活动介绍

hive -e 导出元数据

时间: 2023-09-09 21:10:33 浏览: 132
您可以使用以下命令将Hive元数据导出到文件中: ``` hive -e "show create table table_name" > table_name_metadata.txt ``` 其中,table_name是您要导出元数据的表名,table_name_metadata.txt是您要将元数据保存到的文件名。这将在当前目录下创建一个文本文件,其中包含表的元数据信息。您可以根据需要修改命令和文件名。
相关问题

hive -e "命令" hide -f "文件名" s什么意思

<think>首先,用户的问题是:“我想了解Hive和hide命令中特定参数的含义请问Hive-e参数用法ANDhide-f参数作用”。这里似乎有个typo,可能是"hide"应该被读作"hive",因为引用中多次出现"hive",而不是"hide"。引用[1]中提到了"hive-e"和"hive-f",引用[2]也提到了"hive",引用[3]提到了一些参数但主要是关于MongoDB导出工具的。用户写的是"Hiveandhide",但结合上下文,很可能是"Hive"。我将假设是"Hive"。用户想了解两个特定参数的含义:1.Hive的`-e`参数的用法2.Hive的`-f`参数的作用(用户写了"hide-f",但可能只是拼写错误)引用[1]提供了信息:-"Hive命令hive-e"命令"hide-f"文件名"(文件中书写命令)"–这里也有"hide",应该是"hive"。应该是"hive-f"。-它还提到了其他参数如`-S`,但焦点是`-e`和`-f`。-"Hive命令参数hive-help:查看帮助hive-S静默模式,一般和-e-f一起使用"所以,我将解释:-`hive-e"command"`:直接执行一个HiveSQL命令-`hive-f"filename"`:执行一个包含HiveSQL命令的文件引用[2]是关于Hive的"hbase.columns.mapping.prefix.hide"属性,用于Hive表定义中,处理HBase列的前缀。这相关,但不是直接针对`-e`和`-f`。可能可以忽略,除非需要额外上下文。引用[3]是关于MongoDB导出工具的参数,如CSV选项,与Hive无关,不相关。根据系统指令:-行内数学表达式用`$...$`,但这里没有数学。-独立公式用`$$...$$`,但这里不需要公式。-LaTeX语法正确:无需要。-使用中文回答。-生成相关问题。-引用段落末尾添加引用标识,如`[^1]`。-回答结构清晰,逐步解决问题。回答结构:-清晰解释参数用法。-步骤式回答:先介绍,然后详细解释每个参数。-添加相关问题。组织回答:1.**介绍**:简述Hive命令行工具。2.**解释`hive-e`参数**:-描述用法:直接在命令行执行SQL命令。-举例。-引用[1]提到:"Hive命令hive-e"命令"..."–参考这个。3.**解释`hive-f`参数**:-描述用法:执行SQL脚本文件。-举例。-引用[1]:"hive-f"文件名"..."4.**其他相关信息**:-提到`-S`参数用于静默模式,常与`-e`或`-f`一起使用。-引用[1]说"hive-S静默模式,一般和-e-f一起使用"。5.**生成相关问题**:在回答末尾添加。确保中文。结束回答中添加引用标识:引用[1]的末尾添加`[^1]`。相关问题应基于主题生成。完整回答大纲:-开头:Hive命令行工具提供多个参数来运行查询或脚本。-解释`-e`:-用法:`hive-e"sql_command"`-作用:直接从命令行执行SQL查询。-例如:`hive-e"SELECT*FROMusers;"`运行一个查询。-参考引用[^1].-解释`-f`:-用法:`hive-fscript.sql`-作用:执行文件中的SQL脚本。-例如:如果文件中有多条命令,`hive-fmyscript.sql`会运行它们。-参考引用[^1].-额外提示:`-S`选项启用静默模式,隐藏信息性消息,便于脚本化。-结尾:希望解释对您有帮助。-§§相关问题§§:列出2-3个相关问题。相关问题:1.如何优化Hive命令的性能?2.Hive还有哪些常用命令行参数?3.Hive的静默模式如何使用?确认引用位置。</think> ### Hive 命令行参数解释:`-e` 和 `-f` Hive 是一个基于 Hadoop 的数据仓库工具,常用于处理大数据查询。其命令行界面支持多个参数,其中 `-e` 和 `-f` 是针对执行 SQL 命令的核心选项。下面我将一步步解释这两个参数的用法和作用,确保内容清晰可靠。 #### **1. `hive -e` 参数的用法** `hive -e` 允许您直接在命令行中执行一条 Hive SQL 查询或操作,无需进入交互式 Hive Shell。 - **语法**: `hive -e "Hive_SQL_Command"` 其中,`"Hive_SQL_Command"` 是您要运行的完整 SQL 语句,必须用双引号包裹。 - **作用**: 快速执行单次查询或操作,适用于自动化脚本或临时任务。返回查询结果到终端。 - **示例**: - 运行一个简单查询: ```bash hive -e "SELECT * FROM users WHERE age > 30;" ``` 这会返回表 `users` 中所有年龄大于 30 的记录。 - 结合静默模式(`-S`)抑制额外输出: ```bash hive -S -e "SELECT COUNT(*) FROM logs;" ``` 仅显示查询结果本身(如行数),隐藏日志信息[^1]. - **适用场景**: - 快速测试 SQL 语法或单条命令。 - 在 Shell 脚本中嵌入 Hive 查询以提高效率。 #### **2. `hive -f` 参数的作用** `hive -f` 用于执行一个包含多条 Hive SQL 命令的文件(脚本文件)。这对运行复杂或多步操作非常高效。 - **语法**: `hive -f filename` 其中,`filename` 是 SQL 脚本文件的路径(如 `.hql` 或 `.sql` 后缀)。 - **作用**: 读取文件中的 SQL 语句并依次执行。文件内容可以是多行查询(例如,创建表、插入数据、查询数据)。 - **示例**: - 创建一个 SQL 文件 `script.hql`: ```sql CREATE TABLE IF NOT EXISTS sales (id INT, amount DOUBLE); INSERT INTO sales VALUES (1, 100.0); SELECT AVG(amount) FROM sales; ``` - 执行该文件: ```bash hive -f script.hql ``` 这将顺序执行创建表、插入数据、计算平均值三个步骤。 - 结合静默模式(`-S`)优化输出: ```bash hive -S -f script.hql ``` 隐藏过程信息,只显示最终结果[^1]. - **适用场景**: - 批量运行复杂数据处理任务(如 ETL 流程)。 - 复用 SQL 脚本库,减少手动操作。 #### **额外说明** - **静默模式 (`-S`)**:常与 `-e` 或 `-f` 配合使用(例如 `hive -S -e ...`),抑制非查询相关的输出(如日志信息),适合自动化脚本[^1]. - **元数据库要求**:使用 Hive 时(包括 `beeline` 客户端),需确保 Hive 元数据库(如 MySQL)已正确设置,否则可能拒绝连接[^1]. - **其他参数**: - `hive --help`:查看所有可用参数帮助。 - `hive --set hive.var=value`:动态设置变量值。 希望以上解释能帮助您理解 Hive 命令行工具的核心用法。如果使用中的任何问题,可以进一步查询文档或结合日志排查问题[^1]. --- ###

