openmv垃圾分类返回垃圾坐标

时间: 2025-05-28 09:56:28 AIGC 浏览: 48
<think>好的,我现在需要帮助用户解决使用OpenMV进行垃圾分类并返回坐标的问题。首先,我得回忆一下用户提到的引用内容。用户之前提到了电赛中的数字识别和颜色识别的相关资源,这可能与当前需求有关联。用户需要的是垃圾分类,这可能涉及颜色识别、形状识别或者物体分类。根据引用[1]中的数字识别方案,OpenMV可以通过图像处理来识别特定目标。而引用[2]提到的色块追踪和颜色识别,可能可以用来区分不同颜色的垃圾类型,比如可回收物、有害垃圾等。首先,我需要确定垃圾分类的标准。例如,常见的分类可能有可回收物(蓝色)、厨余垃圾(绿色)、有害垃圾(红色)和其他垃圾(黑色)。因此,颜色可能是一个关键特征。接下来,用户需要返回垃圾的坐标,这可能涉及到在图像中找到色块的中心位置。接下来,我需要考虑如何用OpenMV实现这一点。OpenMV的image模块中有find_blobs函数,可以用于检测颜色块。通过设定不同颜色的阈值,可以检测不同类别的垃圾。每个检测到的色块的中心坐标可以通过blob.cx()和blob.cy()获取。但用户可能需要更复杂的分类,比如材质或形状,而不仅仅是颜色。这时候可能需要结合模板匹配或机器学习模型。不过,OpenMV的硬件资源有限,运行复杂的模型可能不太现实。因此,可能还是以颜色和形状为主。 例如,可回收物可能是蓝色的瓶子,形状为圆形;有害垃圾是红色的电池,形状为矩形。这时候可以结合颜色阈值和形状检测。例如,使用find_blobs找到色块后,再用find_circles或find_rects来进一步判断形状。 然后,如何返回坐标呢?每个检测到的目标的位置信息可以通过blob对象的cx和cy属性获取,然后通过串口发送给主控板或其他设备。 现在,需要考虑代码结构。首先初始化摄像头,设置颜色阈值,然后循环捕捉图像,进行颜色和形状的检测,最后输出结果。可能的代码示例包括: 1.设置颜色阈值列表,每个颜色对应一个垃圾类别。 2.在循环中捕获图像,寻找所有色块。 3.对每个色块检查颜色阈值,并进一步检测形状。4.如果符合条件,记录类别和坐标。 5.通过串口发送数据。 需要注意阈值的选择可能需要根据实际环境调整,可能需要使用OpenMV IDE中的工具来获取合适的颜色阈值。此外,光照条件会影响颜色检测,可能需要动态调整或使用自动白平衡。 用户可能需要示例代码,所以需要提供一个基础的框架,包括颜色检测和坐标返回的部分。同时,提醒用户根据实际情况调整阈值,并可能需要结合其他传感器或方法提高准确率。最后,生成相关问题,比如如何优化识别准确率,如何处理动态光照,或者如何结合其他传感器。这些问题可以帮助用户进一步深入学习和解决问题。</think>以下是使用OpenMV实现垃圾分类并返回坐标的解决方案: ### 一、实现思路 1. **颜色阈值定义**:根据垃圾分类标准定义颜色阈值(如可回收物-蓝色,有害垃圾-红色)[^1] 2. **图像采集处理**:通过摄像头获取图像,进行畸变校正和降噪处理 3. **目标检测**:使用`find_blobs`函数检测符合阈值的色块 4. **坐标计算**:基于色块中心坐标(cx, cy)和图像分辨率计算实际位置 5. **分类判断**:结合颜色和形状特征进行垃圾类型判断[^2] ### 二、代码示例 ```python import sensor, image, time, math # 定义垃圾分类颜色阈值 (L, A, B) thresholds = [ (30, 70, -30, 10, -40, 40), # 可回收物(蓝色) (60, 80, 30, 60, 10, 50), # 有害垃圾(红色) (70, 90, -50, 0, 20, 60) # 厨余垃圾(绿色) ] # 初始化摄像头 sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time=2000) clock = time.clock() while(True): clock.tick() img = sensor.snapshot() # 检测所有色块 for blob in img.find_blobs(thresholds, pixels_threshold=200, area_threshold=200): # 绘制检测框 img.draw_rectangle(blob.rect(), color=(255,0,0)) # 计算中心坐标 x = blob.cx() y = blob.cy() # 输出坐标和分类 print("类别:%d 坐标:(%d,%d)" % (blob.code(), x, y)) # 绘制中心十字 img.draw_cross(x, y, color=(0,255,0)) ``` ### 三、关键参数说明 1. **坐标计算原理**: - 坐标系原点在图像左上角 - 实际坐标换算公式: $$x_{real} = \frac{(x_{pixel} - 160)}{160} \times 视野宽度$$ $$y_{real} = \frac{(y_{pixel} - 120)}{120} \times 视野高度$$ 2. **性能优化建议**: - 使用`img.lens_corr()`进行镜头畸变校正 - 通过`sensor.set_auto_gain()`关闭自动增益 - 使用`img.binary()`进行二值化处理提升检测速度
阅读全文

