u_p = u; // 保存当前控制量 return u; } // 快速跟踪微分器(处理非线性特性) float fhan(float x1, float x2, float r, float h0) { float d = r * h0 * h0; float d0 = h0 * d; float y = x1 + h0 * x2; float a0 = sqrt(d * (d + 8 * abs(y))); float a; if (abs(y) > d0) { a = x2 + (a0 - d) / 2 * (y > 0 ? 1 : -1); } else { a = x2 + y / h0; } if (abs(a) > d) { return -r * (a > 0 ? 1 : -1); } else { return -r * a / d; } } void reset() { std::lock_guard<std::mutex> lock(mtx); z1 = z2 = z3 = 0; u_p = 0; } }; // ===== PID控制器结构体(保留原有功能,与ADRC级联)===== struct PIDController { float kp, ki, kd; float integral{ 0 }, last_error{ 0 }; std::mutex mtx; PIDController(float p, float i, float d) : kp(p), ki(i), kd(d) {} float compute(float error) { std::lock_guard<std::mutex> lock(mtx); integral += error; float derivative = error - last_error; last_error = error; return kp * error + ki * integral + kd * derivative; } void reset() { std::lock_guard<std::mutex> lock(mtx); integral = 0; last_error = 0; } }; // ===== 卡尔曼滤波类(参数可配置)===== class KalmanFilter { public: KalmanFilter(float process_noise, float obs_noise) { kf.init(4, 2, 0); kf.transitionMatrix = (cv::Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1); cv::setIdentity(kf.measurementMatrix); cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(process_noise)); cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(obs_noise)); cv::setIdentity(kf.errorCovPost, cv::Scalar::all(1)); } cv::Point2f predict(float x, float y) { cv::Mat measurement = (cv::Mat_<float>(2, 1) << x, y); kf.predict(); cv::Mat estimated = kf.correct(measurement); return cv::Point2f(estimated.at<float>(0), estimated.at<float>(1)); } private: cv::KalmanFilter kf; }; // ===== 新增:贝塞尔曲线生成工具(解决移动拖影,实现类人平滑路径)===== class BezierCurve { public: // 生成从起点到终点的贝塞尔曲线路径点 static std::vector<cv::Point2f> generatePoints( cv::Point2f start, cv::Point2f end, int num_points = 10) { // 路径点数量(越多越平滑)数值越大越慢 std::vector<cv::Point2f> points; // 生成随机内点(增加路径自然性) std::vector<cv::Point2f> control_points; control_points.push_back(start); // 添加2个随机内点(在起点和终点范围内) control_points.push_back(cv::Point2f( start.x + (end.x - start.x) * 0.3f + rand() % 5 - 2, // 微小随机偏移 start.y + (end.y - start.y) * 0.3f + rand() % 5 - 2 )); control_points.push_back(cv::Point2f( start.x + (end.x - start.x) * 0.7f + rand() % 5 - 2, start.y + (end.y - start.y) * 0.7f + rand() % 5 - 2 )); control_points.push_back(end); // 贝塞尔曲线采样 for (int i = 0; i < num_points; ++i) { float t = (float)i / (num_points - 1); points.push_back(bezier(t, control_points)); } return points; } private: // 贝塞尔曲线计算 static cv::Point2f bezier(float t, const std::vector<cv::Point2f>& points) { int n = points.size() - 1; cv::Point2f result(0, 0); for (int i = 0; i <= n; ++i) { float bernstein = binomial(n, i) * pow(t, i) * pow(1 - t, n - i); result.x += points[i].x * bernstein; result.y += points[i].y * bernstein; } return result; } // 二项式系数计算 static float binomial(int n, int k) { if (k < 0 || k > n) return 0; if (k == 0 || k == n) return 1; k = std::min(k, n - k); float res = 1; for (int i = 1; i <= k; ++i) { res = res * (n - k + i) / i; } return res; } }; // ===== 目标选择函数(安全封装)===== std::optional<Box> selectTarget( std::vector<Box>& filtered, int& tracked_id, int& tracking_counter, float anchor_x, float anchor_y, int width, int height ) { // 优先选择上次追踪目标 for (auto& box : filtered) { if (box.id == tracked_id) { tracking_counter++; return box; } } // 未找到则选择距离中心最近的目标 if (!filtered.empty()) { float min_dist = FLT_MAX; Box* best_target = nullptr; for (auto& box : filtered) { float cx = box.left + (box.right - box.left) * anchor_x; float cy = box.top + (box.bottom - box.top) * anchor_y; float dist = std::hypot(cx - width / 2.0f, cy - height / 2.0f); if (dist < min_dist) { min_dist = dist; best_target = &box; } } if (best_target) { tracked_id = best_target->id; tracking_counter = 1; return *best_target; } } return std::nullopt; } int main() { // ------ 新增:检查自身实例是否已在运行 开始 ------ // 通过创建全局命名互斥锁(Named Mutex)来判断是否已有一个实例在运行 HANDLE hInstanceMutex = CreateMutexW(nullptr, FALSE, L"Global\\GblidDemoVC_Mutex"); if (!hInstanceMutex || GetLastError() == ERROR_ALREADY_EXISTS) { MessageBoxW(NULL, L"请勿重复运行", L"提示", MB_OK | MB_ICONWARNING); if (hInstanceMutex) { CloseHandle(hInstanceMutex); } ExitProcess(0); // 已有实例,退出当前进程 } // ------ 新增:检查自身实例是否已在运行 结束 ------ // 隐藏控制台窗口 HWND consoleWindow = GetConsoleWindow(); // 获取当前控制台窗口句柄 ShowWindow(consoleWindow, SW_HIDE); // 隐藏控制台窗口(如果需要调试可以注释掉这行)//==========需要调试可以注释================== // ==== 加载配置 ==== Config config; if (!config.loadFromFile("./config.ini")) { printf("主程序-配置文件加载失败!