[root@node ~]# start-dfs.sh Starting namenodes on [node] Last login: 二 7月 8 16:00:18 CST 2025 from 192.168.1.92 on pts/0 Starting datanodes Last login: 二 7月 8 16:00:38 CST 2025 on pts/0 Starting secondary namenodes [node] Last login: 二 7月 8 16:00:41 CST 2025 on pts/0 SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. [root@node ~]# start-yarn.sh Starting resourcemanager Last login: 二 7月 8 16:00:45 CST 2025 on pts/0 Starting nodemanagers Last login: 二 7月 8 16:00:51 CST 2025 on pts/0 [root@node ~]# mapred --daemon start historyserver [root@node ~]# jps 3541 ResourceManager 4007 Jps 2984 NameNode 3944 JobHistoryServer 3274 SecondaryNameNode [root@node ~]# mkdir -p /weblog [root@node ~]# cat > /weblog/access.log << EOF > 192.168.1.1,2023-06-01 10:30:22,/index.html > 192.168.1.2,2023-06-01 10:31:15,/product.html > 192.168.1.1,2023-06-01 10:32:45,/cart.html > 192.168.1.3,2023-06-01 11:45:30,/checkout.html > 192.168.1.4,2023-06-01 12:10:05,/index.html > 192.168.1.2,2023-06-01 14:20:18,/product.htm > EOF [root@node ~]# ls /weblog access.log [root@node ~]# hdfs dfs -mkdir -p /weblog/raw SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. [root@node ~]# hdfs dfs -put /weblog/access.log /weblog/raw/ SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. [root@node ~]# hdfs dfs -ls /weblog/raw SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Found 1 items -rw-r--r-- 3 root supergroup 269 2025-07-08 16:03 /weblog/raw/access.log [root@node ~]# cd /weblog [root@node weblog]# mkdir weblog-mapreduce [root@node weblog]# cd weblog-mapreduce [root@node weblog-mapreduce]# touch CleanMapper.java [root@node weblog-mapreduce]# vim CleanMapper.java import java.io.IOException; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*; public class CleanMapper extends Mapper<LongWritable, Text, Text, NullWritable> { public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = line.split(","); if(fields.length == 3) { String ip = fields[0]; String time = fields[1]; String page = fields[2]; if(ip.matches("\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}")) { String outputLine = ip + "," + time + "," + page; context.write(new Text(outputLine), NullWritable.get()); } } } } [root@node weblog-mapreduce]# touch CleanReducer.java [root@node weblog-mapreduce]# vim CleanReducer.java import java.io.IOException; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*; public class CleanReducer extends Reducer<Text, NullWritable, Text, NullWritable> { public void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get()); } } [root@node weblog-mapreduce]# touch LogCleanDriver.java [root@node weblog-mapreduce]# vim LogCleanDriver.java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class LogCleanDriver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Web Log Cleaner"); job.setJarByClass(LogCleanDriver.class); job.setMapperClass(CleanMapper.class); job.setReducerClass(CleanReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } [root@node weblog-mapreduce]# ls /weblog/weblog-mapreduce CleanMapper.java CleanReducer.java LogCleanDriver.java [root@node weblog-mapreduce]# javac -classpath $(hadoop classpath) -d . *.java [root@node weblog-mapreduce]# ls /weblog/weblog-mapreduce CleanMapper.class CleanReducer.class LogCleanDriver.class CleanMapper.java CleanReducer.java LogCleanDriver.java [root@node weblog-mapreduce]# jar cf logclean.jar *.class [root@node weblog-mapreduce]# ls /weblog/weblog-mapreduce CleanMapper.class CleanReducer.class LogCleanDriver.class logclean.jar CleanMapper.java CleanReducer.java LogCleanDriver.java [root@node weblog-mapreduce]# hdfs dfs -ls /weblog/raw SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Found 1 items -rw-r--r-- 3 root supergroup 269 2025-07-08 16:03 /weblog/raw/access.log [root@node weblog-mapreduce]# hdfs dfs -ls /weblog/output SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. ls: `/weblog/output': No such file or directory [root@node weblog-mapreduce]# hadoop jar logclean.jar LogCleanDriver /weblog/raw /weblog/output SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. [root@node weblog-mapreduce]# [root@node weblog-mapreduce]# mapred job -status job_1751961655287_0001 SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Job: job_1751961655287_0001 Job File: hdfs://node:9000/tmp/hadoop-yarn/staging/history/done/2025/07/08/000000/job_1751961655287_0001_conf.xml Job Tracking URL : http://node:19888/jobhistory/job/job_1751961655287_0001 Uber job : false Number of maps: 1 Number of reduces: 1 map() completion: 1.0 reduce() completion: 1.0 Job state: SUCCEEDED retired: false reason for failure: Counters: 54 File System Counters FILE: Number of bytes read=287 FILE: Number of bytes written=552699 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=372 HDFS: Number of bytes written=269 HDFS: Number of read operations=8 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 HDFS: Number of bytes read erasure-coded=0 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=1848 Total time spent by all reduces in occupied slots (ms)=2016 Total time spent by all map tasks (ms)=1848 Total time spent by all reduce tasks (ms)=2016 Total vcore-milliseconds taken by all map tasks=1848 Total vcore-milliseconds taken by all reduce tasks=2016 Total megabyte-milliseconds taken by all map tasks=1892352 Total megabyte-milliseconds taken by all reduce tasks=2064384 Map-Reduce Framework Map input records=6 Map output records=6 Map output bytes=269 Map output materialized bytes=287 Input split bytes=103 Combine input records=0 Combine output records=0 Reduce input groups=6 Reduce shuffle bytes=287 Reduce input records=6 Reduce output records=6 Spilled Records=12 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=95 CPU time spent (ms)=1050 Physical memory (bytes) snapshot=500764672 Virtual memory (bytes) snapshot=5614292992 Total committed heap usage (bytes)=379584512 Peak Map Physical memory (bytes)=293011456 Peak Map Virtual memory (bytes)=2803433472 Peak Reduce Physical memory (bytes)=207753216 Peak Reduce Virtual memory (bytes)=2810859520 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=269 File Output Format Counters Bytes Written=269 [root@node weblog-mapreduce]# hdfs dfs -ls /weblog/output SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Found 2 items -rw-r--r-- 3 root supergroup 0 2025-07-08 16:34 /weblog/output/_SUCCESS -rw-r--r-- 3 root supergroup 269 2025-07-08 16:34 /weblog/output/part-r-00000 [root@node weblog-mapreduce]# hdfs dfs -cat /weblog/output/part-r-00000 | head -5 SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. 192.168.1.1,2023-06-01 10:30:22,/index.html 192.168.1.1,2023-06-01 10:32:45,/cart.html 192.168.1.2,2023-06-01 10:31:15,/product.html 192.168.1.2,2023-06-01 14:20:18,/product.htm 192.168.1.3,2023-06-01 11:45:30,/checkout.html [root@node weblog-mapreduce]# hive SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Hive Session ID = 5199f37c-a381-428a-be1b-0a2afaab8583 Logging initialized using configuration in jar:file:/home/hive-3.1.3/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Hive Session ID = f38c99b3-ff7c-4f61-ae07-6b21d86d7160 hive> CREATE EXTERNAL TABLE weblog ( > ip STRING, > access_time TIMESTAMP, > page STRING > ) > ROW FORMAT DELIMITED > FIELDS TERMINATED BY ',' > LOCATION '/weblog/output'; OK Time taken: 1.274 seconds hive> select * from weblog; OK 192.168.1.1 2023-06-01 10:30:22 /index.html 192.168.1.1 2023-06-01 10:32:45 /cart.html 192.168.1.2 2023-06-01 10:31:15 /product.html 192.168.1.2 2023-06-01 14:20:18 /product.htm 192.168.1.3 2023-06-01 11:45:30 /checkout.html 192.168.1.4 2023-06-01 12:10:05 /index.html Time taken: 1.947 seconds, Fetched: 6 row(s) hive> select * from weblog limit 5; OK 192.168.1.1 2023-06-01 10:30:22 /index.html 192.168.1.1 2023-06-01 10:32:45 /cart.html 192.168.1.2 2023-06-01 10:31:15 /product.html 