活动介绍

jom: D:\A_PROJECT\aio_multi_platform_central\build-aio-MSVC-Debug\CMakeFiles\Makefile2 [CMakeFiles\aio_autogen.dir\all] Error 2

时间: 2025-09-01 22:10:54 AIGC 浏览: 15
<think>嗯,用户的问题是关于CMake生成的Makefile在构建时出现Error 2的原因和解决方案,具体提到了MSVC的Debug构建。我需要先理解Error 2在Makefile中的含义。通常,Make中的错误代码2通常表示编译过程中的某个步骤失败了,比如编译器返回了非零的退出状态。这可能由多种原因引起,比如语法错误、依赖缺失、路径问题等。 首先,我需要回忆一下CMake的工作流程。用户使用CMake生成Makefile,然后运行make命令进行构建。如果出现Error 2,可能是在生成Makefile阶段有问题,或者在编译阶段。但用户提到的是构建时出错,所以更可能是在编译阶段。需要检查编译器的输出信息,看看具体的错误是什么。 接下来,考虑到用户使用的是MSVC的Debug构建,这可能涉及到Windows环境下的编译,但Makefile通常用于Unix-like系统,不过CMake可以生成适用于不同平台的构建文件。这里可能存在混淆,或者用户可能是在Windows上使用CMake生成Makefile,并通过MinGW或其他工具链进行构建。或者,用户可能实际上是在使用Visual Studio的生成器,但错误出现在构建过程中。 然后,查看用户提供的引用内容,引用[1]提到了C和C++编译器的路径,比如cc和g++,以及一些编译选项,如-O2和-fvisibility-hidden。引用[2]和[3]是关于安装依赖包,包括jemalloc、Python和一些开发库。引用[4]提到缺少opencv_ffmpeg.dll的问题,并给出了下载路径和存放位置。 可能用户的项目依赖这些库,比如jemalloc、Python 3.6.8,或者OpenCV的组件。如果在构建过程中缺少这些依赖,或者路径配置不正确,可能导致编译失败,进而出现Error 2。例如,如果CMake无法找到opencv_ffmpeg.dll,或者依赖的库未正确安装,链接阶段可能会失败。 可能的解决方案步骤包括: 1. 检查构建日志,找到具体的错误信息。通常在错误发生前会有编译器或链接器的输出,指出缺失的文件、语法错误或链接错误。 2. 确保所有依赖包已正确安装,特别是引用中提到的libaio、numactl、openssl-devel等。如果是在三节点环境中,需要确认所有节点都安装了这些依赖。 3. 检查路径配置,确保CMake能够找到所需的头文件和库文件。例如,opencv_ffmpeg.dll的存放位置是否正确,是否被正确引用。 4. 验证编译器版本和选项是否兼容。例如,用户是否混合使用了不同编译器(如gcc和MSVC),导致ABI不兼容。 5. 清理构建目录并重新生成Makefile,有时候旧的缓存文件可能导致问题。 另外,引用[4]中的问题涉及到opencv_ffmpeg.dll的下载和路径,这可能与OpenCV的构建有关。如果用户的项目依赖OpenCV,并且CMake在构建时尝试下载该文件但失败,可能会导致构建错误。需要确认网络连接是否正常,下载链接是否有效,以及文件是否放置在正确的缓存目录中。 最后,可能还需要检查CMakeLists.txt中的配置,确保所有依赖项正确声明,并且没有语法错误。例如,是否正确设置了include路径和链接库路径,是否正确定义了目标依赖等。</think>### CMake Makefile构建Error 2的排查与解决 #### 一、定位Error 2的具体原因 1. **查看完整编译日志** 在终端执行`make VERBOSE=1`命令,显示详细的编译过程。错误通常表现为: - C/C++语法错误(例如未定义的标识符) - 链接器无法找到库文件(如`undefined reference to`) - 依赖文件缺失(如`.h`头文件或`.dll`动态库) 2. **典型错误类型示例** - **编译器报错**:`error: 'xxx' was not declared in this scope` 说明代码存在语法或类型错误[^1] - **链接器报错**:`cannot find -lopencv_core` 表示库路径未正确配置或依赖未安装[^2] #### 二、依赖缺失问题排查 根据引用[2][3],需重点检查: 1. **系统级依赖** ```bash yum -y install libaio numactl openssl-devel zlib* # CentOS环境示例 ``` 若未安装`libaio`会导致异步IO操作失败,未安装`openssl-devel`会影响加密功能[^3] 2. **第三方库依赖** - **jemalloc内存分配器**:需确认安装路径是否加入`LD_LIBRARY_PATH` - **Python头文件**:检查`Python.h`是否存在,通过`find / -name Python.h`定位路径 3. **OpenCV特殊组件缺失** 如引用[4]所述,缺失`opencv_ffmpeg.dll`时: ```bash wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/8041bd6f5ad37045c258904ba3030bb3442e3911/ffmpeg/opencv_ffmpeg.dll mv opencv_ffmpeg.dll "指定缓存目录/.cache/ffmpeg/" ``` #### 三、CMake配置验证 1. **检查编译器选择** 确认`CMakeLists.txt`中是否指定了MSVC编译器: ```cmake set(CMAKE_C_COMPILER "cl") set(CMAKE_CXX_COMPILER "cl") ``` 2. **Debug模式专属配置** 添加Debug符号生成配置: ```cmake set(CMAKE_CXX_FLAGS_DEBUG "/Zi /Od /RTC1") ``` 3. **路径检查脚本示例** ```cmake message(STATUS "OpenCV_DIR = ${OpenCV_DIR}") # 打印关键路径 find_package(OpenCV REQUIRED) include_directories(${OpenCV_INCLUDE_DIRS}) ``` #### 四、分步解决方案 1. **清理构建环境** ```bash rm -rf build && mkdir build && cd build ``` 2. **重新生成Makefile** ```bash cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug .. ``` 3. **针对性编译测试** ```bash make my_target -j4 # 单独编译问题模块 ```
阅读全文