相关推荐

import time, os, math from media.sensor import * from media.display import * from media.media import * from machine import FPIOA, PWM, Pin from machine import UART import gc # 图像参数 IMAGE_WIDTH = 352 IMAGE_HEIGHT = 240 SENSOR_ID = 2 sensor = None THRESHOLD = (69, 252) # 二值化阈值 # 显示模式设置 DISPLAY_MODE = "LCD" # 可选 "VIRT", "LCD", "HDMI" # 根据显示模式设置分辨率 if DISPLAY_MODE == "VIRT": DISPLAY_WIDTH, DISPLAY_HEIGHT = 1920, 1080 elif DISPLAY_MODE == "LCD": DISPLAY_WIDTH, DISPLAY_HEIGHT = 800, 480 elif DISPLAY_MODE == "HDMI": DISPLAY_WIDTH, DISPLAY_HEIGHT = 1920, 1080 else: raise ValueError("无效的显示模式") # 角点检测阈值 CORNERS_THRESHOLD = 5000 # 透视变换目标尺寸 PERSPECTIVE_SIZE = 200 # 变换后的矩形大小 # 矩形过滤参数 MIN_AREA_RATIO = 0.01 # 最小面积占图像比例 MAX_AREA_RATIO = 0.8 # 最大面积占图像比例 ASPECT_RATIO_MIN = 0.5 # 最小宽高比 ASPECT_RATIO_MAX = 2.0 # 最大宽高比 COS_THRESHOLD = 0.3 # 角度余弦阈值(绝对值) fpioa = FPIOA() fpioa.set_function(11, FPIOA.UART2_TXD) fpioa.set_function(12, FPIOA.UART2_RXD) uart = UART(UART.UART2, 115200, 8, 0, 1, timeout=1000) def send_coordinates(center): """通过串口发送坐标数据""" if center: cx, cy = center # 协议格式: $X[坐标x]Y[坐标y]\n data_str = f"$X{cx:04d}Y{cy:04d}\n" uart.write(data_str.encode()) else: uart.write(b"$X9999Y9999\n") # 无效坐标标志 def sort_corners(corners): """对矩形角点进行排序(左上、右上、右下、左下)""" if len(corners) != 4: return corners # 计算中心点 center_x = sum(c[0] for c in corners) / 4 center_y = sum(c[1] for c in corners) / 4 # 分类角点 top_left = min(corners, key=lambda c: (c[0] - center_x)**2 + (c[1] - center_y)**2 if c[0] < center_x and c[1] < center_y else float('inf')) top_right = min(corners, key=lambda c: (c[0] - center_x)**2 + (c[1] - center_y)**2 if c[0] > center_x and c[1] < center_y else float('inf')) bottom_right = min(corners, key=lambda c: (c[0] - center_x)**2 + (c[1] - center_y)**2 if c[0] > center_x and c[1] > center_y else float('inf')) bottom_left = min(corners, key=lambda c: (c[0] - center_x)**2 + (c[1] - center_y)**2 if c[0] < center_x and c[1] > center_y else float('inf')) return [top_left, top_right, bottom_right, bottom_left] def matrix_multiply(A, B): """3x3矩阵乘法""" result = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] for i in range(3): for j in range(3): for k in range(3): result[i][j] += A[i][k] * B[k][j] return result def matrix_vector_multiply(M, v): """矩阵向量乘法""" result = [0, 0, 0] for i in range(3): for j in range(3): result[i] += M[i][j] * v[j] return result def matrix_inverse(M): """3x3矩阵求逆""" det = (M[0][0] * (M[1][1]*M[2][2] - M[1][2]*M[2][1]) - M[0][1] * (M[1][0]*M[2][2] - M[1][2]*M[2][0]) + M[0][2] * (M[1][0]*M[2][1] - M[1][1]*M[2][0])) if abs(det) < 1e-10: # 行列式接近0,不可逆 return [[1, 0, 0], [0, 1, 0], [0, 0, 1]] inv_det = 1.0 / det inv = [ [(M[1][1]*M[2][2] - M[2][1]*M[1][2]) * inv_det, (M[0][2]*M[2][1] - M[0][1]*M[2][2]) * inv_det, (M[0][1]*M[1][2] - M[0][2]*M[1][1]) * inv_det], [(M[1][2]*M[2][0] - M[1][0]*M[2][2]) * inv_det, (M[0][0]*M[2][2] - M[0][2]*M[2][0]) * inv_det, (M[1][0]*M[0][2] - M[0][0]*M[1][2]) * inv_det], [(M[1][0]*M[2][1] - M[2][0]*M[1][1]) * inv_det, (M[2][0]*M[0][1] - M[0][0]*M[2][1]) * inv_det, (M[0][0]*M[1][1] - M[1][0]*M[0][1]) * inv_det] ] return inv def calculate_perspective_transform(src_points): """ 计算透视变换矩阵 src_points: 源图像中的四个点 [左上, 右上, 右下, 左下] 返回: 变换矩阵和逆变换矩阵 """ # 目标点 (校正后的正方形) dst_points = [ [0, 0], [PERSPECTIVE_SIZE, 0], [PERSPECTIVE_SIZE, PERSPECTIVE_SIZE], [0, PERSPECTIVE_SIZE] ] # 构建A矩阵 A = [] for i in range(4): x, y = src_points[i] u, v = dst_points[i] A.append([x, y, 1, 0, 0, 0, -u*x, -u*y]) A.append([0, 0, 0, x, y, 1, -v*x, -v*y]) # 构建b向量 b = [] for i in range(4): u, v = dst_points[i] b.append(u) b.append(v) # 解线性方程组 (使用最小二乘法简化) h = [0] * 8 for i in range(8): for j in range(8): # 计算A^T * A ata = 0 for k in range(8): ata += A[k][i] * A[k][j] # 计算A^T * b atb = 0 for k in range(8): atb += A[k][i] * b[k] # 简单求解 if abs(ata) > 1e-10: h[i] = atb / ata # 构造变换矩阵 H = [ [h[0], h[1], h[2]], [h[3], h[4], h[5]], [h[6], h[7], 1] ] # 计算逆矩阵 H_inv = matrix_inverse(H) return H, H_inv def apply_perspective_transform(point, H): """应用透视变换到单个点""" x, y = point src = [x, y, 1] dst = matrix_vector_multiply(H, src) if abs(dst[2]) > 1e-10: dst = [dst[0]/dst[2], dst[1]/dst[2]] return dst def calculate_center(corners): """计算矩形中心点(使用透视校正)""" if len(corners) < 4: return None # 计算几何中心(原始中心) raw_center_x = sum(c[0] for c in corners) / len(corners) raw_center_y = sum(c[1] for c in corners) / len(corners) # 计算透视变换 try: H, H_inv = calculate_perspective_transform(corners) # 将中心点映射到透视校正后的空间 corrected_center = apply_perspective_transform((raw_center_x, raw_center_y), H) # 将校正后的中心点映射回原始图像空间 final_center = apply_perspective_transform(corrected_center, H_inv) return (int(final_center[0]), int(final_center[1])) except Exception as e: # 计算失败时使用原始中心 return (int(raw_center_x), int(raw_center_y)) def is_valid_rectangle(corners, cos_threshold=COS_THRESHOLD): """ 检查是否为有效矩形(内角接近90度) corners: 排序后的四个角点 [左上, 右上, 右下, 左下] cos_threshold: 余弦值阈值(绝对值应小于此值) 返回: True/False """ if len(corners) != 4: return False # 计算四个内角的余弦值 for i in range(4): # 获取三个连续点: A-B-C A = corners[i] B = corners[(i + 1) % 4] C = corners[(i + 2) % 4] # 计算向量BA和BC BA = (A[0] - B[0], A[1] - B[1]) BC = (C[0] - B[0], C[1] - B[1]) # 计算点积和模长 dot_product = BA[0] * BC[0] + BA[1] * BC[1] mod_BA = math.sqrt(BA[0]**2 + BA[1]**2) mod_BC = math.sqrt(BC[0]**2 + BC[1]**2) # 避免除零错误 if mod_BA * mod_BC < 1e-5: return False # 计算余弦值 cos_value = dot_product / (mod_BA * mod_BC) # 检查是否接近90度 (|cos| < threshold) if abs(cos_value) > cos_threshold: return False return True def calculate_rect_properties(corners): """计算矩形的面积和宽高比""" if len(corners) != 4: return 0, 0 # 计算边长 top = math.sqrt((corners[1][0] - corners[0][0])**2 + (corners[1][1] - corners[0][1])**2) right = math.sqrt((corners[2][0] - corners[1][0])**2 + (corners[2][1] - corners[1][1])**2) bottom = math.sqrt((corners[3][0] - corners[2][0])**2 + (corners[3][1] - corners[2][1])**2) left = math.sqrt((corners[0][0] - corners[3][0])**2 + (corners[0][1] - corners[3][1])**2) # 计算平均宽度和高度 width = (top + bottom) / 2 height = (left + right) / 2 # 计算面积和宽高比 area = width * height aspect_ratio = max(width, height) / min(width, height) if min(width, height) > 0 else 0 return area, aspect_ratio def draw_corner_info(img, corners, center, area, aspect_ratio): """在图像上绘制角点和中心信息""" if len(corners) != 4: return # 定义角点颜色和标签 corner_colors = [(0, 255, 0), (0, 255, 0), (0, 255, 0), (0, 255, 0)] labels = ["TL", "TR", "BR", "BL"] # 绘制角点 for i, (x, y) in enumerate(corners): color = corner_colors[i] img.draw_circle(int(x), int(y), 8, color=color, thickness=2) img.draw_string(int(x) + 10, int(y) - 10, labels[i], color=color, scale=1) # 绘制矩形边框 for i in range(4): x1, y1 = corners[i] x2, y2 = corners[(i + 1) % 4] img.draw_line(int(x1), int(y1), int(x2), int(y2), color=(0, 255, 255), thickness=2) # 绘制对角线 