self.container = nn.Sequential( nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)), # nn.BatchNorm2d(num_features=self.class_num), # nn.ReLU(), # nn.Conv2d(in_channels=self.class_num, out_channels=self.lpr_max_len+1, kernel_size=3, stride=2), # nn.ReLU(), )。 能详细解释这段代码吗
时间: 2023-05-23 17:03:30 浏览: 120
这行代码创建了一个包含一个2D卷积层的神经网络模型。其中,输入通道数为448(in_channels=448),输出通道数为类别数(self.class_num)。卷积核大小为1x1(kernel_size=(1,1)),步长为1(stride=(1,1))。这个模型被存储在self.container变量中,使得可以在之后的代码中调用这个模型。
相关问题
self.container = nn.Sequential( nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)), # nn.BatchNorm2d(num_features=self.class_num), # nn.ReLU(), # nn.Conv2d(in_channels=self.class_num, out_channels=self.lpr_max_len+1, kernel_size=3, stride=2), # nn.ReLU(), ) x = self.container(x)
这段代码是在PyTorch中定义一个Sequential容器,其中包含了一个2D卷积层(nn.Conv2d)。这个卷积层有448个输入通道(in_channels=448),输出通道数与类别数相同(self.class_num),卷积核大小为1x1(kernel_size=(1,1)),步长为1(stride=(1,1))。
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms, models from torch.utils.data import Dataset,DataLoader import os import numpy as np from PIL import Image # ==================== CBAM模块实现 ==================== class ChannelAttention(nn.Module): def __init__(self, in_planes, reduction_ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc = nn.Sequential( nn.Conv2d(in_planes, in_planes // reduction_ratio, 1, bias=False), nn.ReLU(), nn.Conv2d(in_planes // reduction_ratio, in_planes, 1, bias=False) ) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc(self.avg_pool(x)) max_out = self.fc(self.max_pool(x)) return self.sigmoid(avg_out + max_out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv(x) return self.sigmoid(x) class CBAM(nn.Module): def __init__(self, channel, reduction_ratio=16, kernel_size=7): super(CBAM, self).__init__() self.ca = ChannelAttention(channel, reduction_ratio) self.sa = SpatialAttention(kernel_size) def forward(self, x): x = x * self.ca(x) x = x * self.sa(x) return x # ==================== 修改ResNet50 ==================== class BottleneckWithCBAM(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BottleneckWithCBAM, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.cbam = CBAM(planes * self.expansion) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) out = self.cbam(out) return out def resnet50_cbam(pretrained=True, num_classes=200): model = models.resnet50(pretrained=pretrained) # 替换Bottleneck模块 for i in range(len(model.layer1)): model.layer1[i] = BottleneckWithCBAM(model.layer1[i].conv1.in_channels, model.layer1[i].conv1.out_channels) for i in range(len(model.layer2)): model.layer2[i] = BottleneckWithCBAM(model.layer2[i].conv1.in_channels, model.layer2[i].conv1.out_channels) for i in range(len(model.layer3)): model.layer3[i] = BottleneckWithCBAM(model.layer3[i].conv1.in_channels, model.layer3[i].conv1.out_channels) for i in range(len(model.layer4)): model.layer4[i] = BottleneckWithCBAM(model.layer4[i].conv1.in_channels, model.layer4[i].conv1.out_channels) # 修改最后的全连接层 model.fc = nn.Linear(model.fc.in_features, num_classes) return model # ==================== 数据集解析与划分 ==================== class CUBDataset(Dataset): def __init__(self, root_dir, transform=None, is_train=True): self.root = root_dir self.transform = transform # 解析数据文件 self._parse_files() # 根据train_test_split筛选数据 split_mask = (self.split_labels == 1) if is_train else (self.split_labels == 0) self.image_paths = self.image_paths[split_mask] self.class_labels = self.class_labels[split_mask] def _parse_files(self): # 读取images.txt with open(os.path.join(self.root, 'images.txt'), 'r') as f: image_entries = [line.strip().split() for line in f] self.image_paths = np.array([os.path.join(self.root, 'images', e[1]) for e in image_entries]) # 读取image_class_labels.txt