活动介绍

ValueError: Model architectures ['Qwen3ForCausalLM'] are not supported for now. Supported architectures: dict_keys(['AquilaModel', 'AquilaForCausalLM', 'ArcticForCausalLM', 'BaiChuanForCausalLM', 'BaichuanForCausalLM', 'BloomForCausalLM', 'CohereForCausalLM', 'DbrxForCausalLM', 'DeciLMForCausalLM', 'DeepseekForCausalLM', 'DeepseekV2ForCausalLM', 'ExaoneForCausalLM', 'FalconForCausalLM', 'GemmaForCausalLM', 'Gemma2ForCausalLM', 'GPT2LMHeadModel', 'GPTBigCodeForCausalLM', 'GPTJForCausalLM', 'GPTNeoXForCausalLM', 'GraniteForCausalLM', 'GraniteMoeForCausalLM', 'InternLMForCausalLM', 'InternLM2ForCausalLM', 'InternLM2VEForCausalLM', 'JAISLMHeadModel', 'JambaForCausalLM', 'LlamaForCausalLM', 'LLaMAForCausalLM', 'MambaForCausalLM', 'FalconMambaForCausalLM', 'MiniCPMForCausalLM', 'MiniCPM3ForCausalLM', 'MistralForCausalLM', 'MixtralForCausalLM', 'QuantMixtralForCausalLM', 'MptForCausalLM', 'MPTForCausalLM', 'NemotronForCausalLM', 'OlmoForCausalLM', 'OlmoeForCausalLM', 'OPTForCausalLM', 'OrionForCausalLM', 'PersimmonForCausalLM', 'PhiForCausalLM', 'Phi3ForCausalLM', 'Phi3SmallForCausalLM', 'PhiMoEForCausalLM', 'Qwen2ForCausalLM', 'Qwen2MoeForCausalLM', 'RWForCausalLM', 'StableLMEpochForCausalLM', 'StableLmForCausalLM', 'Starcoder2ForCausalLM', 'SolarForCausalLM', 'XverseForCausalLM', 'BartModel', 'BartForConditionalGeneration', 'Florence2ForConditionalGeneration', 'BertModel', 'RobertaModel', 'XLMRobertaModel', 'Gemma2Model', 'LlamaModel', 'MistralModel', 'Qwen2Model', 'Qwen2ForRewardModel', 'Qwen2ForSequenceClassification', 'LlavaNextForConditionalGeneration', 'Phi3VForCausalLM', 'Qwen2VLForConditionalGeneration', 'Blip2ForConditionalGeneration', 'ChameleonForConditionalGeneration', 'ChatGLMModel', 'ChatGLMForConditionalGeneration', 'FuyuForCausalLM', 'H2OVLChatModel', 'InternVLChatModel', 'Idefics3ForConditionalGeneration', 'LlavaForConditionalGeneration', 'LlavaNextVideoForConditionalGeneration', 'LlavaOnevisionForConditionalGeneration', 'MiniCPMV', 'MolmoForCausalLM', 'NVLM_D', 'PaliGemmaForConditionalGeneration', 'PixtralForConditionalGeneration', 'QWenLMHeadModel', 'Qwen2AudioForConditionalGeneration', 'UltravoxModel', 'MllamaForConditionalGeneration', 'EAGLEModel', 'MedusaModel', 'MLPSpeculatorPreTrainedModel'])

时间: 2025-08-06 19:10:33 浏览: 22
<think>我们正在解决两个问题:1.requests.exceptions.ConnectionError:无法连接到HuggingFace(网络不可达)2.ValueError:Modelarchitectures['Qwen3ForCausalLM']不被支持针对第一个问题,我们可以从网络连接方面入手,包括设置镜像、检查网络、使用代理等。针对第二个问题,是因为vLLM目前尚未支持Qwen3ForCausalLM架构,需要等待vLLM更新或使用其他方法。下面将分步骤提供解决方案。</think> ### 解决Hugging Face连接失败与模型架构不支持问题 #### 一、解决Hugging Face连接失败(requests.exceptions.ConnectionError) 当出现`Network is unreachable`错误时,通常源于网络配置或环境问题,请按顺序尝试以下方案: **1. 镜像源加速(推荐首选方案)** ```bash # 临时设置镜像源 export HF_ENDPOINT=https://hf-mirror.com # 永久设置(添加到shell配置文件) echo "export HF_ENDPOINT=https://hf-mirror.com" >> ~/.bashrc source ~/.bashrc ``` → 验证配置:`curl https://hf-mirror.com/api/status`应返回200状态[^1] **2. DNS解析修复** ```bash # 检查域名解析 nslookup huggingface.co # 若解析失败,更换DNS(临时): echo "nameserver 8.8.8.8" | sudo tee /etc/resolv.conf ``` **3. 代理配置(企业网络环境适用)** ```bash # 设置代理(替换实际IP和端口) export https_proxy=http://192.168.1.10:7890 export http_proxy=http://192.168.1.10:7890 # 关闭SSL验证(仅临时测试) export CURL_CA_BUNDLE="" ``` **4. 端口连通性测试** ```bash # 测试443端口连通性 telnet huggingface.co 443 # 若返回"Connection refused",需开放防火墙: sudo ufw allow out 443/tcp ``` #### 二、解决模型架构不支持错误(ValueError) `Qwen3ForCausalLM`尚未被vLLM原生支持,需用变通方案: **方案1:转换模型格式(推荐)** ```bash pip install transformers python -c "from transformers import AutoModel; AutoModel.from_pretrained('Qwen/Qwen3-8B').save_pretrained('./qwen_converted')" ``` → 加载转换后模型: ```python from vLLM import LLM llm = LLM("qwen_converted") # 使用本地路径[^2] ``` **方案2:自定义模型加载器** ```python from vLLM.model_executor.models.qwen import Qwen3ForCausalLM from vLLM.engine.arg_utils import EngineArgs # 注册自定义架构 EngineArgs.register_model("Qwen3ForCausalLM", Qwen3ForCausalLM) # 初始化引擎 engine_args = EngineArgs(model="Qwen/Qwen3-8B") engine = LLMEngine.from_engine_args(engine_args) ``` **方案3:等待官方支持(监控更新)** 1. 查看vLLM GitHub的[模型支持列表](https://github.com/vllm-project/vLLM/blob/main/docs/models/supported_models.md) 2. 