img.draw_line(int(corners[0][0]), int(corners[0][1]), int(corners[2][0]), int(corners[2][1]), color=(255, 0, 0), thickness=1) img.draw_line(int(corners[1][0]), int(corners[1][1]), int(corners[3][0]), int(corners[3][1]), color=(255, 0, 0), thickness=1) # 绘制中心点 if center: cx, cy = center img.draw_cross(int(cx), int(cy), size=15, color=(255, 0, 255), thickness=2) img.draw_circle(int(cx), int(cy), 5, color=(255, 0, 255), thickness=-1) img.draw_string(int(cx) + 10, int(cy) - 10, "Center", color=(255, 0, 255), scale=1) # 显示矩形属性 img.draw_string(10, 30, f"Area: {area:.1f} px", color=(0, 255, 0), scale=1) img.draw_string(10, 50, f"Aspect: {aspect_ratio:.2f}", color=(0, 255, 0), scale=1) def process_frame(img): """处理图像帧,检测矩形角点和中心(带形状验证)""" img_gray = img.to_grayscale(copy=False) img_bin = img_gray.binary([THRESHOLD]) rects = img_bin.find_rects(threshold=CORNERS_THRESHOLD) # 计算图像总面积 total_image_area = img.width() * img.height() min_area = MIN_AREA_RATIO * total_image_area max_area = MAX_AREA_RATIO * total_image_area # 找出所有可能的矩形 valid_rects = [] for rect in rects: corners = rect.corners() if len(corners) == 4: sorted_corners = sort_corners(corners) # 计算矩形属性 area, aspect_ratio = calculate_rect_properties(sorted_corners) # 检查角度、面积和宽高比 angle_valid = is_valid_rectangle(sorted_corners) area_valid = min_area <= area <= max_area aspect_valid = ASPECT_RATIO_MIN <= aspect_ratio <= ASPECT_RATIO_MAX if angle_valid and area_valid and aspect_valid: valid_rects.append((area, aspect_ratio, sorted_corners)) # 选择面积最大的有效矩形 corners = [] center = None area = 0 aspect_ratio = 0 if valid_rects: valid_rects.sort(key=lambda x: x[0], reverse=True) area, aspect_ratio, corners = valid_rects[0] center = calculate_center(corners) # 绘制结果 if center: draw_corner_info(img, corners, center, area, aspect_ratio) else: # 显示未检测到矩形的信息 img.draw_string(img.width()//2 - 50, img.height()//2, "No valid rectangle", color=(255, 0, 0), scale=1) # 资源清理 del img_gray, img_bin gc.collect() return corners, center try: print("初始化摄像头...") # 初始化摄像头 sensor = Sensor(id=SENSOR_ID) sensor.reset() sensor.set_framesize(width=IMAGE_WIDTH ,height=IMAGE_HEIGHT) # 352x240 sensor.set_pixformat(Sensor.RGB565, chn=CAM_CHN_ID_0) sensor.set_hmirror(1) sensor.set_vflip(1) print("初始化显示器...") # 初始化显示器 if DISPLAY_MODE == "VIRT": Display.init(Display.VIRT, width=DISPLAY_WIDTH, height=DISPLAY_HEIGHT, fps=60) elif DISPLAY_MODE == "LCD": Display.init(Display.ST7701, width=DISPLAY_WIDTH, height=DISPLAY_HEIGHT, to_ide=True) elif DISPLAY_MODE == "HDMI": Display.init(Display.LT9611, width=DISPLAY_WIDTH, height=DISPLAY_HEIGHT, to_ide=True) print("初始化媒体管理器...") # 初始化媒体管理器 MediaManager.init() sensor.run() clock = time.clock() print("开始主循环...") while True: os.exitpoint() clock.tick() # 捕获图像 img = sensor.snapshot(chn=CAM_CHN_ID_0) # 处理图像并检测角点 corners, center = process_frame(img) # 发送坐标 send_coordinates(center) time.sleep_ms(20) # 控制发送频率 # 显示FPS img.draw_string(10, 10, f"FPS: {clock.fps():.1f}", color=(255, 0, 0), scale=1) # 显示图像 img.compressed_for_ide() Display.show_image(img, x=int((DISPLAY_WIDTH - img.width()) / 2), y=int((DISPLAY_HEIGHT - img.height()) / 2)) except KeyboardInterrupt: print("程序被用户中断") except Exception as e: print(f"发生错误: {e}") import sys sys.print_exception(e) finally: print("清理资源...") # 清理资源 if sensor: sensor.stop() Display.deinit() MediaManager.deinit() print("程序退出") 程序运行会随着时间而掉帧,优化程序令其更加稳定,复杂繁琐的不那么重要的计算或者函数代码等可以删减或者简化,最终能精准识别矩形框和标定中心通过串口通信传输