192.168.1.2 2023-06-01 14:20:18 /product.htm 192.168.1.3 2023-06-01 11:45:30 /checkout.html Time taken: 0.148 seconds, Fetched: 5 row(s) hive> hive> CREATE TABLE page_visits AS > SELECT > page, > COUNT(*) AS visits > FROM weblog > GROUP BY page > ORDER BY visits DESC; Query ID = root_20250708183002_ec44d1b4-af24-403c-bb67-380dfb6961c3 Total jobs = 2 Launching Job 1 out of 2 Number of reduce tasks not specified. Estimated from input data size: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1751961655287_0002, Tracking URL = http://node:8088/proxy/application_1751961655287_0002/ Kill Command = /home/hadoop/hadoop3.3/bin/mapred job -kill job_1751961655287_0002 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2025-07-08 18:30:12,692 Stage-1 map = 0%, reduce = 0% 2025-07-08 18:30:16,978 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.8 sec 2025-07-08 18:30:23,184 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.66 sec MapReduce Total cumulative CPU time: 3 seconds 660 msec Ended Job = job_1751961655287_0002 Launching Job 2 out of 2 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1751961655287_0003, Tracking URL = http://node:8088/proxy/application_1751961655287_0003/ Kill Command = /home/hadoop/hadoop3.3/bin/mapred job -kill job_1751961655287_0003 Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 1 2025-07-08 18:30:35,969 Stage-2 map = 0%, reduce = 0% 2025-07-08 18:30:41,155 Stage-2 map = 100%, reduce = 0%, Cumulative CPU 1.23 sec 2025-07-08 18:30:46,313 Stage-2 map = 100%, reduce = 100%, Cumulative CPU 2.95 sec MapReduce Total cumulative CPU time: 2 seconds 950 msec Ended Job = job_1751961655287_0003 Moving data to directory hdfs://node:9000/hive/warehouse/page_visits MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.66 sec HDFS Read: 12379 HDFS Write: 251 SUCCESS Stage-Stage-2: Map: 1 Reduce: 1 Cumulative CPU: 2.95 sec HDFS Read: 7308 HDFS Write: 150 SUCCESS Total MapReduce CPU Time Spent: 6 seconds 610 msec OK Time taken: 46.853 seconds hive> hive> describe page_visits; OK page string visits bigint Time taken: 0.214 seconds, Fetched: 2 row(s) hive> CREATE TABLE ip_visits AS > SELECT > ip, > COUNT(*) AS visits > FROM weblog > GROUP BY ip > ORDER BY visits DESC; Query ID = root_20250708183554_da402d08-af34-46f9-a33a-3f66ddd1a580 Total jobs = 2 Launching Job 1 out of 2 Number of reduce tasks not specified. Estimated from input data size: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1751961655287_0004, Tracking URL = http://node:8088/proxy/application_1751961655287_0004/ Kill Command = /home/hadoop/hadoop3.3/bin/mapred job -kill job_1751961655287_0004 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2025-07-08 18:36:04,037 Stage-1 map = 0%, reduce = 0% 2025-07-08 18:36:09,250 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.57 sec 2025-07-08 18:36:14,393 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.3 sec MapReduce Total cumulative CPU time: 3 seconds 300 msec Ended Job = job_1751961655287_0004 Launching Job 2 out of 2 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1751961655287_0005, Tracking URL = http://node:8088/proxy/application_1751961655287_0005/ Kill Command = /home/hadoop/hadoop3.3/bin/mapred job -kill job_1751961655287_0005 Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 1 2025-07-08 18:36:27,073 Stage-2 map = 0%, reduce = 0% 2025-07-08 18:36:31,215 Stage-2 map = 100%, reduce = 0%, Cumulative CPU 1.25 sec 2025-07-08 18:36:36,853 Stage-2 map = 100%, reduce = 100%, Cumulative CPU 3.27 sec MapReduce Total cumulative CPU time: 3 seconds 270 msec Ended Job = job_1751961655287_0005 Moving data to directory hdfs://node:9000/hive/warehouse/ip_visits MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.3 sec HDFS Read: 12445 HDFS Write: 216 SUCCESS Stage-Stage-2: Map: 1 Reduce: 1 Cumulative CPU: 3.27 sec HDFS Read: 7261 HDFS Write: 129 SUCCESS Total MapReduce CPU Time Spent: 6 seconds 570 msec OK Time taken: 44.523 seconds hive> [root@node weblog-mapreduce]# hive> [root@node weblog-mapreduce]# describe ip_visite; bash: describe: command not found... [root@node weblog-mapreduce]# hive SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Hive Session ID = 57dafc2a-afe2-41a4-8159-00f8d44b5add Logging initialized using configuration in jar:file:/home/hive-3.1.3/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true Hive Session ID = f866eae4-4cb4-4403-b7a2-7a52701c5a74 Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. hive> describe ip_visite; FAILED: SemanticException [Error 10001]: Table not found ip_visite hive> describe ip_visits; OK ip string visits bigint Time taken: 0.464 seconds, Fetched: 2 row(s) hive> SELECT * FROM page_visits; OK /index.html 2 /product.html 1 /product.htm 1 /checkout.html 1 /cart.html 1 Time taken: 2.095 seconds, Fetched: 5 row(s) hive> SELECT * FROM ip_visits; OK 192.168.1.2 2 192.168.1.1 2 192.168.1.4 1 192.168.1.3 1 Time taken: 0.176 seconds, Fetched: 4 row(s) hive> hive> [root@node weblog-mapreduce]# [root@node weblog-mapreduce]# mysql -u root -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 48 Server version: 8.0.42 MySQL Community Server - GPL Copyright (c) 2000, 2025, Oracle and/or its affiliates. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql> CREATE DATABASE IF NOT EXISTS weblog_db; Query OK, 1 row affected (0.06 sec) mysql> USE weblog_db; Database changed mysql> CREATE TABLE IF NOT EXISTS page_visits ( -> page VARCHAR(255), -> visits BIGINT -> ) ENGINE=InnoDB DEFAULT CHARSET=utf8; Query OK, 0 rows affected, 1 warning (0.05 sec) mysql> SHOW TABLES; +---------------------+ | Tables_in_weblog_db | +---------------------+ | page_visits | +---------------------+ 1 row in set (0.00 sec) mysql> DESCRIBE page_visits; +--------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+--------------+------+-----+---------+-------+ | page | varchar(255) | YES | | NULL | | | visits | bigint | YES | | NULL | | +--------+--------------+------+-----+---------+-------+ 2 rows in set (0.00 sec) mysql> CREATE TABLE IF NOT EXISTS ip_visits ( -> ip VARCHAR(15), -> visits BIGINT -> ) ENGINE=InnoDB DEFAULT CHARSET=utf8; Query OK, 0 rows affected, 1 warning (0.02 sec) mysql> SHOW TABLES; +---------------------+ | Tables_in_weblog_db | +---------------------+ | ip_visits | | page_visits | +---------------------+ 2 rows in set (0.01 sec) mysql> DESC ip_visits; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | ip | varchar(15) | YES | | NULL | | | visits | bigint | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ 2 rows in set (0.00 sec) mysql> ^C mysql> [root@node weblog-mapreduce]# hive SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Hive Session ID = f34e6971-71ae-4aa5-aa22-895061f33bdf Logging initialized using configuration in jar:file:/home/hive-3.1.3/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Hive Session ID = f7a06e76-e117-4fbb-9ee8-09fdfd002104 hive> DESCRIBE FORMATTED page_visits; OK # col_name data_type comment page string visits bigint # Detailed Table Information Database: default OwnerType: USER Owner: root CreateTime: Tue Jul 08 18:30:47 CST 2025 LastAccessTime: UNKNOWN Retention: 0 Location: hdfs://node:9000/hive/warehouse/page_visits Table Type: MANAGED_TABLE Table Parameters: COLUMN_STATS_ACCURATE {\"BASIC_STATS\":\"true\"} bucketing_version 2 numFiles 1 numRows 5 rawDataSize 70 totalSize 75 transient_lastDdlTime 1751970648 # Storage Information SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe InputFormat: org.apache.hadoop.mapred.TextInputFormat OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Compressed: No Num Buckets: -1 Bucket Columns: [] Sort Columns: [] Storage Desc Params: serialization.format 1 Time taken: 1.043 seconds, Fetched: 32 row(s) hive> 到这里就不会了 6.2.2sqoop导出格式 6.2.3导出page_visits表 6.2.4导出到ip_visits表 6.3验证导出数据 6.3.1登录MySQL 6.3.2执行查询