相关推荐

* 正在执行任务: E:\Qt5.9.6\Tools\QtCreator\bin\jom.exe clean jom 1.1.2 - empower your cores E:\Qt5.9.6\Tools\QtCreator\bin\jom.exe -f Makefile.Release clean del release\moc_predefs.h del release\moc_widget.cpp del ui_widget.h del release\main.obj release\widget.obj release\moc_widget.obj 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\release\main.obj del release\MyTest.exp 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\release\MyTest.exp E:\Qt5.9.6\Tools\QtCreator\bin\jom.exe -f Makefile.Debug clean del debug\moc_predefs.h 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\debug\moc_predefs.h del debug\moc_widget.cpp del ui_widget.h 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\debug\moc_widget.cpp 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\ui_widget.h del debug\main.obj debug\widget.obj debug\moc_widget.obj 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\debug\main.obj del debug\MyTest.exp debug\MyTest.vc.pdb debug\MyTest.ilk debug\MyTest.idb 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\debug\MyTest.exp del MyTest.exp 找不到 C:\Users\Administrator\Desktop\Qt\MyTest\MyTest.exp * 终端将被任务重用,按任意键关闭。 * 正在执行任务: E:\Qt5.9.6\5.9.6\msvc2017_64\bin\qmake.exe C:\Users\Administrator\Desktop\Qt\MyTest/MyTest.pro -spec win32-msvc * 终端将被任务重用,按任意键关闭。 * 正在执行任务: E:\Qt5.9.6\Tools\QtCreator\bin\jom.exe -f Makefile.Release jom 1.1.2 - empower your cores E:\Qt5.9.6\5.9.6\msvc2017_64\bin\uic.exe widget.ui -o ui_widget.h cl -c -nologo -Zc:wchar_t -FS -Zc:rvalueCast -Zc:inline -Zc:strictStrings -Zc:throwingNew -Zc:referenceBinding -O2 -MD -W3 -w34100 -w34189 -w44996 -w44456 -w44457 -w44458 -wd4577 -wd4467 -EHsc -DUNICODE -D_UNICODE -DWIN32 -DWIN64 -DQT_DEPRECATED_WARNINGS -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB -DNDEBUG -I. -IE:\Qt5.9.6\5.9.6\msvc2017_64\include -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtWidgets -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtGui -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtANGLE -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtCore -Irelease -I. -IE:\Qt5.9.6\5.9.6\msvc2017_64\mkspecs\win32-msvc -Forelease\ @C:\Users\ADMINI~1\AppData\Local\Temp\main.obj.18884.16.jom cl -BxE:\Qt5.9.6\5.9.6\msvc2017_64\bin\qmake.exe -nologo -Zc:wchar_t -FS -Zc:rvalueCast -Zc:inline -Zc:strictStrings -Zc:throwingNew -Zc:referenceBinding -O2 -MD -W3 -w34100 -w34189 -w44996 -w44456 -w44457 -w44458 -wd4577 -wd4467 -E E:\Qt5.9.6\5.9.6\msvc2017_64\mkspecs\features\data\dummy.cpp 2>NUL >release\moc_predefs.h main.cpp E:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Tools\MSVC\14.16.27023\include\cstddef(7): fatal error C1083: 无法打开包括文件: “stddef.h”: No such file or directory cl -c -nologo -Zc:wchar_t -FS -Zc:rvalueCast -Zc:inline -Zc:strictStrings -Zc:throwingNew -Zc:referenceBinding -O2 -MD -W3 -w34100 -w34189 -w44996 -w44456 -w44457 -w44458 -wd4577 -wd4467 -EHsc -DUNICODE -D_UNICODE -DWIN32 -DWIN64 -DQT_DEPRECATED_WARNINGS -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB -DNDEBUG -I. -IE:\Qt5.9.6\5.9.6\msvc2017_64\include -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtWidgets -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtGui -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtANGLE -IE:\Qt5.9.6\5.9.6\msvc2017_64\include\QtCore -Irelease -I. -IE:\Qt5.9.6\5.9.6\msvc2017_64\mkspecs\win32-msvc -Forelease\ @C:\Users\ADMINI~1\AppData\Local\Temp\widget.obj.18884.32.jom widget.cpp E:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Tools\MSVC\14.16.27023\include\cstddef(7): fatal error C1083: 无法打开包括文件: “stddef.h”: No such file or directory jom: C:\Users\Administrator\Desktop\Qt\MyTest\Makefile.Release [release\main.obj] Error 2 E:\Qt5.9.6\5.9.6\msvc2017_64\bin\moc.exe -DUNICODE -D_UNICODE -DWIN32 -DWIN64 -DQT_DEPRECATED_WARNINGS -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB -DNDEBUG --compiler-flavor=msvc --include release/moc_predefs.h -IE:/Qt5.9.6/5.9.6/msvc2017_64/mkspecs/win32-msvc -IC:/Users/Administrator/Desktop/Qt/MyTest -IE:/Qt5.9.6/5.9.6/msvc2017_64/include -IE:/Qt5.9.6/5.9.6/msvc2017_64/include/QtWidgets -IE:/Qt5.9.6/5.9.6/msvc2017_64/include/QtGui -IE:/Qt5.9.6/5.9.6/msvc2017_64/include/QtANGLE -IE:/Qt5.9.6/5.9.6/msvc2017_64/include/QtCore -I"E:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Tools\MSVC\14.16.27023\include" -I"E:\Windows Kits\10\Include\10.0.19041.0\um" -I"E:\Windows Kits\10\Include\10.0.19041.0\shared" widget.h -o release\moc_widget.cpp jom: C:\Users\Administrator\Desktop\Qt\MyTest\Makefile.Release [release\widget.obj] Error 2 * 终端进程“C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -Command E:\Qt5.9.6\Tools\QtCreator\bin\jom.exe -f Makefile.Release”已终止,退出代码: 1。为什么?