import ustruct from machine import UART from machine import FPIOA import os,sys import time from media.sensor import * # 导入sensor模块,使用摄像头相关接口 from media.display import * # 导入display模块,使用display相关接口 from media.media import * # 导入media模块,使用meida相关接口 # 移动平均滤波窗口大小/;/.' WINDOW_SIZE = 5 # 初始化移动平均滤波器 x_filter = [0] * WINDOW_SIZE y_filter = [0] * WINDOW_SIZE filter_index = 0 fpioa = FPIOA() fpioa.set_function(3, FPIOA.UART1_TXD) fpioa.set_function(4, FPIOA.UART1_RXD) # 初始化UART(波特率115200,TX=Pin5, RX=Pin6) uart = UART(UART.UART1, baudrate=115200) thresholds = [(73, 18, 53, 25, 38, 12)] # 红色阈值#(25, 77, -16, 122, -79, 59) # 屏幕正中间坐标 SCREEN_WIDTH = 640 SCREEN_HEIGHT = 480 CENTER_X = SCREEN_WIDTH // 2 CENTER_Y = SCREEN_HEIGHT // 2 # 定义移动步长 MOVE_STEP = 4 def create_packet(x, y, z): # 创建缓冲区(固定10字节) packet = bytearray(10) mv = memoryview(packet) # 帧头 mv[0:2] = b'\x2C\x12' # 写入数据(大端序) ustruct.pack_into('>HHH', mv, 2, x, y, z) # 从索引2开始写入6字节 # 计算校验和(异或校验,仅数据字段) checksum = 0 for i in range(2, 8): # 数据字段为索引2 - 7 checksum ^= mv[i] mv[8] = checksum # 帧尾 mv[9] = 0x5B return packet # 移动平均滤波函数 def moving_average_filter(value, filter_buffer): global filter_index filter_buffer[filter_index] = value filter_index = (filter_index + 1) % WINDOW_SIZE return sum(filter_buffer) // WINDOW_SIZE sensor = Sensor() # 构建摄像头对象,通过软件接口控制 sensor.reset() # 复位和初始化摄像头 sensor.set_framesize(width=SCREEN_WIDTH, height=SCREEN_HEIGHT) # 需与屏幕物理分辨率一致 sensor.set_pixformat(Sensor.RGB565) # 设置为彩色 sensor.set_vflip(1) sensor.set_hmirror(1) Display.init(Display.ST7701, to_ide=True) # 初始化驱动芯片,将摄像头或图像处理结果同时发送到 CanMV IDE 的虚拟显示窗口。 MediaManager.init() # 硬件初始化 sensor.run() # 开始 # 生成数据包并发送 x = CENTER_X y = CENTER_Y z = 0 while True: img = sensor.snapshot() # 拍摄一张图片 blobs = img.find_blobs([thresholds[0]], margin=100, merge=True, area_threhold=100, pixels_threshold=1000) # 0,1,2分别表示红,绿,蓝色 if blobs: for b in blobs: # 画矩形和箭头表示 tmp = img.draw_rectangle(b[0:4], thickness=4) tmp = img.draw_cross(b[5], b[6], thickness=2) x = b[5] y = b[6] z = 0 else: # 当未检测到目标时,计算x和y方向的移动距离 x_distance = CENTER_X - x y_distance = CENTER_Y - y # 根据距离和步长计算x和y方向的移动值 x_move = MOVE_STEP if x_distance > 0 else -MOVE_STEP if x_distance < 0 else 0 y_move = MOVE_STEP if y_distance > 0 else -MOVE_STEP if y_distance < 0 else 0 # 限制移动值不超过剩余距离 x_move = min(abs(x_distance), abs(x_move)) * (1 if x_move > 0 else -1) y_move = min(abs(y_distance), abs(y_move)) * (1 if y_move > 0 else -1) # 更新坐标 x += x_move y += y_move # 应用移动平均滤波 filtered_x = moving_average_filter(x, x_filter) filtered_y = moving_average_filter(y, y_filter) Display.show_image(img) packet = create_packet(filtered_x, filtered_y, z) uart.write(packet) print(filtered_x, filtered_y) time.sleep_us(1) 以此代码为模版,实现寻找黑色目标,并沿着黑色目标的边缘生成小点,将黑色目标边缘用小点标记出来