<think>我们当前的任务是使用Sqoop将Hive中的表(page_visits和ip_visits)导出到MySQL数据库中。在此之前,我们已经创建了MySQL数据库weblog_db和相应的表(page_visits和ip_visits)。 步骤: 1. 确认Sqoop已经安装并配置正确(包括MySQL JDBC驱动)。 2. 使用Sqoop的export命令将Hive表中的数据导出到MySQL的对应表中。 注意:Hive中的表是存储在HDFS上的,我们可以通过指定Hive表的HDFS路径或者直接使用Hive表名(但Sqoop需要知道HDFS路径)来导出。 在Hive中,我们之前创建的表page_visits和ip_visits都是内部表(MANAGED_TABLE),其数据存储在HDFS上。通过`DESCRIBE FORMATTED page_visits;`我们可以获取到表的HDFS路径(Location字段)。但是,Sqoop可以直接连接Hive元数据获取表的信息,也可以直接指定HDFS路径。 这里我们选择直接使用Hive表名(通过`--hcatalog-table`参数)或者使用HDFS路径(通过`--export-dir`参数)。但是,由于我们使用的是Hive内部表,我们可以使用`--export-dir`参数指定HDFS路径。 然而,在Sqoop export中,我们通常使用`--export-dir`参数指定HDFS上的数据路径,同时指定目标MySQL表。 但是,注意:Hive表的数据格式可能是文本格式(我们创建的是文本格式),而MySQL表是关系型表。Sqoop默认可以处理文本格式的导出。 具体步骤: 6.2.2 Sqoop导出格式 Sqoop导出支持多种格式,包括文本文件、SequenceFile、Avro等。由于我们的Hive表是文本格式,所以使用默认的文本格式即可。 6.2.3 导出page_visits表 首先,我们需要知道Hive表page_visits在HDFS上的路径。根据之前的Hive命令输出,page_visits表的Location是:`hdfs://node:9000/hive/warehouse/page_visits` 然后,使用Sqoop export命令将数据导出到MySQL的page_visits表中。 6.2.4 导出ip_visits表 同理,ip_visits表的Location可以通过类似方式获得,或者我们也可以使用Hive的`DESCRIBE FORMATTED ip_visits;`来查看。但根据之前创建表的逻辑,它应该位于`hdfs://node:9000/hive/warehouse/ip_visits`。 6.3 验证导出数据 登录MySQL,执行查询。 具体命令: 1. 导出page_visits表到MySQL: ```bash sqoop export \ --connect jdbc:mysql://node:3306/weblog_db \ --username root \ --password your_mysql_password \ --table page_visits \ --export-dir /hive/warehouse/page_visits \ --input-fields-terminated-by '\001' # 注意:Hive默认的字段分隔符是'\001'(Ctrl+A),但我们在创建表时指定了逗号分隔?实际上,我们创建表时指定了逗号分隔,但Hive默认存储时使用的是\001。然而,我们在创建表时指定了ROW FORMAT DELIMITED FIELDS TERMINATED BY ',',所以数据应该是逗号分隔的。因此,这里应该使用逗号分隔符。 ``` 但是,我们如何知道Hive表的数据分隔符?通过之前创建表的语句,我们指定了逗号分隔。所以,在导出时应该指定分隔符为逗号。 修正:在创建Hive表weblog时,我们指定了逗号分隔。但是,我们后来通过CTAS(CREATE TABLE AS SELECT)创建了page_visits和ip_visits,这两个表没有指定分隔符,所以它们会使用Hive默认的分隔符,即\001。 因此,我们需要确认这两个表的分隔符。通过`DESCRIBE FORMATTED`命令可以查看。 在之前的Hive会话中,我们执行了`DESCRIBE FORMATTED page_visits;`,在输出中,我们注意到: ``` Storage Desc Params: serialization.format 1 ``` 这里并没有明确的分隔符信息,但Hive内部表默认使用\001作为分隔符。 所以,为了保险,我们可以使用`--input-fields-terminated-by '\001'`。但是,我们也可以查看HDFS上的数据文件来确定分隔符。 不过,根据我们之前创建Hive表的方式(CTAS),并且没有指定分隔符,所以是默认的\001。 因此,导出命令应该指定分隔符为\001。 但是,如果我们不确定,可以查看HDFS上的文件内容: ```bash hdfs dfs -cat /hive/warehouse/page_visits/000000_0 ``` 如果显示的是不可见字符,那么很可能是\001。如果看到的是逗号分隔,那么就是逗号。 根据之前的Hive查询结果,page_visits表的内容是: /index.html 2 /product.html 1 ... 在Hive中显示时是用制表符分隔的?实际上,Hive的显示格式和存储格式是分开的。存储格式是使用我们创建表时指定的分隔符,而CTAS创建的表没有指定,所以是默认的\001。 所以,我们导出时应该使用`--input-fields-terminated-by '\001'`。 但是,在Sqoop中,\001的表示可以是`--input-fields-terminated-by '\001'`,也可以使用`--input-fields-terminated-by "\001"`(双引号),或者使用`--input-fields-terminated-by \\001`。不过,在命令行中,我们通常用单引号括起来。 另外,我们还需要注意MySQL中的表结构和Hive表结构(字段顺序和类型)要一致。 开始导出: 1. 导出page_visits表: ```bash sqoop export \ --connect "jdbc:mysql://node:3306/weblog_db?useUnicode=true&characterEncoding=utf-8" \ --username root \ --password your_password \ --table page_visits \ --export-dir /hive/warehouse/page_visits \ --input-fields-terminated-by '\001' ``` 2. 导出ip_visits表: ```bash sqoop export \ --connect "jdbc:mysql://node:3306/weblog_db?useUnicode=true&characterEncoding=utf-8" \ --username root \ --password your_password \ --table ip_visits \ --export-dir /hive/warehouse/ip_visits \ --input-fields-terminated-by '\001' ``` 注意:将your_password替换为实际的MySQL root密码。 6.3 验证导出数据 登录MySQL,执行查询: ```sql USE weblog_db; SELECT * FROM page_visits; SELECT * FROM ip_visits; ``` 如果数据一致,则导出成功。 但是,我们可能会遇到错误,比如分隔符不对,或者字段数量不匹配等。所以,在导出之前,最好确认Hive表的数据结构和MySQL表的结构完全一致(字段顺序、类型、分隔符等)。 另外,如果Hive表中有NULL值,我们可能需要指定MySQL如何处理NULL值(例如,通过`--input-null-string`和`--input-null-non-string`参数)。 由于我们的数据中可能没有NULL值,所以暂时不指定。 现在,我们按照上述步骤执行。 注意:在Sqoop命令中,我们使用了`--export-dir`参数,指定的是Hive表在HDFS上的路径。这个路径可以通过Hive的`DESCRIBE FORMATTED table_name`命令的Location字段获得。 在之前的Hive查询中,page_visits的Location是`hdfs://node:9000/hive/warehouse/page_visits`,但在Sqoop中,我们可以省略hdfs://node:9000,因为Sqoop会使用默认的Hadoop配置中的文件系统地址。所以,我们只需要写`/hive/warehouse/page_visits`。 现在,我们执行Sqoop导出命令。 由于在命令行中直接写密码不安全,可以使用-P参数,这样Sqoop会提示输入密码。 或者,将密码保存在文件中(使用--password-file参数),但这里为了简单,我们使用-P。 但是,在脚本中,我们通常使用--password参数,但这样会暴露密码。所以,在实验环境中,我们可以直接使用。 开始执行: 首先,导出page_visits表: ```bash sqoop export \ --connect "jdbc:mysql://node:3306/weblog_db" \ --username root \ --password your_mysql_root_password \ --table page_visits \ --export-dir /hive/warehouse/page_visits \ --input-fields-terminated-by '\001' ``` 然后,导出ip_visits表: ```bash sqoop export \ --connect "jdbc:mysql://node:3306/weblog_db" \ --username root \ --password your_mysql_root_password \ --table ip_visits \ --export-dir /hive/warehouse/ip_visits \ --input-fields-terminated-by '\001' ``` 最后,登录MySQL验证。 如果遇到错误,比如: - 连接问题:检查MySQL服务是否运行,以及是否允许远程连接(这里我们是本地连接,所以应该没问题)。 - 表不存在:检查MySQL中的表名是否正确。 - 列数不匹配:检查Hive表和MySQL表的列数是否一致。 在导出过程中,Sqoop会启动MapReduce任务,我们可以通过YARN的Web UI查看任务状态。 现在,我们给出完整的步骤。</think>### 6.2.2 Sqoop导出格式说明 Sqoop支持多种导出格式,最常用的是: 1. **文本格式**:默认格式,使用逗号、制表符等分隔符 2. **Avro格式**:二进制格式,保留数据类型信息 3. **SequenceFile格式**:Hadoop原生二进制格式 4. **Parquet格式**:列式存储格式 对于关系型数据库导出,文本格式是最简单直接的选择,我们将使用默认的文本格式导出。 ### 6.2.3 导出page_visits表到MySQL 使用Sqoop将Hive中的`page_visits`表导出到MySQL: ```bash # 导出page_visits表 sqoop export \ --connect jdbc:mysql://localhost:3306/weblog_db \ --username root \ --password your_mysql_password \ --table page_visits \ --export-dir /hive/warehouse/page_visits \ --input-fields-terminated-by '\001' \ --input-lines-terminated-by '\n' ``` **参数解释:** - `--connect`:MySQL数据库连接URL - `--username`:MySQL用户名 - `--password`:MySQL密码(替换为实际密码) - `--table`:目标MySQL表名 - `--export-dir`:Hive表在HDFS上的存储路径 - `--input-fields-terminated-by`:指定字段分隔符(Hive默认使用\001) - `--input-lines-terminated-by`:指定行分隔符(默认为换行符) ### 6.2.4 导出ip_visits表到MySQL 使用Sqoop将Hive中的`ip_visits`表导出到MySQL: ```bash # 导出ip_visits表 sqoop export \ --connect jdbc:mysql://localhost:3306/weblog_db \ --username root \ --password your_mysql_password \ --table ip_visits \ --export-dir /hive/warehouse/ip_visits \ --input-fields-terminated-by '\001' \ --input-lines-terminated-by '\n' ``` ### 6.3 验证导出数据 #### 6.3.1 登录MySQL ```bash mysql -u root -p ``` #### 6.3.2 执行查询验证数据 ```sql USE weblog_db; -- 验证page_visits表 SELECT * FROM page_visits; -- 验证ip_visits表 SELECT * FROM ip_visits; -- 统计总记录数 SELECT (SELECT COUNT(*) FROM page_visits) AS page_visits_count, (SELECT COUNT(*) FROM ip_visits) AS ip_visits_count; ``` **预期输出:** ``` +----------------+----------------+ | page_visits_count | ip_visits_count | +----------------+----------------+ | 5 | 4 | +----------------+----------------+ ``` ### 完整流程说明 1. **Sqoop导出原理**: - Sqoop启动MapReduce作业 - Mapper读取HDFS上的数据文件 - 将数据转换为SQL INSERT语句 - 批量提交到MySQL数据库 2. **分隔符说明**: - Hive内部表默认使用`\001`(Ctrl-A)作为字段分隔符 - 使用`\n`作为行分隔符 - 必须正确指定分隔符才能确保数据正确解析 3. **数据一致性检查**: - 比较Hive表和MySQL表的记录数 - 随机抽样检查数据内容是否一致 - 验证特殊字符是否正确处理 ### 常见问题解决 1. **导出失败:权限问题** ```bash # 在MySQL中授权 mysql> GRANT ALL PRIVILEGES ON weblog_db.* TO 'root'@'localhost'; ``` 2. **导出失败:表不存在** ```sql -- 确认MySQL表存在 USE weblog_db; SHOW TABLES; ``` 3. **数据乱码:字符集问题** ```bash # 添加字符集参数 --connect "jdbc:mysql://localhost:3306/weblog_db?useUnicode=true&characterEncoding=UTF-8" ``` 4. **数据截断:字段长度不足** ```sql -- 调整MySQL表结构 ALTER TABLE page_visits MODIFY page VARCHAR(500); ``` ###
阅读全文