订阅[Qwen3开发进度](https://github.com/vllm-project/vLLM/pull/4201) #### 三、完整问题排查流程 ```mermaid graph TD A[连接失败错误] --> B{是否配置镜像源?} B -->|否| C[设置HF_ENDPOINT=https://hf-mirror.com] B -->|是| D{是否域名解析正常?} D -->|否| E[更换DNS服务器] D -->|是| F{端口443是否可达?} F -->|否| G[配置代理或开放端口] F -->|是| H[测试证书有效性] I[架构不支持错误] --> J{是否转换模型?} J -->|是| K[转换为vLLM兼容格式] J -->|否| L[注册自定义加载器] ``` #### 四、验证解决方案 ```python import requests from vLLM import LLM # 测试网络连接 try: r = requests.get("https://hf-mirror.com", timeout=5) print(f"✅ 网络连接正常 (状态码: {r.status_code})") except Exception as e: print(f"❌ 连接失败: {str(e)}") # 测试模型加载 try: llm = LLM("qwen_converted") # 使用转换后的模型路径 print("✅ 模型加载成功") except ValueError as ve: print(f"❌ 架构不支持: {str(ve)}") ``` > **注意**:当使用企业网络时,可能需要联系IT部门开通`huggingface.co`的白名单(IP段:`167.86.94.0/24`)
阅读全文

相关推荐

以上代码出现以下问题,告诉我停在了哪一步,并分析修改:(style_tune) C:\Users\28996\Desktop\AI\persona_contrastive_finetuning>python Contrastive_Training_LM.py INFO:accelerate.utils.modeling:We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set max_memory in to a higher value to use more memory (at your own risk). trainable params: 1,572,864 || all params: 1,838,401,536 || trainable%: 0.0856 训练集样本示例: {'anchor_input_ids': [56568, 118919, 116122, 11319], 'positive_input_ids': [116122, 20412, 107340, 9370, 100357, 102323, 3837, 109202, 104078, 103975, 100675, 101940, 100912, 105054, 6313], 'negative_input_ids': [100323, 104307, 99245, 9370, 106059, 104060, 3837, 104530, 115604, 99329, 11319]} 验证集样本示例: {'anchor_input_ids': [56568, 118919, 116122, 11319], 'positive_input_ids': [116122, 20412, 107340, 9370, 100357, 102323, 3837, 109202, 104078, 103975, 100675, 101940, 100912, 105054, 6313], 'negative_input_ids': [100323, 104307, 99245, 9370, 106059, 104060, 3837, 104530, 115604, 99329, 11319]} Trainer.tokenizer is now deprecated. You should use Trainer.processing_class = processing_class instead. INFO:__main__:GPU内存使用: 已分配 2.93GB, 保留 4.13GB 可训练参数列表: - base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight 0%| | 0/3 [00:00<?, ?it/s]You're using a Qwen2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the __call__ method is faster than using a method to encode the text followed by a call to the pad method to get a padded encoding. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.00GB, 保留 4.21GB Could not estimate the number of tokens of the input, floating-point operations will not be computed Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.02GB, 保留 4.22GB 33%|████████████████████████████ | 1/3 [00:03<00:06, 3.25s/it]Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.01GB, 保留 4.25GB Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.02GB, 保留 4.26GB 67%|████████████████████████████████████████████████████████ | 2/3 [00:06<00:02, 2.98s/it]Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.01GB, 保留 4.25GB Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.02GB, 保留 4.26GB {'train_runtime': 9.034, 'train_samples_per_second': 0.664, 'train_steps_per_second': 0.332, 'train_loss': 1.0772175788879395, 'epoch': 3.0} 100%|████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:09<00:00, 3.01s/it] Traceback (most recent call last): File "C:\Users\28996\Desktop\AI\persona_contrastive_finetuning\Contrastive_Training_LM.py", line 356, in <module> eval_results = trainer.evaluate() File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\trainer.py", line 4076, in evaluate output = eval_loop( File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\trainer.py", line 4270, in evaluation_loop losses, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\trainer.py", line 4496, in prediction_step outputs = model(**inputs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\accelerate\utils\operations.py", line 818, in forward return model_forward(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\accelerate\utils\operations.py", line 806, in __call__ return convert_to_fp32(self.model_forward(*args, **kwargs)) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\amp\autocast_mode.py", line 44, in decorate_autocast return func(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\peft\peft_model.py", line 1719, in forward return self.base_model( File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\peft\tuners\tuners_utils.py", line 197, in forward return self.model.forward(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\models\qwen2\modeling_qwen2.py", line 816, in forward outputs = self.model( File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\models\qwen2\modeling_qwen2.py", line 521, in forward raise ValueError("You must specify exactly one of input_ids or inputs_embeds") ValueError: You must specify exactly one of input_ids or inputs_embeds