大家在看

recommend-type

lingo语法例子。。PPT

这个PPT是清华大学制作的 我觉得很好很全面 欢迎大家下载
recommend-type

宏碁Acer 4741G驱动合集 for winxp 官方版_宏碁个人笔记本XP驱动

宏碁Acer4741G驱动合集包含了显卡、网卡、声卡等驱动,都是xp版本,因为笔记本自带win7系统,有想要装xp系统的就需要这个驱动包。哈哈,买回来的Acer4741G,宏基的本本,性价比高,I5的CPU才4K多点,系统是win7家庭版,感觉还是XP好用,就要换回来了,想把驱动找全,欢迎下载体验
recommend-type

cpp-sdk-samples:适用于Windows和Linux的Affdex SDK的示例应用

cpp-sdk-samples:适用于Windows和Linux的Affdex SDK的示例应用
recommend-type

ray-optics:光学系统的几何光线追踪

射线光学 安装 要使用pip安装rayoptics ,请使用 > pip install rayoptics 或者,可以使用conda从conda - forge渠道安装rayoptics > conda install rayoptics --channel conda-forge 文献资料 射线光学位于“ 成像光学设计和分析工具 RayOptics是一个Python几何光学和成像光学库。 它为分析成像和相干光学系统提供了几何射线追踪基础。 在此基础上提供了许多标准的几何分析选项,例如横向射线和波前像差分析。 y-ybar图和镜头布局视图中近轴光线的图形编辑也支持光学系统的近轴布局。 支持导入Zemax .zmx和CODEV .seq文件。 RayOptics可用于Python脚本,Python和IPython外壳,Jupyter笔记本以及基于Qt的图形用户界面应用程序中。 笔记 该项
recommend-type

java读取kml文件数据

自己做的用java读取kml文件数据,并保存为json文件。方便其它地方解析。

最新推荐

recommend-type

tika-parser-font-module-3.1.0.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

HTML时间格式化工具及测试页面介绍

标题 "BoolStudio.github.io" 暗示这是一个与GitHub相关的在线资源,具体来说是与BoolStudio相关的网页地址。GitHub是一个著名的代码托管平台,它支持Git版本控制系统,允许用户在云端存储和共享代码。BoolStudio可能是GitHub上的一个用户或组织账户名称,而该页面可能是他们托管的项目或个人页面的入口。 描述中的信息包含了HTML元素和JavaScript代码片段。这段描述展示了一个测试页文件的部分代码,涉及到HTML的标题(title)和内嵌框架(iframe)的使用,以及JavaScript中Date对象的扩展功能。 从描述中我们可以分析出以下知识点: 1. HTML标题(Title): 在HTML中,`<title>`标签用于定义网页的标题,它会显示在浏览器的标题栏或页面的标签上。在描述中出现了`<title>现在时间</title>`,这表明网页的标题被设置为了“现在时间”。 2. 微软时间: 这可能指的是在网页中嵌入微软产品的日期和时间显示。尽管这部分内容在描述中被删除了,但微软时间通常与Windows操作系统的日期和时间显示相关联。 3. iframe元素: `<iframe>`标签定义了一个内嵌框架,可以在网页中嵌入另一个文档。在描述中出现的是`<iframe src"></iframe>`,这表示创建了一个空的iframe元素,其src属性为空,实际上没有嵌入任何内容。通常src属性会被设置为另一个HTML文档的URL,用来在当前页面中显示外部页面的内容。 4. JavaScript日期格式化: 描述中包含了一段JavaScript代码,这段代码扩展了Date对象的功能,允许它根据提供的格式字符串(fmt)返回格式化的日期和时间。例如,如果fmt是'y年M月d日 h时m分s秒',则该函数会按照这个格式返回当前日期和时间。 具体到代码实现,以下步骤展示了如何在JavaScript中扩展Date对象并格式化日期: - 首先创建了一个对象o,该对象包含日期和时间的不同部分,例如年(y)、月(M)、日(d)、时(h)、分(m)、秒(s)。 - 使用正则表达式检查格式字符串fmt中是否包含年份的占位符(y+),如果存在则将其替换为四位数的年份,不足部分用0补齐。 - 使用for...in循环遍历对象o中的每一个键值对,并使用正则表达式测试这些键(如年、月、日等)是否在格式字符串中存在。如果存在,则替换为相应的日期时间值。 这个知识点展示了在JavaScript中如何自定义对象的方法,以及如何使用正则表达式进行字符串的搜索和替换。 标签 "HTML" 表明这个文件主要涉及到超文本标记语言(HTML),这是构建网页内容的标准标记语言,它允许开发者使用标签来定义网页的结构和内容。HTML文件通常包含各种元素,如段落、链接、图片、表格和表单等。 压缩包子文件的文件名称列表中的 "BoolStudio.github.io-main" 可能指的是一个包含 "BoolStudio.github.io" 网站主要文件的压缩包。通常,网站项目会包含多个文件和资源,为了便于管理和分发,开发者会将这些文件打包成一个压缩文件。在本例中,"main" 可能表示该压缩包包含了网站的主要文件和代码。 通过对给定文件信息的分析,我们可以了解到网页设计和开发的相关知识点,特别是HTML文档结构、JavaScript对象和函数扩展以及如何在网站项目中组织文件。这些知识对于前端开发者来说是非常重要的,能够帮助他们创建更加动态和功能丰富的网页应用。
recommend-type

Elixir测试:从用例执行到覆盖率分析

### Elixir 测试:从用例执行到覆盖率分析 #### 1. 测试用例执行 在测试中,以 `Test` 结尾且包含 `use ExUnit` 的模块被视为测试用例。测试用例本质上是设置回调和测试的集合。测试用例的执行方式有两种:并发执行或顺序执行。使用 `async: true` 选项的测试用例将并发执行,其余的则按定义顺序(默认随机)顺序执行。 测试用例的执行流程如下: 1. 执行所有 `setup_all` 回调。 2. 执行所有测试及其特定的设置和拆卸回调。 `setup_all` 回调按定义顺序在同一进程中执行。在运行任何测试之前,测试用例将生成一个进程,在该进程中运行所有
recommend-type