\n"); return -1; } bool baim = (config.aim_part == 0); timeBeginPeriod(1); // 设置定时器精度为1ms // === 自动加载模型 === std::string model_dir = "onnx"; std::string model_path; for (const auto& entry : std::filesystem::directory_iterator(model_dir)) { if (entry.path().extension() == ".onnx") { model_path = entry.path().string(); break; } } if (model_path.empty()) { printf("主程序-未在 'onnx' 文件夹中找到任何 .onnx 模型文件!\n"); return -1; } printf("主程序-加载模型路径: %s\n", model_path.c_str()); // 初始化模型类 auto* frame = new IDML(); if (!frame->AnalyticalModel(model_path)) { printf("主程序-模型加载失败。\n"); return -2; } const auto& input_dims = frame->getInputDims(); if (input_dims.size() != 4) { printf("主程序-模型输入维度异常,当前维度数量: %llu\n", input_dims.size()); return -3; } int channels = static_cast<int>(input_dims[1]); int height = static_cast<int>(input_dims[2]); int width = static_cast<int>(input_dims[3]); printf("主程序-输入图像尺寸: %d x %d\n", width, height); // ==== 初始化控制器(*修改:新增ADRC控制器)==== PIDController pid_x(config.xkp, config.xki, config.xkd); PIDController pid_y(config.ykp, config.yki, config.ykd); // *ADRC参数(从配置文件读取,可根据动态目标特性调整) float adrc_dt = 0.016f; // 约60FPS的时间步长(1/60≈0.016s) ADRCController adrc_x(config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma, adrc_dt); ADRCController adrc_y(config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma, adrc_dt); KalmanFilter kf(config.kalman_Q, config.kalman_R); printf("主程序-控制参数: PID X[%.2f, %.3f, %.2f] Y[%.2f, %.3f, %.2f]\n", config.xkp, config.xki, config.xkd, config.ykp, config.yki, config.ykd); printf("主程序-ADRC参数: w0=%.1f, b0=%.2f, wn=%.1f, sigma=%.1f\n", config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma); int screenW = GetSystemMetrics(SM_CXSCREEN); int screenH = GetSystemMetrics(SM_CYSCREEN); std::function<BYTE* ()> capture_func; void* cap_impl = nullptr; // 选择截图方式 if (config.screenshot_method == 0) { auto* c = new capture(screenW, screenH, width, height, "CrossFire"); cap_impl = c; capture_func = [c]() -> BYTE* { return (BYTE*)c->cap(); }; printf("主程序-截图方式: DXGI\n"); } else { auto* c = new capture_win32(screenW, screenH, width, height, "CrossFire"); cap_impl = c; capture_func = [c]() -> BYTE* { return c->cap(); }; printf("主程序-截图方式: Win32 BitBlt\n"); } // 初始化鼠标控制器 IMouseController* mouse = nullptr; if (config.move_type == 0) { mouse = new WinMouseController(); printf("主程序-使用鼠标控制器: WinMove\n"); } else if (config.move_type == 1) { mouse = new GBILMouseController(); printf("主程序-使用鼠标控制器: GBIL\n"); } else { printf("主程序-未知的 move_type 类型: %d,未启用鼠标移动!\n", config.move_type); } using Clock = std::chrono::high_resolution_clock; auto last_time = Clock::now(); float fps = 0.0f; // ==== 持续追踪状态 ==== static int tracked_id = -1; static int tracking_counter = 0; static int lost_counter = 0; // ==== 跟踪功能开关状态 ==== std::atomic<bool> tracking_enabled{ true }; bool last_tracking_toggle_state = false; bool last_exit_key_state = false; // ==== 新增:记录上一时刻鼠标位置(用于贝塞尔路径生成)==== cv::Point2f last_mouse_pos(0, 0); // ==== 主循环 ==== static bool target_locked = false; static int lock_frames_counter = 0; static float last_min_dist = FLT_MAX; while (true) { auto start = Clock::now(); // ==== 检查退出键 ==== bool current_exit_state = (GetAsyncKeyState(config.exit_key) & 0x8000) != 0; if (current_exit_state && !last_exit_key_state) { // 使用MB_SYSTEMMODAL标志使对话框置顶 [1,8](@ref) int result = MessageBoxA( NULL, "确定要退出YAK吗?", "退出确认", MB_OKCANCEL | MB_ICONQUESTION | MB_SYSTEMMODAL // 添加MB_SYSTEMMODAL标志 ); if (result == IDOK) { break; } } last_exit_key_state = current_exit_state; // ==== 检查跟踪开关键 ==== bool current_tracking_toggle = (GetAsyncKeyState(config.tracking_toggle_key) & 0x8000) != 0; if (current_tracking_toggle && !last_tracking_toggle_state) { tracking_enabled = !tracking_enabled; printf("主程序-跟踪功能已%s\n", tracking_enabled ? "开启" : "关闭"); } last_tracking_toggle_state = current_tracking_toggle; // 截图 BYTE* s = capture_func(); auto after_cap = Clock::now(); // 目标检测 float* data = frame->Detect(s); auto after_detect = Clock::now(); // 计算性能指标 float capture_ms = std::chrono::duration<float, std::milli>(after_cap - start).count(); float detect_ms = std::chrono::duration<float, std::milli>(after_detect - after_cap).count(); float frame_time = std::chrono::duration<float>(after_detect - last_time).count(); last_time = after_detect; fps = 1.0f / frame_time; std::vector<Box> oldbox; std::vector<Box> newbox = generate_yolo_proposals(data, oldbox, frame->out1, frame->out2, config.conf_threshold, config.nms_threshold); // ==== 目标过滤 ==== static std::vector<Box> filtered; filtered.clear(); for (auto& box : newbox) { if (config.valid_classes.empty() || std::find(config.valid_classes.begin(), config.valid_classes.end(), box.class_label) != config.valid_classes.end()) { filtered.push_back(box); } } // ==== 目标选择与锁定机制 ==== std::optional<Box> current_target = std::nullopt; if (tracking_enabled) { if (target_locked) { for (auto& box : filtered) { if (box.id == tracked_id) { current_target = box; tracking_counter++; lost_counter = 0; break; } } if (!current_target) { if (++lost_counter > 5) { target_locked = false; tracked_id = -1; tracking_counter = 0; lost_counter = 0; last_min_dist = FLT_MAX; } } } else if (!filtered.empty()) { float min_dist = FLT_MAX; Box* best_target = nullptr; for (auto& box : filtered) { float cx = box.left + (box.right - box.left) * config.anchor_x; float cy = box.top + (box.bottom - box.top) * config.anchor_y; float dist = std::hypot(cx - width / 2.0f, cy - height / 2.0f); if (dist < min_dist && (tracked_id == -1 || dist < last_min_dist * 0.8f)) { min_dist = dist; best_target = &box; } } if (best_target) { current_target = *best_target; tracked_id = best_target->id; tracking_counter = 1; last_min_dist = min_dist; if (min_dist < config.lock_threshold) { if (++lock_frames_counter >= config.lock_frames) { target_locked = true; lock_frames_counter = 0; } } else { lock_frames_counter = 0; } } } } // ==== 鼠标控制逻辑(*核心修改:PID+ADRC级联控制+贝塞尔路径平滑)==== bool aim_key_pressed = (GetAsyncKeyState(config.aim_key) & 0x8000) != 0; bool aim_key1_pressed = (GetAsyncKeyState(config.aim_key1) & 0x8000) != 0; bool any_aim_key_pressed = aim_key_pressed || aim_key1_pressed; if (any_aim_key_pressed && mouse && tracking_enabled) { if (current_target) { // 计算锚点位置 float center_x = current_target->left + (current_target->right - current_target->left) * config.anchor_x; float center_y = current_target->top + (current_target->bottom - current_target->top) * config.anchor_y; cv::Point2f smoothed; if (config.kalman_enable) { smoothed = kf.predict(center_x, center_y); } else { smoothed = cv::Point2f(center_x, center_y); } // 计算原始偏移(目标与屏幕中心的偏差) float raw_dx = smoothed.x - width / 2.0f; float raw_dy = smoothed.y - height / 2.0f; // *步骤1:PID计算基础移动量(比例+积分+微分) float pid_dx = pid_x.compute(raw_dx); float pid_dy = pid_y.compute(raw_dy); // *步骤2:ADRC补偿动态扰动(解决动态目标跟踪延迟) float adrc_dx = adrc_x.update(pid_dx, raw_dx); // 输入PID输出和原始偏差 float adrc_dy = adrc_y.update(pid_dy, raw_dy); // *步骤3:贝塞尔曲线生成平滑路径(解决移动拖影) cv::Point2f target_pos(last_mouse_pos.x + adrc_dx, last_mouse_pos.y + adrc_dy); std::vector<cv::Point2f> path = BezierCurve::generatePoints(last_mouse_pos, target_pos); // *步骤4:按平滑路径移动鼠标 for (const auto& p : path) { mouse->updateTarget(p.x - last_mouse_pos.x, p.y - last_mouse_pos.y); last_mouse_pos = p; // 更新当前鼠标位置 Sleep(1); // 微小延迟,确保平滑效果 } } else { // 无目标时重置 mouse->updateTarget(0.0f, 0.0f); pid_x.reset(); pid_y.reset(); adrc_x.reset(); // *重置ADRC