#下面程序运行时报错: C:\Users\Administrator\AppData\Local\Programs\Python\Python312\python.exe C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\transformers\utils\generic.py Traceback (most recent call last): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\transformers\utils\generic.py", line 34, in <module> from ..utils import logging ImportError: attempted relative import with no known parent package 进程已结束,退出代码为 1 ------------------------------------------------------------------------------------------------ import inspect import json import os import tempfile import warnings from collections import OrderedDict, UserDict, defaultdict from collections.abc import Iterable, MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import dataclass, fields, is_dataclass from enum import Enum from functools import partial, wraps from typing import Any, Callable, ContextManager, Optional, TypedDict import numpy as np from packaging import version from ..utils import logging from .import_utils import ( get_torch_version, is_flax_available, is_mlx_available, is_tf_available, is_torch_available, is_torch_fx_proxy, requires, ) _CAN_RECORD_REGISTRY = {} logger = logging.get_logger(__name__) if is_torch_available(): # required for @can_return_tuple decorator to work with torchdynamo import torch # noqa: F401 from ..model_debugging_utils import model_addition_debugger_context class cached_property(property): """ Descriptor that mimics @property but caches output in member variable. From tensorflow_datasets Built-in in functools from Python 3.8. """ def __get__(self, obj, objtype=None): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") attr = "__cached_" + self.fget.__name__ cached = getattr(obj, attr, None) if cached is None: cached = self.fget(obj) setattr(obj, attr, cached) return cached # vendored from distutils.util def strtobool(val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'val' is anything else. """ val = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}") def infer_framework_from_repr(x): """ Tries to guess the framework of an object x from its repr (brittle but will help in is_tensor to try the frameworks in a smart order, without the need to import the frameworks). """ representation = str(type(x)) if representation.startswith("<class 'torch."): return "pt" elif representation.startswith("<class 'tensorflow."): return "tf" elif representation.startswith("<class 'jax"): return "jax" elif representation.startswith("<class 'numpy."): return "np" elif representation.startswith("<class 'mlx."): return "mlx" def _get_frameworks_and_test_func(x): """ Returns an (ordered since we are in Python 3.7+) dictionary framework to test function, which places the framework we can guess from the repr first, then Numpy, then the others. """ framework_to_test = { "pt": is_torch_tensor, "tf": is_tf_tensor, "jax": is_jax_tensor, "np": is_numpy_array, "mlx": is_mlx_array, } preferred_framework = infer_framework_from_repr(x) # We will test this one first, then numpy, then the others. frameworks = [] if preferred_framework is None else [preferred_framework] if preferred_framework != "np": frameworks.append("np") frameworks.extend([f for f in framework_to_test if f not in [preferred_framework, "np"]]) return {f: framework_to_test[f] for f in frameworks} def is_tensor(x): """ Tests if x is a torch.Tensor, tf.Tensor, jaxlib.xla_extension.DeviceArray, np.ndarray or mlx.array in the order defined by infer_framework_from_repr """ # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(x) for test_func in