PowerShell 7 环境已加载 (版本: 7.5.2) PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> <# >> Libuv 完整修复脚本 >> #> PS C:\Users\Administrator\Desktop> PS C:\Users\Administrator\Desktop> $ErrorActionPreference = 'Stop' PS C:\Users\Administrator\Desktop> Set-StrictMode -Version 3 PS C:\Users\Administrator\Desktop> PS C:\Users\Administrator\Desktop> try { >> $workingDir = "E:\PyTorch_Build\pytorch" >> $libuvBase = Join-Path $workingDir "third_party\libuv" >> $libDestDir = Join-Path $libuvBase "lib" >> >> # 1. 确保lib目录存在 >> New-Item -Path $libDestDir -ItemType Directory -Force -ErrorAction Stop | Out-Null >> >> # 2. 检查是否已有库文件 >> $existingLibs = Get-ChildItem -Path $libDestDir -Filter "uv*.lib" -File >> if ($existingLibs) { >> Write-Host "✅ 已找到库文件: $($existingLibs.FullName -join ', ')" -ForegroundColor Green >> $actualLibFile = $existingLibs[0].Name >> } >> else { >> Write-Host "未找到库文件,尝试从官方源下载..." -ForegroundColor Yellow >> >> # 3. 使用正确的下载URL >> $version = "1.51.0" >> $downloadUrl = "https://github.com/libuv/libuv/archive/refs/tags/v$version.zip" >> $tempZip = Join-Path $env:TEMP "libuv_source_$version.zip" >> >> # 下载源代码 >> Write-Host "正在下载Libuv源代码 (v$version)..." -ForegroundColor Cyan >> Invoke-WebRequest -Uri $downloadUrl -OutFile $tempZip -UseBasicParsing >> >> # 创建临时目录并解压 >> $tempExtract = Join-Path $env:TEMP "libuv_extract_$(Get-date -Format 'yyyyMMddHHmmss')" >> New-Item -ItemType Directory -Path $tempExtract -Force | Out-Null >> Expand-Archive -Path $tempZip -DestinationPath $tempExtract -Force >> >> # 查找并复制库文件(尝试构建目录) >> $buildDir = Join-Path $tempExtract "libuv-$version\out\build\x64-Release" >> $libFiles = Get-ChildItem -Path $buildDir -Recurse -Filter "uv*.lib" | >> Select-Object -First 1 >> >> if (-not $libFiles) { >> # 如果构建目录不存在,尝试手动构建 >> Write-Host "编译目录未找到,尝试构建Libuv..." -ForegroundColor Yellow >> $sourceDir = Join-Path $tempExtract "libuv-$version" >> $buildPath = Join-Path $sourceDir "build" >> New-Item -Path $buildPath -ItemType Directory -Force | Out-Null >> Set-Location $buildPath >> >> # 运行CMake生成构建文件 >> cmake .. -G "Visual Studio 17 2022" -A x64 >> cmake --build . --config Release >> >> $libFiles = Get-ChildItem -Path "$buildPath\Release" -Filter "uv*.lib" | >> Select-Object -First 1 >> } >> >> if ($libFiles) { >> Copy-Item -Path $libFiles.FullName -Destination $libDestDir -Force >> $actualLibFile = $libFiles.Name >> Write-Host "✅ 成功复制库文件: $actualLibFile" -ForegroundColor Green >> } >> else { >> throw "无法找到或生成库文件" >> } >> >> # 清理临时文件 >> Remove-Item $tempZip -Force -ErrorAction SilentlyContinue >> Remove-Item $tempExtract -Recurse -Force -ErrorAction SilentlyContinue >> } >> >> # 4. 更新CMake配置文件 >> $cmakeConfigPath = Join-Path $workingDir "cmake\Modules\FindLibuv.cmake" >> >> # 获取相对路径 >> $relativePath = $libuvBase.Replace($workingDir, "").TrimStart('\').Replace('\', '/') >> >> # 创建配置文件内容 >> $libuvConfig = @" >> # Libuv手动配置 >> set(LIBUV_FOUND ON) >> set(LIBUV_INCLUDE_DIRS "\${CMAKE_CURRENT_SOURCE_DIR}/$relativePath/include") >> set(LIBUV_LIBRARIES >> "\${CMAKE_CURRENT_SOURCE_DIR}/$relativePath/lib/$actualLibFile" >> ) >> "@ >> >> # 确保目录存在 >> $cmakeDir = Split-Path $cmakeConfigPath -Parent >> New-Item -Path $cmakeDir -ItemType Directory -Force -ErrorAction SilentlyContinue | Out-Null >> >> Set-Content -Path $cmakeConfigPath -Value $libuvConfig -Encoding UTF8 >> Write-Host "✅ 更新CMake配置文件: $cmakeConfigPath" -ForegroundColor Green >> >> # 5. 最终验证 >> Write-Host "n验证安装结果:" -ForegroundColor Cyan >> >> # 检查关键文件是否存在 >> $requiredFiles = @( >> Join-Path $libuvBase "include\uv.h", >> Join-Path $libDestDir $actualLibFile, >> $cmakeConfigPath >> ) >> >> $validationResult = $requiredFiles | ForEach-Object { >> if (Test-Path $_) { >> "✅ 存在: $_" >> } >> else { >> "❌ 缺失: $_" >> } >> } >> >> $validationResult | ForEach-Object { Write-Host $_ } >> >> if ($validationResult -contains "❌") { >> throw "部分文件缺失,请检查修复过程" >> } >> else { >> Write-Host "n✅ Libuv 安装修复完成!" -ForegroundColor Green >> } >> } >> catch { >> Write-Host "n❌ 修复失败: $_" -ForegroundColor Red >> Write-Host "错误详细信息: $($_.Exception.Message)" -ForegroundColor Yellow >> } ✅ 已找到库文件: E:\PyTorch_Build\pytorch\third_party\libuv\lib\uv.lib ❌ 修复失败: The variable '$CMAKE_CURRENT_SOURCE_DIR' cannot be retrieved because it has not been set. 错误详细信息: The variable '$CMAKE_CURRENT_SOURCE_DIR' cannot be retrieved because it has not been set. PS C:\Users\Administrator\Desktop> "PowerShell 7 环境已加载 (版本: 7.5.2) PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> # 切换到Libuv目录 PS C:\Users\Administrator\Desktop> Set-Location "E:\PyTorch_Build\pytorch\third_party\libuv" PS E:\PyTorch_Build\pytorch\third_party\libuv> PS E:\PyTorch_Build\pytorch\third_party\libuv> # 创建构建目录 PS E:\PyTorch_Build\pytorch\third_party\libuv> New-Item -Path "build" -ItemType Directory -Force Directory: E:\PyTorch_Build\pytorch\third_party\libuv Mode LastWriteTime Length Name ---- ------------- ------ ---- da--- 2025/9/1 0:27 build PS E:\PyTorch_Build\pytorch\third_party\libuv> Set-Location "build" PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 运行CMake生成构建文件 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> cmake .. -G "Visual Studio 17 2022" -A x64 -- summary of build options: Install prefix: C:/Program Files/libuv Target system: Windows Compiler: C compiler: C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe (MSVC) CFLAGS: /DWIN32 /D_WINDOWS -- Configuring done (0.1s) -- Generating done (0.2s) -- Build files have been written to: E:/PyTorch_Build/pytorch/third_party/libuv/build PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 构建库文件 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> cmake --build . --config Release 适用于 .NET Framework MSBuild 版本 17.14.19+164abd434 1>Checking Build System Building Custom Rule E:/PyTorch_Build/pytorch/third_party/libuv/CMakeLists.txt uv.vcxproj -> E:\PyTorch_Build\pytorch\third_party\libuv\build\Release\uv.dll Building Custom Rule E:/PyTorch_Build/pytorch/third_party/libuv/CMakeLists.txt uv_a.vcxproj -> E:\PyTorch_Build\pytorch\third_party\libuv\build\Release\libuv.lib Building Custom Rule E:/PyTorch_Build/pytorch/third_party/libuv/CMakeLists.txt uv_run_benchmarks_a.vcxproj -> E:\PyTorch_Build\pytorch\third_party\libuv\build\Release\uv_run_benchmarks_a.exe Building Custom Rule E:/PyTorch_Build/pytorch/third_party/libuv/CMakeLists.txt uv_run_tests.vcxproj -> E:\PyTorch_Build\pytorch\third_party\libuv\build\Release\uv_run_tests.exe Building Custom Rule E:/PyTorch_Build/pytorch/third_party/libuv/CMakeLists.txt uv_run_tests_a.vcxproj -> E:\PyTorch_Build\pytorch\third_party\libuv\build\Release\uv_run_tests_a.exe Building Custom Rule E:/PyTorch_Build/pytorch/third_party/libuv/CMakeLists.txt PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 复制生成的库文件 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> Copy-Item "Release\uv.lib" "..