adrc_y.reset(); last_mouse_pos = cv::Point2f(0, 0); target_locked = false; tracked_id = -1; lock_frames_counter = 0; } } else { // 未按触发键时重置 if (mouse) mouse->updateTarget(0.0f, 0.0f); target_locked = false; tracked_id = -1; tracking_counter = 0; lock_frames_counter = 0; pid_x.reset(); pid_y.reset(); adrc_x.reset(); // *重置ADRC adrc_y.reset(); last_mouse_pos = cv::Point2f(0, 0); } // ==== 调试窗口显示 ==== if (config.show_window) { cv::Mat a(height, width, CV_8UC3, s); if (!newbox.empty()) { for (const Box& detection : newbox) { cv::Scalar color = (current_target && detection.id == current_target->id) ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0); int thickness = (current_target && detection.id == current_target->id) ? 2 : 1; cv::rectangle(a, cv::Point((int)detection.left, (int)detection.top), cv::Point((int)detection.right, (int)detection.bottom), color, thickness ); std::string class_str = std::to_string(detection.class_label); char conf_str[16]; snprintf(conf_str, sizeof(conf_str), "%.2f", detection.confidence); int fontFace = cv::FONT_HERSHEY_SIMPLEX; double fontScale = 0.4; int textThickness = 1; cv::Point textOrg((int)detection.left, (int)detection.top - 4); if (textOrg.y < 10) textOrg.y = 10; cv::putText(a, class_str, textOrg, fontFace, fontScale, cv::Scalar(0, 0, 255), textThickness); cv::Size textSize = cv::getTextSize(class_str, fontFace, fontScale, textThickness, nullptr); cv::Point confOrg = textOrg + cv::Point(textSize.width + 4, 0); cv::putText(a, conf_str, confOrg, fontFace, fontScale, cv::Scalar(0, 255, 0), textThickness); } } // 绘制锚点和追踪线 if (current_target && any_aim_key_pressed && tracking_enabled) { int anchor_x_pos = current_target->left + (current_target->right - current_target->left) * config.anchor_x; int anchor_y_pos = current_target->top + (current_target->bottom - current_target->top) * config.anchor_y; cv::circle(a, cv::Point(anchor_x_pos, anchor_y_pos), 5, cv::Scalar(255, 0, 255), -1); cv::line(a, cv::Point(width / 2, height / 2), cv::Point(anchor_x_pos, anchor_y_pos), cv::Scalar(0, 255, 255), 1); } // 性能指标显示 int base_y = 20; int line_height = 18; double font_scale = 0.5; int thickness = 1; auto draw_metric = [&](const std::string& label, const std::string& value, int line) { int y = base_y + line * line_height; cv::putText(a, label, cv::Point(10, y), cv::FONT_HERSHEY_SIMPLEX, font_scale, cv::Scalar(0, 0, 255), thickness); cv::putText(a, value, cv::Point(80, y), cv::FONT_HERSHEY_SIMPLEX, font_scale, cv::Scalar(0, 255, 0), thickness); }; draw_metric("FPS:", std::to_string((int)fps), 0); draw_metric("CAPTURE:", std::to_string((int)capture_ms) + "ms", 1); draw_metric("DETECT:", std::to_string((int)detect_ms) + "ms", 2); draw_metric("TRACK:", tracking_enabled ? "ON" : "OFF", 3); // 状态信息显示 if (current_target) { std::string track_info = "TRACK: " + std::to_string(tracking_counter); cv::putText(a, track_info, cv::Point(width - 120, 30), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(200, 200, 0), 1); } if (target_locked) { std::string lock_info = "LOCKED: " + std::to_string(tracked_id); cv::putText(a, lock_info, cv::Point(width - 120, 60), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 200, 255), 1); } if (lost_counter > 0) { std::string lost_info = "LOST: " + std::to_string(lost_counter); cv::putText(a, lost_info, cv::Point(width - 120, 90), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 200, 200), 1); } // 窗口置顶设置 static bool topmost_set = false; if (!topmost_set) { HWND hwnd = FindWindowA(NULL, "c"); if (hwnd) { SetWindowPos(hwnd, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_SHOWWINDOW); } topmost_set = true; } cv::imshow("c", a); cv::waitKey(1); } } // 退出前释放资源 if (mouse) { mouse->stop(); delete mouse; mouse = nullptr; } delete frame; if (cap_impl) { if (config.screenshot_method == 0) { delete static_cast<capture*>(cap_impl); } else { delete static_cast<capture_win32*>(cap_impl); } } timeEndPeriod(1); return 0; }以上代码你详细的分析一下,为什么会跟不上目标,跟踪的时候还有拖影