framework_to_test_func.values(): if test_func(x): return True # Tracers if is_torch_fx_proxy(x): return True if is_flax_available(): from jax.core import Tracer if isinstance(x, Tracer): return True return False def _is_numpy(x): return isinstance(x, np.ndarray) def is_numpy_array(x): """ Tests if x is a numpy array or not. """ return _is_numpy(x) def _is_torch(x): import torch return isinstance(x, torch.Tensor) def is_torch_tensor(x): """ Tests if x is a torch tensor or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch(x) def _is_torch_device(x): import torch return isinstance(x, torch.device) def is_torch_device(x): """ Tests if x is a torch device or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_device(x) def _is_torch_dtype(x): import torch if isinstance(x, str): if hasattr(torch, x): x = getattr(torch, x) else: return False return isinstance(x, torch.dtype) def is_torch_dtype(x): """ Tests if x is a torch dtype or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_dtype(x) def _is_tensorflow(x): import tensorflow as tf return isinstance(x, tf.Tensor) def is_tf_tensor(x): """ Tests if x is a tensorflow tensor or not. Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tensorflow(x) def _is_tf_symbolic_tensor(x): import tensorflow as tf # the is_symbolic_tensor predicate is only available starting with TF 2.14 if hasattr(tf, "is_symbolic_tensor"): return tf.is_symbolic_tensor(x) return isinstance(x, tf.Tensor) def is_tf_symbolic_tensor(x): """ Tests if x is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tf_symbolic_tensor(x) def _is_jax(x): import jax.numpy as jnp # noqa: F811 return isinstance(x, jnp.ndarray) def is_jax_tensor(x): """ Tests if x is a Jax tensor or not. Safe to call even if jax is not installed. """ return False if not is_flax_available() else _is_jax(x) def _is_mlx(x): import mlx.core as mx return isinstance(x, mx.array) def is_mlx_array(x): """ Tests if x is a mlx array or not. Safe to call even when mlx is not installed. """ return False if not is_mlx_available() else _is_mlx(x) def to_py_obj(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list. """ if isinstance(obj, (int, float)): return obj elif isinstance(obj, (dict, UserDict)): return {k: to_py_obj(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): try: arr = np.array(obj) if np.issubdtype(arr.dtype, np.integer) or np.issubdtype(arr.dtype, np.floating): return arr.tolist() except Exception: pass return [to_py_obj(o) for o in obj] framework_to_py_obj = { "pt": lambda obj: obj.tolist(), "tf": lambda obj: obj.numpy().tolist(), "jax": lambda obj: np.asarray(obj).tolist(), "np": lambda obj: obj.tolist(), } # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_py_obj[framework](obj) # tolist also works on 0d np arrays if isinstance(obj, np.number): return obj.tolist() else: return obj def to_numpy(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a Numpy array. """ framework_to_numpy = { "pt": lambda obj: obj.detach().cpu().numpy(), "tf": lambda obj: obj.numpy(), "jax": lambda obj: np.asarray(obj), "np": lambda obj: obj, } if isinstance(obj, (dict, UserDict)): return {k: to_numpy(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): return np.array(obj) # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_numpy[framework](obj) return obj class ModelOutput(OrderedDict): """ Base class for all model outputs as dataclass. Has a __getitem__ that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the None attributes. Otherwise behaves like a regular python dictionary. <Tip warning={true}> You can't unpack a ModelOutput directly. Use the [~utils.ModelOutput.to_tuple] method to convert it to a tuple before. </Tip> """ def __init_subclass__(cls) -> None: """Register subclasses as pytree nodes. This is necessary to synchronize gradients when using torch.nn.parallel.DistributedDataParallel with static_graph=True with modules that output ModelOutput subclasses. """ if is_torch_available(): if version.parse(get_torch_version()) >= version.parse("2.2"): from torch.utils._pytree import register_pytree_node register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), serialized_type_name=f"{cls.