Android Studio 时间延时

<think> 我们参考多个引用,总结在Android Studio中实现时间延时的方法。根据引用[1]和[2],我们知道有几种常见的延时方法,包括使用Handler的postDelayed方法、使用Timer和TimerTask以及使用Thread.sleep。引用[3]和[5]则展示了具体代码示例。 具体方法如下: 1. **使用Handler的postDelayed方法**(推荐在主线程中使用,避免直接操作UI线程的问题): ```java new Handler().postDelayed(new Runnable() { @Override
recommend-type

IMS Open Corpus Workbench:打造高效大型文本语料库管理工具

IMS Open Corpus Workbench(以下简称CWB)是一个强大的开源工具集,它专门用于管理和查询大型的、带有语言注释的文本语料库。这项工具有着广泛的应用领域,包括语言学研究、自然语言处理、人文科学研究等。 ### 标题知识点: #### 大型文本语料库的索引和查询工具 大型文本语料库指的是含有大量文本数据的数据库,其中包含的文本量通常以百万计。这些数据可能是书面文本、口语录音文字转写等形式。对于如此庞大的数据集,索引是必要的,它可以帮助研究者快速定位到感兴趣的片段,而查询工具则提供了从这些大量数据中提取特定信息的能力。 #### 开源 CWB作为一个开源工具,意味着其源代码对所有人开放,并且可以免费使用和修改。开源项目通常是由社区驱动,有着活跃的开发者和用户群体,不断对工具进行改进和拓展。这种模式促进了创新,并且有利于长期维护和升级。 ### 描述知识点: #### 管理和查询带有语言注释的文本 在语料库中,文本数据经常会被加上各种形式的语言注释,比如句法结构、词性标注、语义角色等。CWB支持管理这类富含语言信息的语料库,使其不仅仅保存原始文本信息,还整合了深层的语言知识。此外,CWB提供了多种查询语言注释数据的方式,使得用户可以针对特定的注释信息进行精确查询。 #### 核心组件:CQP(Corpus Query Processor) CQP是CWB中的核心组件,是一个高度灵活和高效的查询处理器。它支持在终端会话中交互式地使用,这为熟悉命令行界面的用户提供了一个强大的工具。同时,CQP也可以嵌入到其他程序中,比如Perl脚本,从而提供编程式的语料库访问方式。这为高级用户提供了一个强大的平台,可以编写复杂的查询,并将查询结果集成到其他程序中。 #### 基于Web的GUI CQPweb 除了命令行界面外,CWB还提供了一个基于Web的图形用户界面CQPweb,使得不熟悉命令行的用户也能够方便地使用CWB的强大功能。CQPweb通常允许用户通过网页直接构建查询,并展示查询结果,极大地降低了使用门槛。 ### 标签知识点: #### 开源软件 CWB作为开源软件,其主要特点和优势包括: - **社区支持**:开放源代码鼓励了全球开发者共同参与,提供错误修正、功能增强、新特性开发等。 - **定制化**:用户可以根据自己的需求对源代码进行修改,从而实现定制化的功能。 - **透明性**:源代码的开放确保了软件工作的透明性,用户可以清楚了解软件的工作原理和数据处理方式。 - **可靠性**:由于代码的公开性,很多用户和开发者可以共同审查代码,提高了软件的可靠性和安全性。 - **成本效益**:开源软件通常不需要支付昂贵的许可费用,对预算有限的个人和机构特别友好。 ### 压缩包子文件的文件名称列表知识点: #### cwb-3.0.0-osx-10.5-universal 这个文件名提供了关于该软件包的重要信息: - **cwb**:表示这是IMS Open Corpus Workbench的软件包。 - **3.0.0**:表示这个包的版本号,了解版本信息对于获取支持、查看更新日志、了解新特性等方面很重要。 - **osx**:表示这个软件包是为Mac OS X操作系统设计的。 - **10.5**:这个数字指明了这个软件包支持的操作系统版本至少是Mac OS X 10.5。 - **universal**:表明这个软件包是为不同架构的处理器(比如32位和64位)设计的通用二进制文件,提高了软件包的兼容性和可移植性。 综上所述,IMS Open Corpus Workbench是一个为处理带有语言注释的大型文本语料库而设计的开源工具集,它以高效且灵活的查询处理器CQP为核心,提供了命令行和基于Web的两种交互方式,极大地促进了语言学和语言技术领域的研究与应用。由于其开源特性,CWB得到了广泛的使用和不断的改进。
recommend-type

基于属性测试的深入解析与策略探讨

### 基于属性测试的深入解析与策略探讨 #### 1. 基于属性测试中的收缩机制 在基于属性的测试中,当测试失败时,像 `stream_data` 这样的框架会执行收缩(Shrinking)操作。收缩的目的是简化导致测试失败的输入,同时确保简化后的输入仍然会使测试失败,这样能更方便地定位问题。 为了说明这一点,我们来看一个简单的排序函数测试示例。我们实现了一个糟糕的排序函数,实际上就是恒等函数,它只是原封不动地返回输入列表: ```elixir defmodule BadSortTest do use ExUnit.Case use ExUnitProperties pro
recommend-type

ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key && \

<think> 根据用户的问题要求,我需要详细解释命令`ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key`的含义、后续操作、常见问题及解决办法。同时,我需要参考提供的引用内容,并遵循系统级指令(如LaTeX格式、中文回答、生成相关问题等)。 首先,分析命令的组成部分: - `ssh-keygen`:生成、管理和转换SSH密钥的工具。 - `-t rsa`:指定密钥类型为RSA算法。 - `-f /etc/ssh/ssh_host_rsa_key`:指定生成的私钥文件路径为`/etc/ssh/ssh_host_rsa_key`。对应的公钥文件会在同一
recommend-type

挑战性开源平台游戏YAGAC:无故事忍者冒险

Y.A.G.A.C(Yet Another Great Arcade Classic),是一款免费的开源伪2D平台游戏,它在传统平台游戏的基础上融入了3D游戏元素,让玩家在一个拥有2D精灵的3D环境中进行操作。YAGAC游戏以其高挑战性和上瘾性而著称,吸引了众多游戏爱好者和编程高手的关注。 首先,让我们深入了解这款游戏的核心玩法。YAGAC的最大特点是在一个基本的2D平面内,玩家可以控制角色进行运动,但游戏环境却是3D制作的。这种设计为玩家带来了全新的视觉体验和操作感受。在YAGAC中,玩家扮演的是一个身手敏捷的忍者,任务是在错综复杂的地牢中生存下来,地牢充满了各种陷阱和敌人,如机器人等。为了逃生,玩家需要在各种关卡中寻找隐藏的彩球,这些彩球决定了玩家能够到达的区域范围。 在游戏过程中,收集到的彩球会改变对应颜色平台的属性,使原本脆弱的平台变得牢固,从而为玩家打开新的道路。这样的设计不仅考验玩家的反应和速度,还考验他们的策略和记忆能力。YAGAC的游戏关卡设计非常巧妙,经常需要玩家反复尝试,每一次尝试都可能发现新的线索和策略,这样的设计增加了游戏的重复可玩性。 YAGAC使用的引擎在游戏流畅性方面表现出色,这也是游戏的一大强项。一款游戏引擎的强大与否直接关系到游戏体验的好坏,YAGAC的开发团队选择或者开发了一个能够高效处理3D图形和2D动作的引擎,确保了游戏在各种配置的计算机上都能保持良好的运行状态和响应速度。 接下来,我们来探讨YAGAC的开源属性。由于YAGAC是开源的,这意味着游戏的源代码是开放的,任何个人或组织都可以访问、修改并重新分发该软件。开源软件通常由社区维护,并且鼓励用户贡献代码,共同改进游戏。对于像YAGAC这样的游戏来说,开源可以吸引更多的开发者参与进来,共同完善游戏体验。玩家和开发者可以对游戏进行本地化、修改游戏机制,甚至是增加新的内容和关卡。 开源平台游戏的概念不仅限于提供免费的游戏体验,它还鼓励创新和协作。开源文化促进知识共享和技术进步,这在软件开发领域尤为重要。同时,玩家也可以从中学到编程知识,因为游戏的开源性质允许用户查看和学习游戏背后的代码。 最后,关于YAGAC的文件名称“yagac”,这很可能是游戏的主程序文件名或者主目录名。当玩家在计算机上进行下载和安装时,可能会遇到这样的文件名,识别这一点有助于玩家快速定位和管理游戏文件。 总的来说,Y.A.G.A.C.作为一款开源平台游戏,在游戏玩法设计、开源文化和3D游戏引擎的流畅性等方面,都显示出其独特的优势。游戏的挑战性和上瘾性,以及社区驱动的开发模式,都为游戏爱好者和开源爱好者提供了一个理想的游戏和学习平台。对于对游戏开发感兴趣的玩家来说,YAGAC无疑是一个研究和实践的良好起点。
recommend-type

状态化属性测试与测试数据随机化及测试生命周期解析

# 状态化属性测试与测试数据随机化及测试生命周期解析 ## 状态化属性测试 ### 状态化系统测试的引入 之前我们主要探讨了针对纯无状态函数的属性测试,这类函数接收输入并返回输出。然而,属性测试同样适用于有状态系统的测试。有状态系统是指那些会携带状态的系统,例如数据库。 在之前的示例中,我们仅使用属性测试来生成数据,然后将其输入到代码中并对结果进行断言。但对于有状态系统,情况有所不同:我们需要处理状态的设置,并仅在系统处于特定状态时执行某些操作。 ### 对有状态系统进行建模 我们可以利用属性测试框架生成随机数据的能力,为有状态系统生成随机命令。例如,若有状态系统是数据库,我们就能生成针
recommend-type

icpc英语字典

<think> 首先,用户的问题是:“我想查找icpc相关的英语字典 请问icpc英语专业字典”。用户想查找与ICPC(International Collegiate Programming Contest)相关的英语字典,特别是专业字典。 现在,回顾系统指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式使用$$...$$。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题。 - 保持真实可靠。 用户提供了几个引用: - 引用[1]:关于填字游戏和寻找变形词的程序。