相关推荐

[root@hjh01 ~]# yarn node -list 2025-07-02 19:05:04,602 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at hjh01/192.168.63.101:8032 Total Nodes:3 Node-Id Node-State Node-Http-Address Number-of-Running-Containers hjh03:41086 RUNNING hjh03:8042 0 hjh02:33452 RUNNING hjh02:8042 0 hjh01:34457 RUNNING hjh01:8042 0 [root@hjh01 ~]# yarn top 2025-07-02 19:05:23,316 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at hjh01/192.168.63.101:8032 YARN top - 19:06:19, up 0d, 0:26, 0 active users, queue(s): root NodeManager(s): 3 total, 3 active, 0 unhealthy, 0 decommissioned, 0 lost, 0 reb Queue(s) Applications: 0 running, 2 submitted, 0 pending, 0 completed, 0 killed Queue(s) Mem(GB): 24 available, 0 allocated, 0 pending, 0 reserved Queue(s) VCores: 24 available, 0 allocated, 0 pending, 0 reserved Queue(s) Containers: 0 allocated, 0 pending, 0 reserved q APPLICATIONID USER TYPE QUEUE PRIOR #CONT [root@hjh01 ~]# vim /usr/local/hadoop/etc/hadoop/yarn-site.xml [root@hjh01 ~]# hive which: no hbase in (/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin:/usr/local/jdk/bin:/usr/local/hadoop/bin:/usr/local/hadoop/sbin:/usr/local/hive/bin:/root/bin) SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/usr/local/hive/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/local/hadoop/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Hive Session ID = e131a6d9-ab5a-4b4c-92ef-b2ef2c57e699 Logging initialized using configuration in jar:file:/usr/local/hive/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Hive Session ID = f58a189b-6fa4-4d22-9937-2b2ffd8bf3f6 hive> SET mapreduce.map.memory.mb=2048; hive> SET mapreduce.reduce.memory.mb=4096; hive> SELECT COUNT(1) FROM hjh_table LIMIT 1; FAILED: SemanticException [Error 10001]: Line 1:21 Table not found 'hjh_table' hive> SELECT > city, > COUNT(*) AS user_count, > ROUND(AVG(age), 1) AS avg_age > FROM users > GROUP BY city > ORDER BY user_count DESC; Query ID = root_20250702192000_765e8e26-cd76-45c6-b01a-5817bcfe7ff9 Total jobs = 2 Launching Job 1 out of 2 Number of reduce tasks not specified. Estimated from input data size: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1751506776899_0003, Tracking URL = http://hjh01:8088/proxy/application_1751506776899_0003/ Kill Command = /usr/local/hadoop/bin/mapred job -kill job_1751506776899_0003 Hadoop job information for Stage-1: number of mappers: 0; number of reducers: 0 2025-07-02 19:20:53,194 Stage-1 map = 0%, reduce = 0% Ended Job = job_1751506776899_0003 with errors Error during job, obtaining debugging information... FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask MapReduce Jobs Launched: Stage-Stage-1: HDFS Read: 0 HDFS Write: 0 FAIL Total MapReduce CPU Time Spent: 0 msec hive>

#!/bin/bash dayid=${1:-$(date +%Y-%m-%d)} echo $dayid PROJECT_ID=833 source /data/nfs/scripts/${PROJECT_ID}/hhweb_config.sh echo ${hhweb_db_user} ${hhweb_db_host} ${hhweb_db_port} ${hhweb_db_name} mysql -u${hhweb_db_user} -h${hhweb_db_host} -p${hhweb_db_pass} -P${hhweb_db_port} -D${hhweb_db_name} -v -e" CREATE TABLE IF NOT EXISTS bvreport.hhweb_yqy_user_orders_d ( province_name CHAR COMMENT '省份名称', new_order_users INT COMMENT '新增订购用户数', vip_name CHAR COMMENT '会员类型', dayid CHAR ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; DELETE FROM bvreport.hhweb_yqy_user_orders_d WHERE dayid = '${dayid}'; " hive -hiveconf dayid="${dayid}" -e " DROP TABLE IF EXISTS mgwh_rd_temp.product_vip_info_${dayid}; CREATE TABLE mgwh_rd_temp.product_vip_info_${dayid} AS SELECT product_id, vip_name FROM ( SELECT a.product_id, '体育会员' AS vip_name FROM mgwh_rd_video.dwd_dim_product_1d_full_daily a JOIN ( SELECT sub_busi_id FROM mgwh_rd_video.dwd_dim_sub_business_1d_full_daily WHERE dt = '${dayid}' AND business_name = '体育赛场' ) b ON a.sub_busi_id = b.sub_busi_id WHERE a.dt = '${dayid}' GROUP BY a.product_id UNION SELECT a.product_id, '钻石会员' AS vip_name FROM mgwh_rd_video.dwd_dim_product_1d_full_daily a JOIN ( SELECT sub_busi_id FROM mgwh_rd_video.dwd_dim_sub_business_1d_full_daily WHERE dt = '${dayid}' AND (business_id = 'BB000105301' OR sub_busi_id IN ('SB000110313', 'SB000110411', 'SB000110412')) ) b ON a.sub_busi_id = b.sub_busi_id WHERE a.dt = '${dayid}' GROUP BY a.product_id ) subquery; " hive -hiveconf dayid="${dayid}" -e " INSERT INTO bvreport.hhweb_yqy_user_orders_d (province_name, new_order_users, vip_name, dayid) SELECT a.province_name, COUNT(DISTINCT a.msisdn) as new_order_users, b.vip_name, '${dayid}' AS dayid FROM mgwh_rd_dwm.dwm_video_order_d a INNER JOIN mgwh_rd_temp.product_vip_info_${dayid} b ON a.product_id = b.product_id INNER JOIN defa