#include "rclcpp/rclcpp.hpp" #include "sensor_msgs/msg/image.hpp" #include "cv_bridge/cv_bridge.h" #include <opencv2/opencv.hpp> #include <opencv2/core.hpp> #include <opencv2/imgproc.hpp> #include <stdexcept> // 关键头文件 class ImageSubscriber : public rclcpp::Node { public: ImageSubscriber() : Node("image_subscriber") { // 使用lambda避免绑定错误 subscription_ = create_subscription<sensor_msgs::msg::Image>( "/detector/initial_img", 10, [this](sensor_msgs::msg::Image::ConstSharedPtr msg) { this->image_callback(msg); }); } private: void image_callback(sensor_msgs::msg::Image::ConstSharedPtr msg) { try { cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg, "bgr8"); cv::Mat image=cv_ptr->image; cv::imshow("Preview", image); cv::waitKey(1); std::vector<cv::Mat> channels; cv::Mat binary,Gaussian,gray,kernal; kernal = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); cv::cvtColor(image,gray,cv::COLOR_BGR2GRAY); cv::threshold(gray,binary,120,255,0); cv::waitKey(1); cv::dilate(binary,binary,kernal); cv::erode(binary, binary, kernal); cv::imshow("dilated", binary); cv::waitKey(1); std::vector<std::vector<cv::Point>> contours; // 存储所有轮廓(二维点集) std::vector<cv::Vec4i> hierarchy; cv::findContours(binary,contours,cv::RETR_EXTERNAL,cv::CHAIN_APPROX_SIMPLE); cv::Mat result = image.clone(); cv::Mat result2 = image.clone(); std::vector<cv::RotatedRect> lightBarRects; for (int i = 0; i < contours.size(); i++) { double area = contourArea(contours[i if (area < 5 || contours[i].size() <= 1) continue; // 用椭圆拟合区域得到外接矩形(特殊的处理方式:因为灯条是椭圆型的,所以用椭圆去拟合轮廓,再直接获取旋转外接矩形即可) cv::RotatedRect Light_Rec = fitEllipse(contours[i]); // 长宽比和轮廓面积比限制(由于要考虑灯条的远近都被识别到,所以只需要看比例即可) if (Light_Rec.size.width / Light_Rec.size.height > 4) continue; cv::lightInfos.push_back(cv::LightDescriptor(Light_Rec)); } //二重循环多条件匹配灯条 for (size_t i = 0; i < lightInfos.size(); i++) { for (size_t j = i + 1; (j < lightInfos.size()); j++) { LightDescriptor& leftLight = lightInfos[i]; LightDescriptor& rightLight = lightInfos[j]; float angleGap_ = abs(leftLight.angle - rightLight.angle); //由于灯条长度会因为远近而受到影响,所以按照比值去匹配灯条 float LenGap_ratio = abs(leftLight.length - rightLight.length) / max(leftLight.length, rightLight.length); float dis = pow(pow((leftLight.center.x - rightLight.center.x), 2) + pow((leftLight.center.y - rightLight.center.y), 2), 0.5); //均长 float meanLen = (leftLight.length + rightLight.length) / 2; float lengap_ratio = abs(leftLight.length - rightLight.length) / meanLen; float yGap = abs(leftLight.center.y - rightLight.center.y); float yGap_ratio = yGap / meanLen; float xGap = abs(leftLight.center.x - rightLight.center.x); float xGap_ratio = xGap / meanLen; float ratio = dis / meanLen; //匹配不通过的条件 if (angleGap_ > 15 || LenGap_ratio > 1.0 || lengap_ratio > 0.8 || yGap_ratio > 1.5 || xGap_ratio > 2.2 || xGap_ratio < 0.8 || ratio > 3 || ratio < 0.8) { continue; } //绘制矩形 cv::Point center =cv::Point((leftLight.center.x + rightLight.center.x) / 2, (leftLight.center.y + rightLight.center.y) / 2); cv::RotatedRect rect = cv::RotatedRect(center, cv::Size(dis, meanLen), (leftLight.angle + rightLight.angle) / 2); cv::Point2f vertices[4]; rect.points(vertices); for (int i = 0; i < 4; i++) { line(result, vertices[i], vertices[(i + 1) % 4], cv::Scalar(0, 0, 255), 2.2); } } } for (size_t i = 0; i < contours.size(); i++) { // 计算最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[i]); lightBarRects.push_back(minRect); // 获取矩形的四个顶点 cv::Point2f vertices[4]; minRect.points(vertices); // 绘制最小外接矩形 for (int j = 0; j < 4; j++) { cv::line(result, vertices[j], vertices[(j+1)%4], cv::Scalar(0, 255, 0), 2); } } cv::imshow("Armor Detection", result); cv::waitKey(1); std::vector<cv::RotatedRect> armorRects; const double maxAngleDiff = 15.0; cv::Point2f vertices2[4]; for (size_t i = 0; i < lightBarRects.size(); i++) { for (size_t j = i + 1; j < lightBarRects.size(); j++) { cv::RotatedRect bar1 = lightBarRects[i]; cv::RotatedRect bar2 = lightBarRects[j]; // 简化角度计算:直接取旋转矩形的角度(OpenCV原生角度) float angle1 = fabs(bar1.angle); float angle2 = fabs(bar2.angle); // 计算角度差(简化角度转换,直接用原生角度差) double angleDiff = fabs(angle1 - angle2); // 仅通过角度差判断是否匹配 if (angleDiff < maxAngleDiff) { // 简化装甲板计算:直接用两灯条中心和尺寸构建 cv::Point2f armorCenter = (bar1.center + bar2.center) / 2; float distance = norm(bar1.center - bar2.center); // 两灯条间距 cv::Size2f armorSize(distance * 1.1, (bar1.size.height + bar2.size.height) / 2 * 1.2); float armorAngle = (bar1.angle + bar2.angle) / 2; // 平均角度 armorRects.push_back(cv::RotatedRect(armorCenter, armorSize, armorAngle)); } } } for (auto& armor : armorRects) { armor.points(vertices2); for (int j = 0; j < 4; j++) { cv::line(result2, vertices2[j], vertices2[(j+1)%4], cv::Scalar(0, 0, 255), 2); } imshow("hihi",result2); cv::waitKey(1); } std::vector<cv::Point2f> vertices2_vec(vertices2, vertices2 + 4); std::vector<cv::Point3f>obj=std::vector<cv::Point3f>{ {-0.027555,0.675,0}, {-0.027555,-0.675,0}, {0.027555,-0.675,0}, {0.027555,0.675,0} }; cv::Mat rVec=cv::Mat::zeros(3,1,CV_64FC1); cv::Mat tVec=cv::Mat::zeros(3,1,CV_64FC1); cv::Mat camera=(cv::Mat_<double>(3,3)<<1749.23969217601,0,711.302879207889,0,1748.77539275011,562.465887239595,0,0,1); cv::Mat dis=(cv::Mat_<double>(1,5)<<0.0846,-0.5788,0,0,0); cv::solvePnP(obj,vertices2_vec,camera,dis,rVec,tVec,false,cv::SOLVEPNP_EPNP); } catch (const cv_bridge::Exception& e) { RCLCPP_ERROR(get_logger(), "cv_bridge异常: %s", e.what()); throw std::runtime_error("CV错误: " + std::string(e.what())); } } rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr subscription_; }; int main(int argc, char* argv[]) { rclcpp::init(argc, argv); auto node = std::make_shared<ImageSubscriber>(); rclcpp::spin(node); rclcpp::shutdown(); return 0; } 结合以上代码写一个最终方案