with open(os.path.join(self.root, 'image_class_labels.txt'), 'r') as f: class_entries = [line.strip().split() for line in f] self.class_labels = np.array([int(e[1]) - 1 for e in class_entries]) # 类别索引从0开始 # 读取train_test_split.txt with open(os.path.join(self.root, 'train_test_split.txt'), 'r') as f: split_entries = [line.strip().split() for line in f] self.split_labels = np.array([int(e[1]) for e in split_entries]) def __len__(self): return len(self.image_paths) def __getitem__(self, idx): img_path = self.image_paths[idx] image = Image.open(img_path).convert('RGB') label = self.class_labels[idx] if self.transform: image = self.transform(image) return image, label # ==================== 数据预处理 ==================== def get_dataloaders(root_dir, batch_size=32): train_transforms = transforms.Compose([ transforms.Resize(512), # 高分辨率有利于细粒度分类 transforms.RandomCrop(448), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) test_transforms = transforms.Compose([ transforms.Resize(512), transforms.CenterCrop(448), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = CUBDataset(root_dir, train_transforms, is_train=True) test_dataset = CUBDataset(root_dir, test_transforms, is_train=False) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True) return train_loader, test_loader # ==================== 训练函数 ==================== def train_model(model, train_loader, test_loader, device, num_epochs=100): criterion = nn.CrossEntropyLoss() optimizer = optim.AdamW(model.parameters(), lr=3e-4) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs) best_acc = 0.0 for epoch in range(num_epochs): model.train() running_loss = 0.0 for inputs, labels in train_loader: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(train_loader.dataset) scheduler.step() # 验证阶段 model.eval() correct = 0 total = 0 with torch.no_grad(): for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total print(f'Epoch {epoch + 1}/{num_epochs} Loss: {epoch_loss:.4f} Acc: {acc:.2f}%') if acc > best_acc: best_acc = acc torch.save(model.state_dict(), 'best_model.pth') print(f'Best Test Accuracy: {best_acc:.2f}%') return model # ==================== 主函数 ==================== if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') data_dir = r'D:\CUB_200_2011\CUB_200_2011' # 自动划分数据集 train_loader, test_loader = get_dataloaders(data_dir, batch_size=64) # 初始化模型(使用前文定义的resnet50_cbam) model = resnet50_cbam(pretrained=True, num_classes=200) model = model.to(device) # 训练流程(使用前文定义的train_model函数) train_model(model, train_loader, test_loader, device, num_epochs=100) The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. C:\ProgramData\anaconda3\envs\pytorch-python3.8\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet50_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet50_Weights.DEFAULT` to get the most up-to-date weights. Traceback (most recent call last): File "C:\Users\Administrator\PyCharmMiscProject\test.py", line 254, in <module> train_model(model, train_loader, test_loader, device, num_epochs=100) File "C:\Users\Administrator\PyCharmMiscProject\test.py", line 208, in train_model outputs = model(inputs) File "C:\ProgramData\anaconda3\envs\pytorch-python3.8\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\ProgramData\anaconda3\envs\pytorch-python3.8\lib\site-packages\torchvision\models\resnet.py", line 285, in forward return self._forward_impl(x) File "C:\ProgramData\anaconda3\envs\pytorch-python3.8\lib\site-packages\torchvision\models\resnet.py", line 273, in _forward_impl x = self.layer1(x) File "C:\ProgramData\anaconda3\envs\pytorch-python3.8\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\ProgramData\anaconda3\envs\pytorch-python3.8\lib\site-packages\torch\nn\modules\container.py", line 217, in forward input = module(input) File "C:\ProgramData\anaconda3\envs\pytorch-python3.8\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\Administrator\PyCharmMiscProject\test.py", line 90, in forward out += identity RuntimeError: The size of tensor a (256) must match the size of tensor b (64) at non-singleton dimension 1