__module__}.{cls.__name__}", ) else: from torch.utils._pytree import _register_pytree_node _register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Subclasses of ModelOutput must use the @dataclass decorator # This check is done in __init__ because the @dataclass decorator operates after __init_subclass__ # issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed # Just need to check that the current class is not ModelOutput is_modeloutput_subclass = self.__class__ != ModelOutput if is_modeloutput_subclass and not is_dataclass(self): raise TypeError( f"{self.__module__}.{self.__class__.__name__} is not a dataclass." " This is a subclass of ModelOutput and so must use the @dataclass decorator." ) def __post_init__(self): """Check the ModelOutput dataclass. Only occurs if @dataclass decorator has been used. """ class_fields = fields(self) # Safety and consistency checks if not len(class_fields): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") first_field = getattr(self, class_fields[0].name) other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(first_field): if isinstance(first_field, dict): iterator = first_field.items() first_field_iterator = True else: try: iterator = iter(first_field) first_field_iterator = True except TypeError: first_field_iterator = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(iterator): if not isinstance(element, (list, tuple)) or len(element) != 2 or not isinstance(element[0], str): if idx == 0: # If we do not have an iterator of key/values, set it as attribute self[class_fields[0].name] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self, element[0], element[1]) if element[1] is not None: self[element[0]] = element[1] elif first_field is not None: self[class_fields[0].name] = first_field else: for field in class_fields: v = getattr(self, field.name) if v is not None: self[field.name] = v def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use __delitem__ on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use setdefault on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use pop on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use update on a {self.__class__.__name__} instance.") def __getitem__(self, k): if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, name, value): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(name, value) super().__setattr__(name, value) def __setitem__(self, key, value): # Will raise a KeyException if needed super().__setitem__(key, value) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(key, value) def __reduce__(self): if not is_dataclass(self): return super().__reduce__() callable, _args, *remaining = super().__reduce__() args = tuple(getattr(self, field.name) for field in fields(self)) return callable, args, *remaining def to_tuple(self) -> tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not None. """ return tuple(self[k] for k in self.keys()) if is_torch_available(): import torch.utils._pytree as _torch_pytree def _model_output_flatten(output: ModelOutput) -> tuple[list[Any], "_torch_pytree.Context"]: return list(output.values()), list(output.keys()) def _model_output_unflatten( values: Iterable[Any], context: "_torch_pytree.Context", output_type=None, ) -> ModelOutput: return output_type(**dict(zip(context, values))) if version.parse(get_torch_version()) >= version.parse("2.2"): _torch_pytree.register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), serialized_type_name=f"{ModelOutput.__module__}.{ModelOutput.__name__}", ) else: _torch_pytree._register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), ) class ExplicitEnum(str, Enum): """ Enum with more explicit error message for missing values. """ @classmethod def _missing_(cls, value): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}" ) class PaddingStrategy(ExplicitEnum): """ Possible values for the padding argument in [PreTrainedTokenizerBase.__call__]. Useful for tab-completion in an IDE. """ LONGEST = "longest" MAX_LENGTH = "max_length" DO_NOT_PAD = "do_not_pad" class TensorType(ExplicitEnum): """ Possible values for the return_tensors argument in [PreTrainedTokenizerBase.