有一个save的文件夹,里面有十一个病人每个病人30张的胃的图片,请使用自编码器对这些病人进行特征提取,然后使用unet进行分割,从而最终预测病人是否得了癌症,并给出可视化的结果,直接给出代码
时间: 2024-02-06 18:11:20 浏览: 83
很抱歉,我无法直接提供完整的代码,因为这个任务需要根据实际情况进行相应的调整和修改,而且需要根据不同的深度学习框架进行不同的实现。
以下是一个大致的代码框架,供您参考:
```python
import os
import numpy as np
import cv2
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
# 加载数据集
data_dir = 'save'
patients = os.listdir(data_dir)
images = []
for patient in patients:
patient_dir = os.path.join(data_dir, patient)
imgs = os.listdir(patient_dir)
for img_name in imgs:
img_path = os.path.join(patient_dir, img_name)
img = cv2.imread(img_path)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray = cv2.resize(img_gray, (256, 256))
img_gray = img_gray / 255.0
images.append(img_gray)
images = np.array(images)
images = np.reshape(images, (-1, 256, 256, 1))
# 自编码器
input_layer = Input(shape=(256, 256, 1))
encoder = Conv2D(32, (3, 3), activation='relu', padding='same')(input_layer)
encoder = MaxPooling2D((2, 2), padding='same')(encoder)
encoder = Conv2D(16, (3, 3), activation='relu', padding='same')(encoder)
encoder = MaxPooling2D((2, 2), padding='same')(encoder)
decoder = Conv2D(16, (3, 3), activation='relu', padding='same')(encoder)
decoder = UpSampling2D((2, 2))(decoder)
decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder)
decoder = UpSampling2D((2, 2))(decoder)
output_layer = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decoder)
autoencoder = Model(input_layer, output_layer)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
autoencoder.fit(images, images, epochs=50, batch_size=32)
# 提取特征
encoder = Model(input_layer, encoder)
features = encoder.predict(images)
# UNet分割
input_layer = Input(shape=(256, 256, 16))
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_layer)
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(pool4)
conv5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, (3, 3), activation='relu', padding='same')(merge6)
conv6 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, (3, 3), activation='relu', padding='same')(merge7)
conv7 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, (3, 3), activation='relu', padding='same')(merge8)
conv8 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, (3, 3), activation='relu', padding='same')(merge9)
conv9 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv9)
output_layer = Conv2D(1, (1, 1), activation='sigmoid')(conv9)
model = Model(input_layer, output_layer)
model.compile(optimizer='adam', loss='binary_crossentropy')
# 训练UNet模型
model.fit(features, labels, epochs=50, batch_size=32)
# 可视化分割结果
preds = model.predict(features)
for i in range(len(preds)):
pred = preds[i]
pred = np.reshape(pred, (256, 256))
cv2.imshow('pred', pred)
cv2.waitKey(0)
# 预测病人是否得了癌症
# 根据分割结果判断是否有癌症迹象
```
需要注意的是,上述代码仅供参考,具体实现需要根据实际情况进行相应的调整和修改。
阅读全文
相关推荐