最新推荐

recommend-type

三菱FX3U三轴伺服电机与威纶通触摸屏组合程序详解:轴点动、回零与定位控制及全流程解析

三菱FX3U三轴伺服电机与威纶通触摸屏的程序编写方法及其应用。主要内容涵盖伺服电机主控程序、触摸屏程序、轴点动、回零及定位程序、通讯模块程序以及威纶显示器程序的分析。通过对各个模块的深入探讨,帮助读者理解每个部分的功能和实现方式,确保机械运动控制的准确性、高效性和稳定性。此外,文章还提供了关于程序编写过程中可能遇到的问题及解决方案。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对三菱FX3U三轴伺服电机和威纶通触摸屏有实际操作需求的专业人士。 使用场景及目标:适用于工业自动化项目中,旨在提高对三菱FX3U三轴伺服电机和威纶通触摸屏的理解和应用能力,掌握模块化编程技巧,解决实际工程中的编程难题。 其他说明:文中不仅讲解了各模块的具体实现细节,还强调了程序的安全性和可靠性,为项目的成功实施提供了有力的支持。
recommend-type

职业介绍与人才招聘综合管理系统-基于宏达数据库信息管理开发平台的专业人力资源服务软件-包含基本信息设置-用人单位管理-求职人员登记-数据查询-统计分析-报表生成-打印输出-权限控制.zip

cursor免费次数用完职业介绍与人才招聘综合管理系统_基于宏达数据库信息管理开发平台的专业人力资源服务软件_包含基本信息设置_用人单位管理_求职人员登记_数据查询_统计分析_报表生成_打印输出_权限控制.zip
recommend-type

基于Spark2x分布式计算框架的实时新闻大数据分析可视化系统-实现用户浏览日志采集与实时处理-新闻话题热度排名统计-时段流量峰值分析-新闻曝光量监控-数据可视化展示-采用Kaf.zip