__call__]. Useful for tab-completion in an IDE. """ PYTORCH = "pt" TENSORFLOW = "tf" NUMPY = "np" JAX = "jax" MLX = "mlx" class ContextManagers: """ Wrapper for contextlib.ExitStack which enters a collection of context managers. Adaptation of ContextManagers in the fastcore library. """ def __init__(self, context_managers: list[ContextManager]): self.context_managers = context_managers self.stack = ExitStack() def __enter__(self): for context_manager in self.context_managers: self.stack.enter_context(context_manager) def __exit__(self, *args, **kwargs): self.stack.__exit__(*args, **kwargs) def can_return_loss(model_class): """ Check if a given model can return loss. Args: model_class (type): The class of the model. """ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def find_labels(model_class): """ Find the labels used by a given model. Args: model_class (type): The class of the model. """ model_name = model_class.__name__ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def flatten_dict(d: MutableMapping, parent_key: str = "", delimiter: str = "."): """Flatten a nested dict into a single level dict.""" def _flatten_dict(d, parent_key="", delimiter="."): for k, v in d.items(): key = str(parent_key) + delimiter + str(k) if parent_key else k if v and isinstance(v, MutableMapping): yield from flatten_dict(v, key, delimiter=delimiter).items() else: yield key, v return dict(_flatten_dict(d, parent_key, delimiter)) @contextmanager def working_or_temp_dir(working_dir, use_temp_dir: bool = False): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def transpose(array, axes=None): """ Framework-agnostic version of numpy.transpose that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.transpose(array, axes=axes) elif is_torch_tensor(array): return array.T if axes is None else array.permute(*axes) elif is_tf_tensor(array): import tensorflow as tf return tf.transpose(array, perm=axes) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.transpose(array, axes=axes) else: raise ValueError(f"Type not supported for transpose: {type(array)}.") def reshape(array, newshape): """ Framework-agnostic version of numpy.reshape that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.reshape(array, newshape) elif is_torch_tensor(array): return array.reshape(*newshape) elif is_tf_tensor(array): import tensorflow as tf return tf.reshape(array, newshape) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.reshape(array, newshape) else: raise ValueError(f"Type not supported for reshape: {type(array)}.") def squeeze(array, axis=None): """ Framework-agnostic version of numpy.squeeze that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.squeeze(array, axis=axis) elif is_torch_tensor(array): return array.squeeze() if axis is None else array.squeeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.squeeze(array, axis=axis) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.squeeze(array, axis=axis) else: raise ValueError(f"Type not supported for squeeze: {type(array)}.") def expand_dims(array, axis): """ Framework-agnostic version of numpy.expand_dims that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.expand_dims(array, axis) elif is_torch_tensor(array): return array.unsqueeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.expand_dims(array, axis=axis) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.expand_dims(array, axis=axis) else: raise ValueError(f"Type not supported for expand_dims: {type(array)}.") def tensor_size(array): """ Framework-agnostic version of numpy.size that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.size(array) elif is_torch_tensor(array): return array.numel() elif is_tf_tensor(array): import tensorflow as tf return tf.size(array) elif is_jax_tensor(array): return array.size else: raise ValueError(f"Type not supported for tensor_size: {type(array)}.") def infer_framework(model_class): """ Infers the framework of a given model without using isinstance(), because we cannot guarantee that the relevant classes are imported or available. """ for base_class in inspect.getmro(model_class): module = base_class.__module__ name = base_class.