[root@node ~]# mysql -u root -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 8 Server version: 8.0.42 MySQL Community Server - GPL Copyright (c) 2000, 2025, Oracle and/or its affiliates. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql> CREATE DATABASE weblog_db; ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'CREATE DATABASE weblog_db' at line 1 mysql> CREATE DATABASE weblog_db; ERROR 1007 (HY000): Can't create database 'weblog_db'; database exists mysql> USE weblog_db; Reading table information for completion of table and column names You can turn off this feature to get a quicker startup with -A Database changed mysql> DROP DATABASE IF EXISTS weblog_db; Query OK, 2 rows affected (0.02 sec) mysql> CREATE DATABASE weblog_db; Query OK, 1 row affected (0.01 sec) mysql> USE weblog_db; Database changed mysql> CREATE TABLE page_visits ( -> page VARCHAR(255) , -> visits BIGINT -> ); ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'TABLE page_visits ( page VARCHAR(255) , visits BIGINT )' at line 1 mysql> CREATE TABLE page_visits ( -> page VARCHAR(255), -> visits BIGINT -> ); Query OK, 0 rows affected (0.02 sec) mysql> SHOW TABLES; +---------------------+ | Tables_in_weblog_db | +---------------------+ | page_visits | +---------------------+ 1 row in set (0.00 sec) mysql> ^C mysql> q -> quit -> exit -> ^C mysql> ^C mysql> ^C mysql> ^DBye [root@node ~]# hive SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Hive Session ID = 7bb79582-cc2b-49b6-abc7-020dcdc46542 Logging initialized using configuration in jar:file:/home/hive-3.1.3/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Hive Session ID = 15d9da52-e18e-40b2-a80f-e76eda81df4c hive> DESCRIBE FORMATTED page_visits; OK # col_name data_type comment page string visits bigint # Detailed Table Information Database: default OwnerType: USER Owner: root CreateTime: Tue Jul 08 01:43:42 CST 2025 LastAccessTime: UNKNOWN Retention: 0 Location: hdfs://node:9000/hive/warehouse/page_visits Table Type: MANAGED_TABLE Table Parameters: COLUMN_STATS_ACCURATE {\"BASIC_STATS\":\"true\"} bucketing_version 2 numFiles 1 numRows 4 rawDataSize 56 totalSize 60 transient_lastDdlTime 1751910222 # Storage Information SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe InputFormat: org.apache.hadoop.mapred.TextInputFormat OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Compressed: No Num Buckets: -1 Bucket Columns: [] Sort Columns: [] Storage Desc Params: serialization.format 1 Time taken: 0.785 seconds, Fetched: 32 row(s) hive> [root@node ~]# [root@node ~]# sqoop export \ > --connect jdbc:mysql://localhost/weblog_db \ > --username root \ > --password Aa@123456 \ > --table page_visits \ > --export-dir hdfs://node:9000/hive/warehouse/page_visits \ > --input-fields-terminated-by '\001' \ > --num-mappers 1 Warning: /home/sqoop-1.4.7/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /home/sqoop-1.4.7/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-07-08 15:28:12,550 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 2025-07-08 15:28:12,587 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 2025-07-08 15:28:12,704 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 2025-07-08 15:28:12,708 INFO tool.CodeGenTool: Beginning code generation Loading class com.mysql.jdbc.Driver'. This is deprecated. The new driver class is com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary. 2025-07-08 15:28:13,225 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:28:13,266 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:28:13,280 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/hadoop3.3 Note: /tmp/sqoop-root/compile/363869e21c2078b9742685122c43a3cc/page_visits.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 2025-07-08 15:28:16,377 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/363869e21c2078b9742685122c43a3cc/page_visits.jar 2025-07-08 15:28:16,391 INFO mapreduce.ExportJobBase: Beginning export of page_visits 2025-07-08 15:28:16,391 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address 2025-07-08 15:28:16,484 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 2025-07-08 15:28:17,339 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative 2025-07-08 15:28:17,342 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:28:17,343 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 2025-07-08 15:28:17,555 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at node/192.168.196.122:8032 2025-07-08 15:28:17,782 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1751959003014_0001 2025-07-08 15:28:26,026 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:28:26,029 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:28:26,495 INFO mapreduce.JobSubmitter: number of splits:1 2025-07-08 15:28:26,528 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:28:26,619 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1751959003014_0001 2025-07-08 15:28:26,620 INFO mapreduce.JobSubmitter: Executing with tokens: [] 2025-07-08 15:28:26,805 INFO conf.Configuration: resource-types.xml not found 2025-07-08 15:28:26,805 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'. 2025-07-08 15:28:27,226 INFO impl.YarnClientImpl: Submitted application application_1751959003014_0001 2025-07-08 15:28:27,264 INFO mapreduce.Job: The url to track the job: http://node:8088/proxy/application_1751959003014_0001/ 2025-07-08 15:28:27,264 INFO mapreduce.Job: Running job: job_1751959003014_0001 2025-07-08 15:28:34,334 INFO mapreduce.Job: Job job_1751959003014_0001 running in uber mode : false 2025-07-08 15:28:34,335 INFO mapreduce.Job: map 0% reduce 0% 2025-07-08 15:28:38,374 INFO mapreduce.Job: map 100% reduce 0% 2025-07-08 15:28:38,381 INFO mapreduce.Job: Job job_1751959003014_0001 failed with state FAILED due to: Task failed task_1751959003014_0001_m_000000 Job failed as tasks failed. failedMaps:1 failedReduces:0 killedMaps:0 killedReduces: 0 2025-07-08 15:28:38,448 INFO mapreduce.Job: Counters: 8 Job Counters Failed map tasks=1 Launched map tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=2061 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=2061 Total vcore-milliseconds taken by all map tasks=2061 Total megabyte-milliseconds taken by all map tasks=2110464 2025-07-08 15:28:38,456 WARN mapreduce.Counters: Group FileSystemCounters is deprecated. Use org.apache.hadoop.mapreduce.FileSystemCounter instead 2025-07-08 15:28:38,457 INFO mapreduce.ExportJobBase: Transferred 0 bytes in 21.1033 seconds (0 bytes/sec) 2025-07-08 15:28:38,462 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead 2025-07-08 15:28:38,462 INFO mapreduce.ExportJobBase: Exported 0 records. 2025-07-08 15:28:38,462 ERROR mapreduce.ExportJobBase: Export job failed! 2025-07-08 15:28:38,463 ERROR tool.ExportTool: Error during export: Export job failed! at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:445) at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:931) at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:80) at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:99) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:81) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252) [root@node ~]# sqoop export \ > --connect jdbc:mysql://localhost/weblog_db \ > --username root \ > --password Aa@123456 \ > --table page_visits \ > --export-dir hdfs://node:9000/hive/warehouse/page_visits \ > --input-fields-terminated-by ',' \ > --num-mappers 1 Warning: /home/sqoop-1.4.7/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /home/sqoop-1.4.7/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-07-08 15:30:31,174 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 2025-07-08 15:30:31,218 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 2025-07-08 15:30:31,333 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 2025-07-08 15:30:31,336 INFO tool.CodeGenTool: Beginning code generation Loading class com.mysql.jdbc.Driver'. This is deprecated. The new driver class is com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary. 2025-07-08 15:30:31,771 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:30:31,814 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM page_visits AS t LIMIT 1 2025-07-08 15:30:31,821 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/hadoop3.3 Note: /tmp/sqoop-root/compile/ab00e36d1f5084a0f7d522b4e9a975e5/page_visits.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 2025-07-08 15:30:33,116 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/ab00e36d1f5084a0f7d522b4e9a975e5/page_visits.jar 2025-07-08 15:30:33,129 INFO mapreduce.ExportJobBase: Beginning export of page_visits 2025-07-08 15:30:33,129 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address 2025-07-08 15:30:33,212 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 2025-07-08 15:30:33,877 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative 2025-07-08 15:30:33,880 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:30:33,880 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 2025-07-08 15:30:34,097 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at node/192.168.196.122:8032 2025-07-08 15:30:34,310 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1751959003014_0002 2025-07-08 15:30:39,127 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:30:39,131 INFO input.FileInputFormat: Total input files to process : 1 2025-07-08 15:30:39,995 INFO mapreduce.JobSubmitter: number of splits:1 2025-07-08 15:30:40,022 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 2025-07-08 15:30:40,532 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1751959003014_0002 2025-07-08 15:30:40,532 INFO mapreduce.JobSubmitter: Executing with tokens: [] 2025-07-08 15:30:40,689 INFO conf.Configuration: resource-types.xml not found 2025-07-08 15:30:40,689 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'. 2025-07-08 15:30:40,746 INFO impl.YarnClientImpl: Submitted application application_1751959003014_0002 2025-07-08 15:30:40,783 INFO mapreduce.Job: The url to track the job: http://node:8088/proxy/application_1751959003014_0002/ 2025-07-08 15:30:40,784 INFO mapreduce.Job: Running job: job_1751959003014_0002 2025-07-08 15:30:46,847 INFO mapreduce.Job: Job job_1751959003014_0002 running in uber mode : false 2025-07-08 15:30:46,848 INFO mapreduce.Job: map 0% reduce 0% 2025-07-08 15:30:50,893 INFO mapreduce.Job: map 100% reduce 0% 2025-07-08 15:30:51,905 INFO mapreduce.Job: Job job_1751959003014_0002 failed with state FAILED due to: Task failed task_1751959003014_0002_m_000000 Job failed as tasks failed. failedMaps:1 failedReduces:0 killedMaps:0 killedReduces: 0 2025-07-08 15:30:51,973 INFO mapreduce.Job: Counters: 8 Job Counters Failed map tasks=1 Launched map tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=2058 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=2058 Total vcore-milliseconds taken by all map tasks=2058 Total megabyte-milliseconds taken by all map tasks=2107392 2025-07-08 15:30:51,979 WARN mapreduce.Counters: Group FileSystemCounters is deprecated. Use org.apache.hadoop.mapreduce.FileSystemCounter instead 2025-07-08 15:30:51,980 INFO mapreduce.ExportJobBase: Transferred 0 bytes in 18.0828 seconds (0 bytes/sec) 2025-07-08 15:30:51,983 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead 2025-07-08 15:30:51,983 INFO mapreduce.ExportJobBase: Exported 0 records. 2025-07-08 15:30:51,983 ERROR mapreduce.ExportJobBase: Export job failed! 2025-07-08 15:30:51,984 ERROR tool.ExportTool: Error during export: Export job failed! at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:445) at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:931) at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:80) at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:99) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:81) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252) [root@node ~]# 6.2 Sqoop导出数据 6.2.1从Hive将数据导出到MySQL 6.2.2sqoop导出格式 6.2.3导出page_visits表 6.2.4导出到ip_visits表 6.3验证导出数据 6.3.1登录MySQL 6.3.2执行查询