<think>好的,我现在需要帮助用户解决两个问题:修复PyTorch ResNet模型中因替换Bottleneck模块导致的维度不匹配错误,以及将旧版的'pretrained'参数替换为新的'weights'参数。首先,我得理解这两个问题的具体原因和解决方法。关于维度不匹配错误,用户提到在替换Bottleneck模块后,forward计算中出现张量尺寸256 vs64的不匹配。这可能是因为在修改Bottleneck结构时,某个层的输出通道数没有正确调整,导致残差连接时的相加操作无法进行。ResNet中的Bottleneck模块通常包含三个卷积层,其中第一个1x1卷积用于降维,中间的3x3卷积处理特征,第三个1x1卷积恢复维度。如果替换时这些层的通道数设置不正确,或者在残差连接时没有正确处理维度变化(比如当输入和输出维度不一致时未使用1x1卷积调整),就会引发维度错误。需要检查替换后的Bottleneck结构,尤其是每个卷积层的in_channels和out_channels是否正确,以及是否在需要时添加了1x1卷积的shortcut。其次,用户提到将'pretrained'参数改为'weights'参数。PyTorch在较新版本中(如1.10之后)将预训练模型的参数从'pretrained'更改为'weights',以支持更灵活的预训练权重选择。例如,现在可以使用ResNet50_Weights.IMAGENET1K_V1来指定权重版本。因此,在加载模型时,需要调整参数名称,并正确导入相应的权重枚举类。
接下来,我需要将这两个问题的解决方案结合起来。用户可能在替换Bottleneck模块时,没有正确调整通道数或残差连接的shortcut,导致维度不匹配。同时,他们在加载预训练模型时可能仍在使用旧的'pretrained'参数,导致兼容性问题。需要分步骤指导用户检查Bottleneck的结构,确保维度匹配,并更新模型加载方式。
可能的步骤包括:1.确认ResNet模型中Bottleneck模块的结构,特别是各卷积层的通道数和shortcut的处理。
2.在替换Bottleneck时,确保当输入和输出通道数不同时,shortcut使用1x1卷积调整维度。
3.更新模型初始化代码,使用'weights'参数并导入正确的权重枚举类。
4.验证修改后的模型结构是否正确,可能通过打印各层维度或进行前向传播测试。此外,用户可能还需要调整数据预处理部分,因为不同的预训练权重可能需要特定的预处理步骤,如归一化参数。如果预处理不一致,也可能导致错误,但当前问题主要在于模型结构,因此需要优先检查Bottleneck模块的修改。最后,需要确保代码示例正确,包括使用新的weights参数,正确构建Bottleneck模块,以及在必要时添加维度调整的shortcut。同时,提醒用户注意PyTorch版本兼容性,以及如何处理自定义模块时的梯度传播问题。</think>### 解决ResNet维度不匹配与参数更新问题
#### 一、维度不匹配错误分析
当修改ResNet的Bottleneck模块时,出现$256 \text{ vs } 64$的维度不匹配错误,通常源于以下原因:
$$ \text{输出通道数}(C_{out}) \neq \text{输入通道数}(C_{in}) $$
ResNet残差块要求主路径输出与shortcut路径输出的张量维度完全一致,才能进行逐元素相加操作[^3]。Bottleneck结构中的通道数应满足:
$$ \text{中间层通道数} = \frac{\text{输入通道数}}{4} $$
#### 二、解决方案步骤
##### 1. 正确实现Bottleneck模块
```python
import torch
from torch import nn
class CustomBottleneck(nn.Module):
expansion = 4 # 输出通道扩展系数
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
# 主路径
self.conv1 = nn.Conv2d(in_channels, out_channels//4, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels//4)
self.conv2 = nn.Conv2d(out_channels//4, out_channels//4, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels//4)
self.conv3 = nn.Conv2d(out_channels//4, out_channels*self.expansion,
kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels*self.expansion)
self.relu = nn.ReLU(inplace=True)
# Shortcut路径
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels*self.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels*self.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels*self.expansion)
)
def forward(self, x):
identity = self.shortcut(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += identity # 此时维度必须一致
out = self.relu(out)
return out
```
##### 2. 更新预训练参数加载方式
```python
from torchvision.models import resnet50, ResNet50_Weights
# 新版本API的正确用法
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
# 替换Bottleneck模块
model.layer4[2] = CustomBottleneck(in_channels=1024, out_channels=512)
```
#### 三、关键验证步骤
1. **维度检查**:在forward方法中添加shape打印
```python
print(f"主路径输出shape: {out.shape}, shortcut输出shape: {identity.shape}")
```
2. **参数冻结测试**(迁移学习场景):
```python
# 只训练自定义模块参数
for name, param in model.named_parameters():
if "layer4" not in name:
param.requires_grad = False
```
3. **梯度检查**:
```python
loss = criterion(output, target)
loss.backward()
print(model.conv3.weight.grad) # 应显示非空梯度
```
#### 四、常见错误模式对照表
| 错误现象 | 可能原因 | 解决方案 |
|---------|---------|---------|
| `RuntimeError: size mismatch` | Shortcut未正确调整通道数 | 检查1x1卷积的输入输出通道 |
| `NaN损失值` | BN层未正确初始化 | 检查BatchNorm参数初始化 |
| 准确率不提升 | 梯度未正确传播 | 验证requires_grad设置 |
阅读全文
相关推荐