\lib\" -Force PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 更新CMake配置文件 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $cmakeConfigPath = "E:\PyTorch_Build\pytorch\cmake\Modules\FindLibuv.cmake" PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $newContent = @' >> set(LIBUV_FOUND ON) >> set(LIBUV_INCLUDE_DIRS "${CMAKE_CURRENT_SOURCE_DIR}/third_party/libuv/include") >> set(LIBUV_LIBRARIES >> "${CMAKE_CURRENT_SOURCE_DIR}/third_party/libuv/lib/uv.lib" >> ) >> '@ PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> Set-Content -Path $cmakeConfigPath -Value $newContent -Encoding UTF8 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> Write-Host "✅ CMake配置文件已更新" -ForegroundColor Green ✅ CMake配置文件已更新 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 最终验证脚本 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $workingDir = "E:\PyTorch_Build\pytorch" PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $libuvBase = Join-Path $workingDir "third_party\libuv" PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 验证包含文件 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $headerStatus = if (Test-Path "$libuvBase\include\uv.h") {"✅ 存在"} else {"❌ 缺失"} PS E:\PyTorch_Build\pytorch\third_party\libuv\build> Write-Host "uv.h: $headerStatus" -ForegroundColor $(if ($headerStatus -eq "✅ 存在") {"Green"} else {"Red"}) uv.h: ✅ 存在 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 验证库文件 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $libFiles = Get-ChildItem -Path "$libuvBase\lib" -Filter "uv*.lib" -File PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $libStatus = if ($libFiles) {"✅ 找到 $($libFiles.Count) 个库文件"} else {"❌ 缺失库文件"} PropertyNotFoundException: The property 'Count' cannot be found on this object. Verify that the property exists. PS E:\PyTorch_Build\pytorch\third_party\libuv\build> Write-Host "库文件: $libStatus" -ForegroundColor $(if ($libFiles) {"Green"} else {"Red"}) 库文件: ✅ 找到 个库文件 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> if ($libFiles) { >> Write-Host "库文件名: $($libFiles.Name)" -ForegroundColor Cyan >> } 库文件名: uv.lib PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 验证CMake配置 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $cmakeConfigPath = Join-Path $workingDir "cmake\Modules\FindLibuv.cmake" PS E:\PyTorch_Build\pytorch\third_party\libuv\build> $cmakeStatus = if (Test-Path $cmakeConfigPath) {"✅ 存在"} else {"❌ 缺失"} PS E:\PyTorch_Build\pytorch\third_party\libuv\build> Write-Host "CMake配置: $cmakeStatus" -ForegroundColor $(if ($cmakeStatus -eq "✅ 存在") {"Green"} else {"Red"}) CMake配置: ✅ 存在 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 显示配置内容 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> if (Test-Path $cmakeConfigPath) { >> Write-Host "nCMake配置内容:" -ForegroundColor Cyan >> Get-Content $cmakeConfigPath >> } CMake配置内容: set(LIBUV_FOUND ON) set(LIBUV_INCLUDE_DIRS "${CMAKE_CURRENT_SOURCE_DIR}/third_party/libuv/include") set(LIBUV_LIBRARIES "${CMAKE_CURRENT_SOURCE_DIR}/third_party/libuv/lib/uv.lib" ) PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 查看可用生成器 PS E:\PyTorch_Build\pytorch\third_party\libuv\build> cmake -G CMake Error: No generator specified for -G Generators * Visual Studio 17 2022 = Generates Visual Studio 2022 project files. Use -A option to specify architecture. Visual Studio 16 2019 = Generates Visual Studio 2019 project files. Use -A option to specify architecture. Visual Studio 15 2017 = Generates Visual Studio 2017 project files. Use -A option to specify architecture. Visual Studio 14 2015 = Generates Visual Studio 2015 project files. Use -A option to specify architecture. Borland Makefiles = Generates Borland makefiles. NMake Makefiles = Generates NMake makefiles. NMake Makefiles JOM = Generates JOM makefiles. MSYS Makefiles = Generates MSYS makefiles. MinGW Makefiles = Generates a make file for use with mingw32-make. Green Hills MULTI = Generates Green Hills MULTI files (experimental, work-in-progress). Unix Makefiles = Generates standard UNIX makefiles. Ninja = Generates build.ninja files. Ninja Multi-Config = Generates build-<Config>.ninja files. Watcom WMake = Generates Watcom WMake makefiles. CodeBlocks - MinGW Makefiles = Generates CodeBlocks project files (deprecated). CodeBlocks - NMake Makefiles = Generates CodeBlocks project files (deprecated). CodeBlocks - NMake Makefiles JOM = Generates CodeBlocks project files (deprecated). CodeBlocks - Ninja = Generates CodeBlocks project files (deprecated). CodeBlocks - Unix Makefiles = Generates CodeBlocks project files (deprecated). CodeLite - MinGW Makefiles = Generates CodeLite project files (deprecated). CodeLite - NMake Makefiles = Generates CodeLite project files (deprecated). CodeLite - Ninja = Generates CodeLite project files (deprecated). CodeLite - Unix Makefiles = Generates CodeLite project files (deprecated). Eclipse CDT4 - NMake Makefiles = Generates Eclipse CDT 4.0 project files (deprecated). Eclipse CDT4 - MinGW Makefiles = Generates Eclipse CDT 4.0 project files (deprecated). Eclipse CDT4 - Ninja = Generates Eclipse CDT 4.0 project files (deprecated). Eclipse CDT4 - Unix Makefiles= Generates Eclipse CDT 4.0 project files (deprecated). Kate - MinGW Makefiles = Generates Kate project files (deprecated). Kate - NMake Makefiles = Generates Kate project files (deprecated). Kate - Ninja = Generates Kate project files (deprecated). Kate - Ninja Multi-Config = Generates Kate project files (deprecated). Kate - Unix Makefiles = Generates Kate project files (deprecated). Sublime Text 2 - MinGW Makefiles = Generates Sublime Text 2 project files (deprecated). Sublime Text 2 - NMake Makefiles = Generates Sublime Text 2 project files (deprecated). Sublime Text 2 - Ninja = Generates Sublime Text 2 project files (deprecated). Sublime Text 2 - Unix Makefiles = Generates Sublime Text 2 project files (deprecated). PS E:\PyTorch_Build\pytorch\third_party\libuv\build> PS E:\PyTorch_Build\pytorch\third_party\libuv\build> # 使用正确的生成器,例如: PS E:\PyTorch_Build\pytorch\third_party\libuv\build> cmake .. -G "Visual Studio 16 2019" -A x64 CMake Error: Error: generator : Visual Studio 16 2019 Does not match the generator used previously: Visual Studio 17 2022 Either remove the CMakeCache.txt file and CMakeFiles directory or choose a different binary directory. PS E:\PyTorch_Build\pytorch\third_party\libuv\build> "

PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 删除损坏的虚拟环境 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Remove-Item rtx5070_env -Recurse -Force -ErrorAction SilentlyContinue (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 创建新环境 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 激活环境 (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\Activate.ps1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install numpy ninja pybind11 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting numpy Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl (12.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.9/12.9 MB 54.4 MB/s eta 0:00:00 Collecting ninja Downloading https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 310.0/310.0 kB ? eta 0:00:00 Collecting pybind11 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/cd/8a/37362fc2b949d5f733a8b0f2ff51ba423914cabefe69f1d1b6aab710f5fe/pybind11-3.0.1-py3-none-any.whl (293 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 293.6/293.6 kB ? eta 0:00:00 Installing collected packages: pybind11, numpy, ninja Successfully installed ninja-1.13.0 numpy-2.2.6 pybind11-3.0.1 [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置环境变量 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDA_PATH = "E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:Path = "$env:CUDA_PATH\bin;$env:Path" (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 修复虚拟环境 (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\fix_venv.ps1 .\fix_venv.ps1: The term '.\fix_venv.ps1' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 配置构建参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $cmake_args = @( >> "-GNinja", >> "-DBUILD_PYTHON=ON", >> "-DUSE_CUDA=ON", >> "-DUSE_CUDNN=ON", >> "-DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0", >> "-DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib", >> "-DTORCH_CUDA_ARCH_LIST=8.9", >> "-DCMAKE_BUILD_TYPE=Release" >> ) -join " " (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 配置构建 (rtx5070_env) PS E:\PyTorch_Build\pytorch> mkdir build -Force Directory: E:\PyTorch_Build\pytorch Mode LastWriteTime Length Name ---- ------------- ------ ---- da--- 2025/9/3 15:52 build (rtx5070_env) PS E:\PyTorch_Build\pytorch> cd build (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> cmake .. $cmake_args CMake Error: Could not create named generator Ninja -DBUILD_PYTHON=ON -DUSE_CUDA=ON -DUSE_CUDNN=ON -DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0 -DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib -DTORCH_CUDA_ARCH_LIST=8.9 -DCMAKE_BUILD_TYPE=Release Generators * Visual Studio 17 2022 = Generates Visual Studio 2022 project files. Use -A option to specify architecture. Visual Studio 16 2019 = Generates Visual Studio 2019 project files. Use -A option to specify architecture. Visual Studio 15 2017 = Generates Visual Studio 2017 project files. Use -A option to specify architecture. Visual Studio 14 2015 = Generates Visual Studio 2015 project files. Use -A option to specify architecture. Borland Makefiles = Generates Borland makefiles. NMake Makefiles = Generates NMake makefiles. NMake Makefiles JOM = Generates JOM makefiles. MSYS Makefiles = Generates MSYS makefiles. MinGW Makefiles = Generates a make file for use with mingw32-make. Green Hills MULTI = Generates Green Hills MULTI files (experimental, work-in-progress). Unix Makefiles = Generates standard UNIX makefiles. Ninja = Generates build.ninja files. Ninja Multi-Config = Generates build-<Config>.ninja files. Watcom WMake = Generates Watcom WMake makefiles. CodeBlocks - MinGW Makefiles = Generates CodeBlocks project files (deprecated). CodeBlocks - NMake Makefiles = Generates CodeBlocks project files (deprecated). CodeBlocks - NMake Makefiles JOM = Generates CodeBlocks project files (deprecated). CodeBlocks - Ninja = Generates CodeBlocks project files (deprecated). CodeBlocks - Unix Makefiles = Generates CodeBlocks project files (deprecated). CodeLite - MinGW Makefiles = Generates CodeLite project files (deprecated). CodeLite - NMake Makefiles = Generates CodeLite project files (deprecated). CodeLite - Ninja = Generates CodeLite project files (deprecated). CodeLite - Unix Makefiles = Generates CodeLite project files (deprecated). Eclipse CDT4 - NMake Makefiles = Generates Eclipse CDT 4.0 project files (deprecated). Eclipse CDT4 - MinGW Makefiles = Generates Eclipse CDT 4.0 project files (deprecated). Eclipse CDT4 - Ninja = Generates Eclipse CDT 4.0 project files (deprecated). Eclipse CDT4 - Unix Makefiles= Generates Eclipse CDT 4.0 project files (deprecated). Kate - MinGW Makefiles = Generates Kate project files (deprecated). Kate - NMake Makefiles = Generates Kate project files (deprecated). Kate - Ninja = Generates Kate project files (deprecated). Kate - Ninja Multi-Config = Generates Kate project files (deprecated). Kate - Unix Makefiles = Generates Kate project files (deprecated). Sublime Text 2 - MinGW Makefiles = Generates Sublime Text 2 project files (deprecated). Sublime Text 2 - NMake Makefiles = Generates Sublime Text 2 project files (deprecated). Sublime Text 2 - Ninja = Generates Sublime Text 2 project files (deprecated). Sublime Text 2 - Unix Makefiles = Generates Sublime Text 2 project files (deprecated). (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> # 开始构建 (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> ninja install [0/1] Re-running CMake... FAILED: [code=1] build.ninja E:/PyTorch_Build/pytorch/build/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/protobuf/cmake/cmake_install.cmake E:/PyTorch_Build/pytorch/build/confu-deps/pthreadpool/cmake_install.cmake E:/PyTorch_Build/pytorch/build/FXdiv/cmake_install.cmake E:/PyTorch_Build/pytorch/build/confu-deps/cpuinfo/cmake_install.cmake E:/PyTorch_Build/pytorch/build/confu-deps/XNNPACK/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/googletest/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/googletest/googlemock/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/googletest/googletest/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/benchmark/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/benchmark/src/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ittapi/cmake_install.cmake E:/PyTorch_Build/pytorch/build/confu-deps/FP16/cmake_install.cmake E:/PyTorch_Build/pytorch/build/confu-deps/psimd/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/onnx/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/common/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/cpu/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/cpu/x64/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/interface/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/fake/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/dnnl/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/graph_compiler/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/utils/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/examples/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/tests/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/fmt/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/kineto/libkineto/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/kineto/libkineto/third_party/dynolog/dynolog/src/ipcfabric/cmake_install.cmake E:/PyTorch_Build/pytorch/build/third_party/mimalloc/cmake_install.cmake E:/PyTorch_Build/pytorch/build/torch/headeronly/cmake_install.cmake E:/PyTorch_Build/pytorch/build/c10/cmake_install.cmake E:/PyTorch_Build/pytorch/build/c10/test/cmake_install.cmake E:/PyTorch_Build/pytorch/build/c10/benchmark/cmake_install.cmake E:/PyTorch_Build/pytorch/build/c10/cuda/cmake_install.cmake E:/PyTorch_Build/pytorch/build/c10/cuda/test/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/THC/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/quantized/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/nnapi/cmake_install.cmake E:/PyTorch_Build/pytorch/build/sleef/cmake_install.cmake E:/PyTorch_Build/pytorch/build/sleef/src/cmake_install.cmake E:/PyTorch_Build/pytorch/build/sleef/src/libm/cmake_install.cmake E:/PyTorch_Build/pytorch/build/sleef/src/common/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/test/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/core/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/serialize/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/utils/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/perfkernels/cmake_install.cmake E:/PyTorch_Build/pytorch/build/test_jit/cmake_install.cmake E:/PyTorch_Build/pytorch/build/test_nativert/cmake_install.cmake E:/PyTorch_Build/pytorch/build/test_inductor/cmake_install.cmake E:/PyTorch_Build/pytorch/build/test_api/cmake_install.cmake E:/PyTorch_Build/pytorch/build/test_lazy/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/torch/cmake_install.cmake E:/PyTorch_Build/pytorch/build/caffe2/torch/lib/libshm_windows/cmake_install.cmake E:/PyTorch_Build/pytorch/build/functorch/cmake_install.cmake E:/PyTorch_Build/pytorch/build/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/protobuf/cmake/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/confu-deps/pthreadpool/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/FXdiv/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/confu-deps/cpuinfo/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/confu-deps/XNNPACK/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/googletest/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/googletest/googlemock/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/googletest/googletest/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/benchmark/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/benchmark/src/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ittapi/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/confu-deps/FP16/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/confu-deps/psimd/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/onnx/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/common/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/cpu/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/cpu/x64/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/interface/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/fake/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/dnnl/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/backend/graph_compiler/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/src/graph/utils/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/examples/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/ideep/mkl-dnn/tests/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/fmt/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/kineto/libkineto/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/kineto/libkineto/third_party/dynolog/dynolog/src/ipcfabric/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/third_party/mimalloc/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/torch/headeronly/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/c10/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/c10/test/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/c10/benchmark/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/c10/cuda/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/c10/cuda/test/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/THC/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/quantized/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/nnapi/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/sleef/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/sleef/src/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/sleef/src/libm/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/sleef/src/common/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/aten/src/ATen/test/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/core/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/serialize/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/utils/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/perfkernels/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/test_jit/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/test_nativert/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/test_inductor/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/test_api/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/test_lazy/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/torch/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/caffe2/torch/lib/libshm_windows/CTestTestfile.cmake E:/PyTorch_Build/pytorch/build/functorch/CTestTestfile.cmake E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages\cmake\data\bin\cmake.exe --regenerate-during-build -SE:\PyTorch_Build\pytorch -BE:\PyTorch_Build\pytorch\build CreateProcess failed: The system cannot find the file specified. ninja: error: rebuilding 'build.ninja': subcommand failed (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> # 验证安装 (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> cd .. (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; print(f'PyTorch版本: {torch.__version__}, CUDA可用: {torch.cuda.is_available()}')" Traceback (most recent call last): File "<string>", line 1, in <module> File "E:\PyTorch_Build\pytorch\torch\__init__.py", line 35, in <module> from typing_extensions import ParamSpec as _ParamSpec, TypeIs as _TypeIs ModuleNotFoundError: No module named 'typing_extensions' (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 授予执行权限 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Set-ExecutionPolicy Bypass -Scope Process -Force (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 运行完整构建 (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\build_pytorch.ps1 .\build_pytorch.ps1: The term '.\build_pytorch.ps1' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (rtx5070_env) PS E:\PyTorch_Build\pytorch>