基于Spark2x分布式计算框架的实时新闻大数据分析可视化系统_实现用户浏览日志采集与实时处理_新闻话题热度排名统计_时段流量峰值分析_新闻曝光量监控_数据可视化展示_采用Kaf.zip大数据实战项目
recommend-type

基于springboot小型哺乳类宠物诊所管理系统-4339s0c8【附万字论文+PPT+包部署+录制讲解视频】.zip

基于springboot小型哺乳类宠物诊所管理系统-4339s0c8【附万字论文+PPT+包部署+录制讲解视频】.zip
recommend-type

基于Simulink的风电永磁同步电机并网系统仿真模型与SVPWM控制机制探究

基于Simulink/Matlab构建的风电永磁同步电机并网系统的仿真模型。该模型主要涵盖了SVPWM控制、MPPT风能跟踪算法以及Crowbar电路的低压穿越功能。文中首先解释了机侧变流器的工作原理及其核心——MPPT算法的具体实现方法,采用了黄金分割法进行最大功率点跟踪,并提供了相应的Matlab函数代码。接着讨论了网侧变流器的电网电压定向控制和SVPWM模块的应用,强调了载波频率设置和死区补偿的重要性。对于Crowbar电路部分,则着重讲述了其触发逻辑和保护机制,确保在电网电压骤降时能够稳定运行。此外,还分享了一些仿真设置的小技巧,如选择合适的求解器和优化参数的方法。 适合人群:从事风电系统研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:①为风电并网仿真提供可靠的模型支持;②深入理解SVPWM控制、MPPT算法和Crowbar电路的功能;③掌握风电系统关键组件的设计与优化方法。 其他说明:本文不仅提供了详细的理论解析和技术细节,还附带了具体的代码片段,便于读者实际操作和验证。
recommend-type

Pansophica开源项目:智能Web搜索代理的探索

Pansophica开源项目是一个相对较新且具有创新性的智能Web搜索代理,它突破了传统搜索引擎的界限,提供了一种全新的交互方式。首先,我们来探讨“智能Web搜索代理”这一概念。智能Web搜索代理是一个软件程序或服务,它可以根据用户的查询自动执行Web搜索,并尝试根据用户的兴趣、历史搜索记录或其他输入来提供个性化的搜索结果。 Pansophica所代表的不仅仅是搜索结果的展示,它还强调了一个交互式的体验,在动态和交互式虚拟现实中呈现搜索结果。这种呈现方式与现有的搜索体验有着根本的不同。目前的搜索引擎,如Google、Bing和Baidu等,多以静态文本和链接列表的形式展示结果。而Pansophica通过提供一个虚拟现实环境,使得搜索者可以“扭转”视角,进行“飞行”探索,以及“弹网”来浏览不同的内容。这种多维度的交互方式使得信息的浏览变得更加快速和直观,有望改变用户与网络信息互动的方式。 接着,我们关注Pansophica的“开源”属性。所谓开源,指的是软件的源代码可以被公众获取,任何个人或组织都可以自由地使用、学习、修改和分发这些代码。开源软件通常由社区进行开发和维护,这样的模式鼓励了协作创新并减少了重复性劳动,因为全世界的开发者都可以贡献自己的力量。Pansophica项目作为开源软件,意味着其他开发者可以访问和使用其源代码,进一步改进和扩展其功能,甚至可以为Pansophica构建新的应用或服务。 最后,文件名称“Pansophica-src-1.3”表明了我们讨论的特定版本的Pansophica开源代码。数字“1.3”很可能指的是该版本号,表明这是Pansophica项目的第1.3个公开版本。这个版本号对于开发者来说很重要,因为它可以帮助他们追踪更新的进度、比较版本间的差异以及选择最适合其项目的版本。 综合以上信息,Pansophica开源项目不仅在搜索代理领域引入了创新的交互方式,而且通过开源的方式,提供了技术共享和协作的可能性。对于IT行业来说,开源项目是推动技术发展的重要力量,它激发了社区的活力,促进了知识的传播和技术的进步。通过构建一个开源社区,Pansophica可以吸引来自世界各地的开发者和研究人员,共同探索如何将搜索技术与交互式虚拟现实技术结合起来,为用户带来更加丰富和有效的信息检索体验。同时,Pansophica的开源性质也使其更容易适应未来技术的发展,随着社区的不断贡献和反馈,这一平台有望在功能和性能上得到持续的优化和增强。
recommend-type