最新推荐

recommend-type

西门子1200多轴伺服步进FB块程序详解及其工业自动化应用 - 工业自动化 实战版

西门子1200伺服步进FB块程序的特点和应用。该程序由两个FB组成,分别采用Sc L和梯形图编写,支持PTO脉冲和PN网口模式,适用于多种伺服和步进电机。文中提供了详细的中文注释和关键代码片段,展示了其在不同品牌设备如西门子s120、v90、雷赛步进、三菱伺服等的成功应用案例。此外,还强调了程序的兼容性和灵活性,使其能适应多轴控制和复杂控制需求。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要深入了解和应用西门子1200伺服步进FB块程序的人群。 使用场景及目标:①用于多轴伺服和步进电机的精确控制;②适用于PTO脉冲和PN网口模式的控制需求;③帮助工程师快速理解和调试程序,提高工作效率。 其他说明:本文不仅提供了理论讲解,还有实际操作指导,确保读者能够在实际项目中顺利应用该FB块程序。
recommend-type

Notes App API开发与使用指南

### API基础知识 #### 标题分析:“notes-app-api” 从标题“notes-app-api”可以推断,此API(Application Programming Interface,应用程序接口)是专为一个名为“notes-app”的应用程序设计的。这种API通常被用来允许不同的软件组件之间进行通信。在这个案例中,“notes-app”可能是一款笔记应用,该API提供了笔记数据的获取、更新、删除等操作的接口。 #### 描述分析:“API休息说明” 在提供的“API休息说明”中,我们可以看到几个重要的操作指令: 1. **指令“dev”:** `npm run dev` - 这是一个用于启动开发模式的命令。通常情况下,`npm run dev`会使用Node.js环境下的某种热重载功能,让开发者在开发过程中实时看到代码更改的效果。 - `npm`是Node.js的包管理器,用于安装项目所需的依赖、运行脚本等。 - `dev`是脚本命令的缩写,实际对应的是`package.json`文件中定义的某个开发环境下的脚本命令。 2. **指令“服务”:** `npm start` - 这是一个用于启动应用程序服务的命令。 - 同样利用Node.js的`npm`包管理器执行,其目的是部署应用程序,使其对外提供服务。 3. **指令“构建”:** `npm run build` - 这是用于构建项目的命令,通常会将源代码进行压缩、转译等操作,生成用于生产环境的代码。 - 例如,如果项目使用了TypeScript,构建过程可能包括将TypeScript代码编译成JavaScript,因为浏览器不能直接运行TypeScript代码。 #### 标签分析:“TypeScript” TypeScript是JavaScript的超集,提供了静态类型检查和ES6+的特性。使用TypeScript可以提高代码的可读性和可维护性,同时在编译阶段发现潜在的错误。 1. **TypeScript的特性:** - **静态类型检查:** 有助于在开发阶段捕捉类型错误,降低运行时错误的概率。 - **ES6+特性支持:** TypeScript支持最新的JavaScript语法和特性,可以使用装饰器、异步编程等现代JavaScript特性。 - **丰富的配置选项:** 开发者可以根据项目需求进行各种配置,如模块化系统、编译目标等。 2. **TypeScript的使用场景:** - 大型项目:在大型项目中,TypeScript有助于维护和扩展代码库。 - 多人协作:团队开发时,类型定义有助于减少沟通成本,提高代码一致性。 - 错误敏感应用:如金融、医疗等领域的应用,可以利用TypeScript的静态类型检查减少bug。 #### 文件分析:“压缩包子文件的文件名称列表: notes-app-api-develop” 这个文件列表中包含了“notes-app-api-develop”,它表明存在一个与开发相关的压缩包或存档文件。这个文件很可能包含了应用程序的源代码,通常还会包括`package.json`文件,这个文件定义了项目的依赖关系和可运行的脚本命令。在开发和部署过程中,开发者通常会根据`package.json`中定义的脚本来执行不同的任务,如`npm run dev`或`npm start`等。 ### Docker使用说明 在描述中还提到了使用Docker的命令: 1. **构建镜像:** `docker build -t notes-api .` - 这个命令用于构建一个名为`notes-api`的Docker镜像。 - `.`表示Dockerfile在当前目录。 - `-t`指定镜像的名称和标签。 2. **运行容器:** `docker run -d -it -p 3005:3005 notes-api` - 该命令用于从`notes-api`镜像启动一个容器,并在后台运行。 - `-d`表示后台运行容器。 - `-it`则是将容器的标准输入打开,并分配一个伪终端。 - `-p 3005:3005`将容器内部的3005端口映射到宿主机的3005端口,允许宿主机与容器内部的服务进行通信。 Docker作为容器化平台,它允许开发者打包应用及其依赖环境为一个轻量级、可移植的容器,这样无论在什么环境下,都能保证应用运行的一致性。这一点对于开发和部署API来说尤为重要,因为它确保了开发环境与生产环境的一致性,减少了所谓的“在我的机器上可以运行”的问题。 ### 总结 综上所述,“notes-app-api”是一个为笔记应用程序设计的API,开发者可以通过一系列npm脚本命令进行开发、服务和构建操作。此外,该API还涉及到使用Docker进行容器化部署的流程。最后,提及的TypeScript标签意味着该项目在前端开发上采用了TypeScript,以期获得更加健壮和可维护的代码库。了解这些知识点对开发、部署和维护现代Web应用至关重要。
recommend-type

【PMSM建模与测试最佳实践】:MATLAB电机仿真模型的权威指导

# 1. PMSM电机模型的基础知识 在现代工业自动化和电动车辆领域,永磁同步电机(PMSM
recommend-type

如何通过四元数避免万向节死锁?