D:\STM32CUBECLT\CMake\bin\cmake.exe -DCMAKE_BUILD_TYPE=Debug -DCMAKE_MAKE_PROGRAM=D:/STM32CUBECLT/Ninja/bin/ninja.exe -DCMAKE_C_COMPILER=D:/STM32CUBECLT/GNU-tools-for-STM32/bin/arm-none-eabi-gcc.exe -DCMAKE_CXX_COMPILER=D:/STM32CUBECLT/GNU-tools-for-STM32/bin/arm-none-eabi-c++.exe -G Ninja -S D:\el\1231123213\MDK-ARM\stm32\xuexi -B D:\el\1231123213\MDK-ARM\stm32\xuexi\cmake-build-debug -- The C compiler identification is GNU 13.3.1 -- The CXX compiler identification is GNU 13.3.1 -- Detecting C compiler ABI info -- Detecting C compiler ABI info - failed -- Check for working C compiler: D:/STM32CUBECLT/GNU-tools-for-STM32/bin/arm-none-eabi-gcc.exe -- Check for working C compiler: D:/STM32CUBECLT/GNU-tools-for-STM32/bin/arm-none-eabi-gcc.exe - broken CMake Error at D:/STM32CUBECLT/CMake/share/cmake-3.28/Modules/CMakeTestCCompiler.cmake:67 (message): The C compiler "D:/STM32CUBECLT/GNU-tools-for-STM32/bin/arm-none-eabi-gcc.exe" is not able to compile a simple test program. It fails with the following output: Change Dir: 'D:/el/1231123213/MDK-ARM/stm32/xuexi/cmake-build-debug/CMakeFiles/CMakeScratch/TryCompile-s6c5qr' Run Build Command(s): D:/STM32CUBECLT/Ninja/bin/ninja.exe -v cmTC_fb1bb [1/2] D:\STM32CUBECLT\GNU-tools-for-STM32\bin\arm-none-eabi-gcc.exe -std=gnu11 -fdiagnostics-color=always -o CMakeFiles/cmTC_fb1bb.dir/testCCompiler.c.obj -c D:/el/1231123213/MDK-ARM/stm32/xuexi/cmake-build-debug/CMakeFiles/CMakeScratch/TryCompile-s6c5qr/testCCompiler.c [2/2] C:\WINDOWS\system32\cmd.exe /C "cd . && D:\STM32CUBECLT\GNU-tools-for-STM32\bin\arm-none-eabi-gcc.exe CMakeFiles/cmTC_fb1bb.dir/testCCompiler.c.obj -o cmTC_fb1bb.exe -Wl,--out-implib,libcmTC_fb1bb.dll.a -Wl,--major-image-version,0,--minor-image-version,0 -lkernel32 -luser32 -lgdi32 -lwinspool -lshell32 -lole32 -loleaut32 -luuid -lcomdlg32 -ladvapi32 && cd ." FAILED: cmTC_fb1bb.exe C:\WINDOWS\system32\cmd.exe /C "cd . && D:\STM32CUBECLT\GNU-tools-for-STM32\bin\arm-none-eabi-gcc.exe CMakeFiles/cmTC_fb1bb.dir/testCCompiler.c.obj -o cmTC_fb1bb.exe -Wl,--out-implib,libcmTC_fb1bb.dll.a -Wl,--major-image-version,0,--minor-image-version,0 -lkernel32 -luser32 -lgdi32 -lwinspool -lshell32 -lole32 -loleaut32 -luuid -lcomdlg32 -ladvapi32 && cd ." Cannot create temporary file in C:\Users\张宇鹏\AppData\Local\Temp\: No such file or directory arm-none-eabi-gcc.exe: internal compiler error: Aborted signal terminated program collect2 Please submit a full bug report, with preprocessed source (by using -freport-bug). See <https://gcc.gnu.org/bugs/> for instructions. ninja: build stopped: subcommand failed. CMake will not be able to correctly generate this project. Call Stack (most recent call first): CMakeLists.txt:28 (project) -- Configuring incomplete, errors occurred! [已完成] 请告诉我发生的情况,并告诉我怎么解决