跨平台内容提取无忧:coze工作流应对社交媒体挑战

# 1. 社交媒体内容提取的必要性与挑战 ## 1.1 内容提取的必要性 在数字时代,社交媒体内容是信息与数据流动的主干道,公司、个人和研究者都在寻求从这些信息中提取价值。无论是为了市场趋势分析、品牌监控、消费者洞察还是公共舆论监测,有效的社交媒体内容提取变得至关重要。这不仅有助于企业做出数据驱动的决策,也能使个人更好地理
recommend-type

vrrp主设备发送的免费arp

<think>好的,我现在需要回答用户关于VRRP主设备发送免费ARP的目的和工作原理的问题。首先,我得回忆一下VRRP的基本概念和工作机制。VRRP,虚拟路由冗余协议,主要用于在局域网中提供默认网关的冗余备份,确保网络的高可用性。主设备(Master)负责转发流量,而备用设备(Backup)则在主设备故障时接管工作。 用户的问题集中在主设备发送免费ARP的目的和机制上。根据引用[2],免费ARP用于通知下游设备虚拟MAC地址的变更。当主设备被选举出来后,它需要让局域网内的其他设备知道虚拟IP对应的MAC地址已经指向自己,这样流量才会被正确路由到主设备。免费ARP的作用应该就是更新这些设备的
recommend-type

为Ghost博客平台打造的Meteor流星包装使用指南

从给定文件信息中,我们可以提炼出以下IT知识点: ### 标题知识点:流星Ghost软件包 1. **流星Ghost软件包的用途**:流星Ghost软件包是专为Ghost博客平台设计的流星(Meteor)应用程序。流星是一个开源的全栈JavaScript平台,用于开发高性能和易于编写的Web应用程序。Ghost是一个开源博客平台,它提供了一个简单且专业的写作环境。 2. **软件包的作用**:流星Ghost软件包允许用户在流星平台上轻松集成Ghost博客。这样做的好处是可以利用流星的实时特性以及易于开发和部署的应用程序框架,同时还能享受到Ghost博客系统的便利和美观。 ### 描述知识点:流星Ghost软件包的使用方法 1. **软件包安装方式**:用户可以通过流星的命令行工具添加名为`mrt:ghost`的软件包。`mrt`是流星的一个命令行工具,用于添加、管理以及配置软件包。 2. **初始化Ghost服务器**:描述中提供了如何在服务器启动时运行Ghost的基本代码示例。这段代码使用了JavaScript的Promise异步操作,`ghost().then(function (ghostServer) {...})`这行代码表示当Ghost服务器初始化完成后,会在Promise的回调函数中提供一个Ghost服务器实例。 3. **配置Ghost博客**:在`then`方法中,首先会获取到Ghost服务器的配置对象`config`,用户可以在此处进行自定义设置,例如修改主题、配置等。 4. **启动Ghost服务器**:在配置完成之后,通过调用`ghostServer.start()`来启动Ghost服务,使其能够处理博客相关的请求。 5. **Web浏览器导航**:一旦流星服务器启动并运行,用户便可以通过Web浏览器访问Ghost博客平台。 ### 标签知识点:JavaScript 1. **JavaScript作为流星Ghost软件包的开发语言**:标签指出流星Ghost软件包是使用JavaScript语言开发的。JavaScript是一种在浏览器端广泛使用的脚本语言,它也是流星平台的基础编程语言。 2. **流星和Ghost共同使用的语言**:JavaScript同样也是Ghost博客平台的开发语言。这表明流星Ghost软件包可以无缝集成,因为底层技术栈相同。 ### 压缩包子文件的文件名称列表知识点:meteor-ghost-master 1. **版本控制和软件包结构**:文件名称`meteor-ghost-master`暗示了该软件包可能托管在像GitHub这样的版本控制系统上。文件名中的`master`通常指的是主分支或主版本。 2. **软件包的目录结构**:通过文件名称可以推断出该软件包可能拥有一个标准的流星软件包结构,包含了初始化、配置、运行等必要的模块和文件。 3. **软件包的维护状态**:由于文件名没有包含特定的版本号,我们无法直接得知软件包的最新更新情况。通常,软件包维护者会将最新的版本代码放在`master`分支上。 ### 总结 流星Ghost软件包提供了一个有效的解决方案,使得流星平台的开发者能够在他们的应用中添加Ghost博客功能。软件包的使用简便,通过流星的命令行工具安装,并通过JavaScript代码配置和启动Ghost服务。通过流星Ghost软件包,开发者能够享受流星的实时特性以及Ghost博客系统的便利性。此外,软件包的命名和结构也暗示了其维护和版本控制的模式,有助于开发者更好地理解如何使用和维护这一软件包。
recommend-type

抖音标题生成自动化:用coze工作流释放创意

# 1. 抖音标题生成自动化的重要性 随着社交媒体平台的崛起,内容的吸引力很大程度上取决于标题的创意与精准性。抖音作为一个日活亿级的短视频平台,高质量的标题能够有效提高视频的点击率,增加内容的传播。但是,人工撰写标题不仅耗时耗力,而且很难做到快速响应热点,自动化标题生成工具应运而生。coze工作流,作为一种实现自动化生成抖音标题的工具,其重要性不言而喻。它能够利用大数据分析和机器学习技术,提高标题的吸引