<think>好的,用户想了解如何使用四元数来避免万向节锁问题,尤其是在3D旋转中保持姿态的稳定性。首先,我需要回忆万向节锁的基本概念和四元数如何解决这个问题。万向节锁发生在使用欧拉角时,当两个旋转轴对齐导致失去一个自由度。而四元数通过四维空间的旋转避免了这种顺序依赖。 接下来,我应该解释万向节锁的原因,比如三个轴依次旋转时,某个轴可能与其他轴对齐,导致无法正确旋转。然后对比四元数的优势,比如四元数的连续性和无奇异性。需要提到四元数的数学表示,如单位四元数和旋转插值方法(如球面线性插值),以及它们如何避免万向节锁。 还要考虑用户可能的实际应用场景,比如游戏开发或机器人学,是否需要示例代码?
recommend-type

Python实现Couchbase大规模数据复制技术

标题中提到的技术“couchbase-massive-replication”是一种针对Couchbase数据库的开源Python开发工具,专门用于高效地实现跨集群的大量存储桶和索引的复制。Couchbase是一个高性能、可扩展、容错的NoSQL文档数据库,它支持同步分布式复制(XDCR),能够实现跨地域的数据复制。 描述部分详细阐述了该技术的主要用途和优势。它解决了一个常见问题:在进行XDCR复制时,迁移大量存储桶可能会遇到需要手动检查并迁移缺失存储桶的繁琐步骤。Couchbase-massive-replication技术则允许用户在源和目标集群之间无需进行存储桶配置,简化了迁移过程。开发者可以通过简单的curl请求,向集群发送命令,从而实现大规模存储桶的自动化迁移。 此外,为了帮助用户更容易部署和使用该技术,项目提供了一个Dockerfile,允许用户通过Docker容器来运行程序。Docker是一种流行的容器化平台,可以将应用及其依赖打包到一个可移植的容器中,便于部署和扩展。用户只需执行几个Docker命令,即可快速启动一个名为“cbmigrator”的容器,版本为0.1。启动容器后,可以通过发送简单的POST请求来操作迁移任务。 项目中还提到了Docker Hub,这是一个公共的Docker镜像注册中心,用户可以在其中找到并拉取其他用户分享的镜像,其中就包括了“cbmigrator”镜像,即demir94/cbmigrator:0.1。这大大降低了部署和使用该技术的门槛。 根据标签“Python”,我们可以推断出该项目是使用Python开发的。Python是一种广泛使用的高级编程语言,以其简洁的语法和强大的库支持而闻名。该项目中Python的使用意味着用户可能需要具备一定的Python基础知识,以便对项目进行定制或故障排除。Python的动态类型系统和解释执行机制,使得开发过程中可以快速迭代和测试。 最后,从提供的压缩包子文件的文件名称列表“couchbase-massive-replication-main”来看,该项目的源代码文件夹可能遵循了通用的开源项目结构,其中“main”文件夹通常包含了项目的主要代码和入口文件。用户在获取项目后,可以在这个文件夹中找到相关的代码文件,包括配置文件、数据库模型、业务逻辑实现以及API接口等。 综合来看,这个项目涉及的技术点包括: - Couchbase数据库:一种文档数据库,广泛用于构建可扩展的应用程序。 - XDCR(Cross-Datacenter Replication):Couchbase提供的跨数据中心数据复制机制,实现数据的无缝迁移和灾难恢复。 - Python编程语言:用来开发该项目的高级编程语言,以其易读性和简洁的语法著称。 - Docker容器化技术:用于打包、分发和运行应用程序的平台,提供了一种便捷的部署方式。 - Docker Hub:一个存放和分享Docker镜像的平台,可以简化镜像的查找、下载和管理过程。 这个项目对于需要在多个Couchbase集群间迁移大量数据的开发者和运维人员来说是一个宝贵的资源,因为它大大简化了存储桶迁移的过程,并提高了操作的便利性和效率。
recommend-type

【MATLAB电机性能评估案例】:仿真环境下的深度研究

# 1. MATLAB在电机性能评估中的应用概述 电机作为现代工业中不可或缺的电力传动设备,其性能优劣直接影响整个系统的可靠性和效率。在众多的电机性能评估工具中,MATLAB凭借其强大的数值计算能力和丰富的工具箱资源,成为该领域研究和工程实践中的有力工具。本章将对MATLAB在电机性能评估中的应用进行概述,并介绍其在电机仿真、故障诊断和性能优化等方面的具体应用前景和价值。MA
recommend-type

专业版立创EDA怎么画板子边框圆角

<think>嗯,用户问的是如何在专业版立创EDA中画板子的圆角边框。首先,我得回忆一下立创EDA的功能布局。专业版和标准版可能有些不同,所以得确认步骤是否正确。 首先,用户可能需要知道如何进入板子边框的编辑模式。通常,这类操作是在PCB设计界面里进行的。所以第一步应该是打开或创建一个PCB文件。然后,找到板子边框的选项,可能在“设计”或者“工具”菜单下,或者有专门的边框层,比如Board Outline层。需要确认专业版的具体位置,可能在顶部工具栏或右键菜单里。 接下来,用户需要绘制一个矩形作为基础边框。这里可能需要使用绘制矩形工具,然后调整大小到所需的板子尺寸。但问题是如何将矩形的四个
recommend-type

自动化部署XMRig矿工的安装脚本

标题中的“xmrig-autoinstall:XMRig安装脚本”指明了该文档涉及的主题是XMRig这款软件的自动化安装过程。XMRig是一个流行的开源加密货币挖矿软件,主要用于挖掘Monero(XMR)以及其他基于CryptoNote协议的加密货币。脚本安装是为了简化部署过程,自动执行一系列命令来配置和启动挖矿服务。 描述中提到的脚本将自动安装XMRig作为一个服务,并且能够日志记录启动该服务。在Linux环境下,将软件作为服务运行通常意味着该软件将会随系统启动而自动启动,并且可以在后台稳定运行。脚本还提到了日志监视命令“tail -f /var/log/xmrig.log”,这是一个常用的Linux命令,用于实时查看文件的更新,特别是监控日志文件。 此外,描述中还提及了脚本允许用户修改GIT_SRC_URL以适应不同版本的XMRig。这表明安装脚本设计有一定的灵活性,可以根据需要调整源码地址来安装不同版本的XMRig。 描述还强调了该脚本最初是为HiveOS系统编写的,HiveOS是一个专门针对挖矿优化的操作系统。脚本能够处理操作系统更新时覆盖或卸载XMRig的情况,而自动化的安装脚本可以快速重新安装,节省重复的手动操作时间。 在描述中提到的“特征”部分,说明了脚本的几个核心功能:自动构建XMRig(MoneroOcean版本)、自动创建XMRig服务、在系统启动时自动启动XMRig服务,以及启动NTP和Logro。NTP代表网络时间协议(Network Time Protocol),用于同步计算机时钟。Logro可能是一个拼写错误,应该指的是Logrotate,它是Linux系统中用于管理日志文件的工具。 脚本的标签是“Shell”,这意味着脚本很可能是用Shell脚本语言编写的。Shell脚本广泛用于Linux和Unix系统中,适合用于自动化系统管理任务。 最后,提到的“压缩包子文件的文件名称列表”中包含了一个名为“xmrig-autoinstall-main”的文件。这应该是脚本的主要文件,包含了安装XMRig所需的核心代码。使用“main”作为文件名,表明这可能是脚本的主入口文件,或者包含了主执行逻辑。 综上所述,这份文件描述了一个自动化安装XMRig的Shell脚本,其设计目的是为了让用户能够更简单、快速地在支持Shell脚本的系统上部署XMRig挖矿软件,无需手动执行一系列复杂的安装和配置步骤。通过这个脚本,用户可以将XMRig安装为一个随系统启动的服务,并通过日志来监控挖矿过程,也可以根据需要调整源码地址来适应不同的XMRig版本。
recommend-type

MATLAB高级电机建模技巧:S函数与动态系统分析的完美结合

# 1. MATLAB高级电机建模概述 电机作为现代工业和日常生活中不可
recommend-type

立创EDA专业版怎么画板子边框

<think>好的,用户现在问的是如何在立创EDA专业版里画板子边框。之前他们问过如何批量改线宽,现在转向了板框绘制,可能是在进行一个完整的PCB设计流程。首先,我需要回忆立创EDA专业版的相关功能。 板子边框通常是在机械层或板框层绘制,用户可能需要知道如何选择正确的层,使用绘图工具,比如线条或矩形,以及如何设置尺寸。考虑到用户可能对EDA软件不太熟悉,需要分步骤说明,确保清晰易懂。 首先,进入PCB编辑界面,这应该是基本的第一步。然后,切换到正确的层,比如板框层。立创EDA专业版可能有专门的层管理,需要指导用户找到板框层。 接下来是绘制边框的方法。用户可能知道基本的形状,如矩形或自定义