大家在看

recommend-type

抓取BT-audio音乐音频总结v1.2.docx

Qcom平台抓取蓝牙audio日志;介绍: 如何使用QXDM抓取日志, 如何使用qcap解析isf文件, 解析出来的额pcm数据如何用音频工具差异, 如何判断蓝牙音频问题。
recommend-type

CMDB制度规范

cmdb流程规范 配置管理规范 设计规范
recommend-type

AAA2.5及汉化补丁

Advanced Aircraft Analysis V2.5.1.53 (3A) 在win7 64位上安装测试。有注册机和安装视频。支持winxp和win732位和64位系统。 Darcorp Advanced Aircraft Analysis V2.5.1.53 (AAA) 软件是一款面向于高级用户的飞机设计和仿真分析软件,目前广泛应用于数十个国家的各种机构,已然成为飞机设计、开发、稳定性分析以及飞行控制的工业标准软件。适用于 FAR23、FAR25、UAV无人驾驶飞机与 Military 规范,为全球飞机公司(如波音公司)、政府部门(如 FAA)与学校采用于飞机初步设计、分析、与 3-D 绘图的一套完整软件工具。 Advanced Aircraft Analysis (AAA) 是行业标准的飞机设计,稳定性和控制分析软件。 安装在超过45个国家,AAA所使用的主要航空工程大学,飞机制造商和世界各地的军事组织。 Advanced Aircraft Analysis(AAA)是行业标准的飞机设计 AAA提供了一个功能强大的框架,以支持飞机初步设计迭代和非独特的过程。 AAA计划允许学生和初步设计工程师从早期的大小通过开环和闭环动态稳定性和灵敏度分析的重量,而该机的配置工作在监管和成本的限制。
recommend-type

MAX30100心率血氧中文参考手册

MAX30100心率血氧传感器中文翻译。Max30100是一款集成的脉搏血氧和心率检测传感器。它使用了两个LED灯,一个用来优化光学的光电探测器,和低噪声模拟信号处理器,用来检测脉搏的血氧和心率信号。 Max30100的运行电压在1.8V到3.3V之间,并且可以通过软件来控制,待机电流极小,可以忽略不计,这样可以使电源在如何时候都能保持连接状态。
recommend-type

nivisv32.zip

nivisv32.zip

最新推荐

recommend-type

iotthingsgraph-0.9.1-alpha.jar

iotthingsgraph-0.9.1-alpha.jar
recommend-type

毕设&课设:旅客行程智能推荐系统.zip

经导师指导并认可通过的大作业设计项目源码,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。
recommend-type

sagemakeredge-jvm-1.3.17.jar

sagemakeredge-jvm-1.3.17.jar
recommend-type

CireNeikual-LD32:探索开源作曲新境界

从给定文件信息中,我们可以提取出以下知识点: 1. Ludum Dare: Ludum Dare是一种全球性的游戏开发活动,鼓励开发者在限定时间内(通常是48小时或72小时)创造出一个游戏。这个活动的特点是挑战参与者在非常短的时间内完成一个游戏项目的构思、设计、编程和发布。Ludum Dare强调的是创意和执行能力,而不是游戏的复杂度或制作质量。 2. 作曲作品:在这次Ludum Dare活动中,参与者提交的是一首音乐作品。音乐在游戏开发中扮演着非常重要的角色,它可以增强游戏的氛围、情感以及玩家的沉浸感。作曲者可能使用了数字音乐工作站(DAW)、音频编辑软件或乐器模拟软件来创作这首音乐。 3. 开源:开源(Open Source)指的是软件源代码对所有人都是可获取的,任何人都可以查看、修改和分发该代码。开源软件通常是自由软件,这意味着用户可以自由地使用、复制、研究、修改和改进软件。开源项目往往由一个社区来共同维护和推进,这样的协作模式使得软件可以快速适应不断变化的需求和标准。 4. CireNeikual-LD32:从标题中可以推测,这可能是作曲者在Ludum Dare 32期间创作的音乐作品名称。这可能是一个电子音乐项目,因为音乐标题中的“CireNeikual”听起来像是合成器、电子乐器或虚拟乐器的名称。这类音乐通常包含合成声音、节拍和旋律,它可能与电子游戏的氛围紧密相关。 5. 文件名称列表:从提供的信息来看,压缩包子文件中只包含了“LD32”的文件名,这可能意味着该压缩包仅包含一个作品,即上文提到的CireNeikual-LD32音乐作品。这个文件很可能是以MP3、WAV或其他音频格式存储的音乐文件。 6. 知识点的综合应用:Ludum Dare作为一个游戏开发快速挑战活动,其理念与开源运动的精神不谋而合,都是基于共享、合作和共同进步的价值观。参与者在短短的48小时内不仅要快速制作游戏内容,还要在技术、艺术和音乐方面做出迅速的决策。开放源代码的做法有利于其他开发者学习和改进,这也有助于推动整个游戏开发社区的技术和创意发展。音乐作品的加入为游戏增添了艺术层次,使得整个项目更加完整和吸引人。此外,像CireNeikual-LD32这样的作品可能也会推动音乐创作者之间的交流和合作,通过开源共享其作品,他们能够获得反馈,并且与其他创作者共同探讨音乐制作的新技术和新想法。
recommend-type

多租户资源配置秘籍:CDS 7.1.62命名空间隔离与配额管理的6种实施方式

# 摘要 多租户环境下的资源管理是云原生平台面临的核心挑战之一,尤其在基于Kubernetes的CDS架构中,命名空间隔离与资源配额控制成为保障租户间安全与效率的关
recommend-type

里面的递归合并

你提到“里面的递归合并”,我理解你是指对嵌套结构(如树形结构)的递归处理与合并,特别是在处理监控设备树时,既要递归构建带 `checked` 状态的结构,又要递归提取选中的名称。 我们可以将这两个递归操作合并为一个过程,以减少递归次数,提高性能,特别是在数据量大的情况下。这样可以避免对同一棵树进行多次遍历。 --- ### ✅ 合并递归处理:一次遍历完成结构转换和收集选中项 我们可以在递归构建结构的同时,收集 `checked` 为 `true` 的节点名称,从而减少一次完整的递归遍历。 --- ### ✅ 合并后的优化代码如下: ```javascript videoList(
recommend-type

Clementine.js FCC:专为Free Code Camp设计的项目样板

### 标题知识点解析 #### clementinejs-fcc:专门用于 Free Code Camp 课程的 Clementine.js 样板版本 标题中提到的“clementinejs-fcc”指的是一个专门为Free Code Camp(FCC)课程设计的Clementine.js样板版本。这个版本是为学习者准备的,用以帮助他们完成FCC中的项目。在讨论Clementine.js样板时,需要强调以下几点: 1. **Clementine.js项目定位:** Clementine.js 是一个轻量级的全栈JavaScript开发样板。这意味着它提供了一个基础的框架或模板,初学者和有经验的开发者可以在其基础上快速开始新的项目,而不必从零开始配置整个开发环境。 2. **技术栈:** Clementine.js样板利用了Node.js、Express(一个高性能的Node.js框架)、MongoDB(一个文档型数据库),这三个技术通常被合称为MEAN(MongoDB, Express, AngularJS, Node.js)堆栈。此处虽然提到了Express和Node.js,但AngularJS并未在标题中显示,可能是因为标题提到的版本并没有使用AngularJS。 3. **GitHub认证集成:** 样板包含了GitHub认证,这是非常实用的功能,因为它允许用户使用他们的GitHub账户来登录应用程序,从而简化了用户认证过程。 4. **Free Code Camp(FCC):** Free Code Camp是一个提供免费编码课程的非营利组织,旨在教授学生在真实的项目中使用Web开发技术。FCC项目包括一系列从基础到高级的编程挑战,参与者通过完成这些挑战来学习和提高编程技能。 ### 描述知识点解析 #### 此项目不再积极维护 描述中提到项目已不再积极维护,这意味着项目的主要开发工作已经停止,不再添加新功能或进行重大更新。尽管如此,该项目的存档版本仍然可以供学习者或需要稳定版本的用户使用。 #### Clementine.js FCC 样板概述 - **样板透明性和简单性:** 描述中提到样板在透明度和简单性方面做得很好,这表示项目的设计意图让用户能够轻松理解和使用样板中包含的各个组件。 - **版本说明:** - **基础版本:** 最简单的版本,适用于那些对样板体积和功能侵入性有特定要求的用户。 - **增强版本:** 使用AngularJS作为前端框架的稍微复杂的版本,这表明该版本提供了更多的功能和结构,可能更适合需要前端框架的项目。 - **FCC版本:** 标准样板的修订版,专门为FCC课程的学生设计。由于FCC是一个教育项目,所以这个版本可能包括额外的教学材料、注释或指导,以便学生更好地理解和完成课程中的项目。 ### 标签知识点解析 #### JavaScript 标签中提到“JavaScript”,它是Clementine.js样板的基础。JavaScript是一种高级的、解释型的编程语言,广泛用于前端开发。在Clementine.js样板中,JavaScript不仅用于客户端的交互,还用于Node.js环境中的服务器端编程。由于项目是为FCC课程准备的,因此特别强调了JavaScript的学习和应用,包括其在客户端和服务器端的使用。 ### 压缩包子文件的文件名称列表知识点解析 #### clementinejs-fcc-master 列表中提到的“clementinejs-fcc-master”是项目文件的名称。在这个上下文中,“master”可能表示这是项目的主分支或主版本。在Git版本控制系统中,“master”通常用作默认分支的名字,代表项目的当前最佳版本。这一点对于理解如何下载、安装和使用Clementine.js样板版本是非常重要的。 ### 综合应用知识点 综上所述,Clementine.js样板为全栈JavaScript开发提供了一个轻量级的起点,使用了流行的MEAN堆栈技术,并且针对Free Code Camp课程进行了定制。这个样板的FCC版本适用于学生完成课程项目,因为它的设计和功能都特别考虑到了教学目的。尽管项目已不再积极维护,但用户仍然可以使用存档版本。对于正在学习全栈JavaScript开发的个人,特别是正在参与Free Code Camp课程的学习者,这个样板仍是一个有价值的资源。
recommend-type

CDS 7.1.62云原生整合之道:Kubernetes Operator部署模式的5大优势解析

# 摘要 随着云原生技术的快速发展,Kubernetes Operator在复杂中间件管理中展现出强大优势。本文以CDS 7.1.62为实践平台,系统阐述Operator与云原生体系融合的演进背景,深入解析其基于控制器模式、自定义资源(CRD)和状态协调循环的核心机制,并对比Helm与StatefulSet在部署复杂应用时的局限性。通过实际部署
recommend-type

replace( 5 translate(data,'0123456789','##########'),'#',''),''

在处理字符串中的数字字符时,可以通过替换和翻译方法将数字转换为特殊字符。这种方法通常用于数据混淆、加密或格式化目的。可以使用编程语言中的字符串处理函数来实现此功能,例如 Python 或 Java 中的 `translate` 和 `maketrans` 方法,或者使用正则表达式进行替换。 在 Python 中,可以使用 `str.translate` 方法结合 `str.maketrans` 来实现数字字符的替换。以下是一个示例,将字符串中的数字替换为对应的特殊字符: ```python # 定义数字字符与特殊字符的映射关系 digit_to_special = { '0': '
recommend-type

使用stateless-shiro实现REST Web服务的安全管理

### 知识点详细说明 #### 标题知识点 1. **REST Web 服务**: REST(Representational State Transfer)是一种软件架构风格,它定义了一组约束条件和原则,用于设计网络中的分布式系统,尤其是Web服务。RESTful Web服务是以REST原则为基础开发的服务,广泛用于Web应用中,以实现客户端和服务器之间的无状态通信。 2. **Shiro**: Apache Shiro是一个开源的安全框架,提供认证、授权、加密和会话管理功能。Shiro的设计目标是易于使用并理解,同时提供一个直观且易于维护的API。它旨在用来保护应用程序的安全,无论应用程序的大小如何,可以简单到一个独立的Java应用程序,也可以复杂到大型的Web和企业应用程序。 3. **无国籍**: 在此上下文中,"无国籍"可能是一个翻译或输入错误,它应该是指“无状态”(stateless),意味着系统中各个组件不保持任何状态信息。在Web服务中,无状态通常意味着服务器不会在请求之间保留任何客户端的状态信息,这样可以提高系统的可扩展性和可靠性。 #### 描述知识点 1. **项目构建**: 项目中使用 Maven 作为构建工具,`mvn clean package` 命令用于清理之前的构建,打包项目。`spring-boot:run` 是Spring Boot Maven插件提供的目标,用于运行Spring Boot应用。 2. **初始化测试用户**: 描述中提到的 `curl` 命令用于向服务器发送HTTP请求。`-X PUT` 是指定HTTP方法为PUT的参数,用于初始化测试用户。这表明服务提供了一个API端点用于添加或更新资源。 3. **获取用户列表**: 使用 `curl` 命令获取用户列表,显示了如何使用HTTP GET方法从服务端请求数据。 4. **返回401未授权**: 返回的HTTP状态码为401,表明用户未被授权访问所请求的资源。这说明Shiro的安全框架已经介入,要求客户端提供有效的认证信息。 5. **登录操作**: 描述中未提供完整的登录命令,但暗示了一个需要使用 `curl` 命令和相应的HTTP头进行登录的操作,登录成功后才能访问受保护的资源。 #### 标签知识点 1. **Java**: 标签表示该服务是使用Java语言开发的。Java是一种广泛使用的通用编程语言,它以其“一次编写,到处运行”的特性而闻名,特别适合企业级应用和Web服务。 #### 压缩包子文件的文件名称列表知识点 1. **stateless-shiro-master**: 这是项目压缩包的名称,表明该文件包含了无状态Shiro框架的完整项目文件。"master"通常表示这是项目的主分支或主版本。 ### 综合知识点 Shiro框架在本项目中的应用是为了提供一个无状态的REST Web服务安全解决方案。无状态的设计使得服务易于扩展和维护,Shiro在其中扮演的角色包括但不限于: - **认证**: 确定用户身份,通常涉及到用户名和密码的匹配过程。 - **授权**: 确定用户是否有权限进行特定的操作或访问特定的资源。 - **会话管理**: 在无状态设计中,Shiro的会话管理意味着跟踪用户认证后的交互,尽管它不保存服务器端的状态。 通过Maven构建和Spring Boot运行的项目,说明开发者采用了现代Java开发的流行工具和技术。使用 `curl` 进行测试说明了如何通过HTTP客户端与REST服务进行交互。返回的401未授权状态码揭示了Shiro框架对安全控制的介入,并要求客户端开发者在实现登录逻辑时,必须处理好认证和授权的过程。 总结来看,该文件描述了一个基于Shiro进行认证和授权的REST Web服务的创建、初始化和操作流程,涉及到项目构建、命令行操作和状态码解析等知识点。