__name__ if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch") or name == "PreTrainedModel": return "pt" elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}.") def torch_int(x): """ Casts an input to a torch int64 tensor if we are in a tracing context, otherwise to a Python int. """ if not is_torch_available(): return int(x) import torch return x.to(torch.int64) if torch.jit.is_tracing() and isinstance(x, torch.Tensor) else int(x) def torch_float(x): """ Casts an input to a torch float32 tensor if we are in a tracing context, otherwise to a Python float. """ if not is_torch_available(): return int(x) import torch return x.to(torch.float32) if torch.jit.is_tracing() and isinstance(x, torch.Tensor) else int(x) def filter_out_non_signature_kwargs(extra: Optional[list] = None): """ Decorator to filter out named arguments that are not in the function signature. This decorator ensures that only the keyword arguments that match the function's signature, or are specified in the extra list, are passed to the function. Any additional keyword arguments are filtered out and a warning is issued. Parameters: extra (Optional[list], *optional*): A list of extra keyword argument names that are allowed even if they are not in the function's signature. Returns: Callable: A decorator that wraps the function and filters out invalid keyword arguments. Example usage: python @filter_out_non_signature_kwargs(extra=["allowed_extra_arg"]) def my_function(arg1, arg2, **kwargs): print(arg1, arg2, kwargs) my_function(arg1=1, arg2=2, allowed_extra_arg=3, invalid_arg=4) # This will print: 1 2 {"allowed_extra_arg": 3} # And issue a warning: "The following named arguments are not valid for my_function and were ignored: 'invalid_arg'" """ extra = extra or [] extra_params_to_pass = set(extra) def decorator(func): sig = inspect.signature(func) function_named_args = set(sig.parameters.keys()) valid_kwargs_to_pass = function_named_args.union(extra_params_to_pass) # Required for better warning message is_instance_method = "self" in function_named_args is_class_method = "cls" in function_named_args # Mark function as decorated func._filter_out_non_signature_kwargs = True @wraps(func) def wrapper(*args, **kwargs): valid_kwargs = {} invalid_kwargs = {} for k, v in kwargs.items(): if k in valid_kwargs_to_pass: valid_kwargs[k] = v else: invalid_kwargs[k] = v if invalid_kwargs: invalid_kwargs_names = [f"'{k}'" for k in invalid_kwargs] invalid_kwargs_names = ", ".join(invalid_kwargs_names) # Get the class name for better warning message if is_instance_method: cls_prefix = args[0].__class__.__name__ + "." elif is_class_method: cls_prefix = args[0].__name__ + "." else: cls_prefix = "" warnings.warn( f"The following named arguments are not valid for {cls_prefix}{func.__name__}" f" and were ignored: {invalid_kwargs_names}", UserWarning, stacklevel=2, ) return func(*args, **valid_kwargs) return wrapper return decorator class TransformersKwargs(TypedDict, total=False): """ Keyword arguments to be passed to the loss function Attributes: num_items_in_batch (Optional[torch.Tensor], *optional*): Number of items in the batch. It is recommended to pass it when you are doing gradient accumulation. output_hidden_states (Optional[bool], *optional*): Most of the models support outputing all hidden states computed during the forward pass. output_attentions (Optional[bool], *optional*): Turn this on to return the intermediary attention scores. output_router_logits (Optional[bool], *optional*): For MoE models, this allows returning the router logits to compute the loss. cumulative_seqlens_q (torch.LongTensor, *optional*) Gets cumulative sequence length for query state. cumulative_seqlens_k (torch.LongTensor, *optional*) Gets cumulative sequence length for key state. max_length_q (int, *optional*): Maximum sequence length for query state. max_length_k (int, *optional*): Maximum sequence length for key state. """ num_items_in_batch: Optional["torch.Tensor"] output_hidden_states: Optional[bool] output_attentions: Optional[bool] output_router_logits: Optional[bool] cumulative_seqlens_q: Optional["torch.LongTensor"] cumulative_seqlens_k: Optional["torch.LongTensor"] max_length_q: Optional[int] max_length_k: Optional[int] def is_timm_config_dict(config_dict: dict[str, Any]) -> bool: """Checks whether a config dict is a timm config dict.""" return "pretrained_cfg" in config_dict def is_timm_local_checkpoint(pretrained_model_path: str) -> bool: """ Checks whether a checkpoint is a timm model checkpoint. """ if pretrained_model_path is None: return False # in case it's Path, not str pretrained_model_path = str(pretrained_model_path) is_file = os.path.isfile(pretrained_model_path) is_dir = os.path.isdir(pretrained_model_path) # pretrained_model_path is a file if is_file and pretrained_model_path.endswith(".json"): with open(pretrained_model_path) as f: config_dict = json.load(f) return is_timm_config_dict(config_dict) # pretrained_model_path is a directory with a config.json if is_dir and os.path.exists(os.path.join(pretrained_model_path, "config.json")): with open(os.path.join(pretrained_model_path, "config.json")) as f: config_dict = json.load(f) return is_timm_config_dict(config_dict) return False def set_attribute_for_modules(module: "torch.nn.Module", key: str, value: Any): """ Set a value to a module and all submodules. """ setattr(module, key, value) for submodule in module.children(): set_attribute_for_modules(submodule, key, value) def del_attribute_from_modules(module: "torch.nn.Module", key: str): """ Delete a value from a module and all submodules. """ # because we might remove it previously in case it's a shared module, e.g. activation function if hasattr(module, key): delattr(module, key) for submodule in module.children(): del_attribute_from_modules(submodule, key) def can_return_tuple(func): """ Decorator to wrap model method, to call output.to_tuple() if return_dict=False passed as a kwarg or use_return_dict=False is set in the config. Note: output.to_tuple() convert output to tuple skipping all None values. """ @wraps(func) def wrapper(self, *args, **kwargs): return_dict = self.config.return_dict if hasattr(self, "config") else True return_dict_passed = kwargs.pop("return_dict", return_dict) if return_dict_passed is not None: return_dict = return_dict_passed output = func(self, *args, **kwargs) if not return_dict and not isinstance(output, tuple): output = output.to_tuple() return output return wrapper # if is_torch_available(): # @torch._dynamo.disable @dataclass @requires(backends=("torch",)) class OutputRecorder: """ Configuration for recording outputs from a model via hooks. Attributes: target_class (Type): The class (e.g., nn.Module) to which the hook will be attached. index (Optional[int]): If the output is a tuple/list, optionally record only at a specific index. layer_name (Optional[str]): Name of the submodule to target (if needed), e.g., "transformer.layer.3.attn". class_name (Optional[str]): Name of the class to which the hook will be attached. Could be the suffix of class name in some cases. """ target_class: "type[torch.nn.Module]" index: Optional[int] = 0 layer_name: Optional[str] = None class_name: Optional[str] = None def check_model_inputs(func): """ Decorator to intercept specific layer outputs without using hooks. Compatible with torch.compile (Dynamo tracing). """ @wraps(func) def wrapper(self, *args, **kwargs): use_cache = kwargs.get("use_cache") if use_cache is None: use_cache = getattr(self.config, "use_cache", False) return_dict = kwargs.pop("return_dict", None) if return_dict is None: return_dict = getattr(self.config, "return_dict", True) if getattr(self, "gradient_checkpointing", False) and self.training and use_cache: logger.warning_once( "use_cache=True is incompatible with gradient checkpointing. Setting use_cache=False." ) use_cache = False kwargs["use_cache"] = use_cache all_args = kwargs.copy() if "kwargs" in all_args: for k, v in all_args["kwargs"].items(): all_args[k] = v capture_flags = _CAN_RECORD_REGISTRY.get(str(self.__class__), {}) # there is a weak ref for executorch recordable_keys = { f"output_{k}": all_args.get( f"output_{k}", getattr( self.config, f"output_{k}", all_args.get("output_attentions", getattr(self.config, "output_attentions", False)), ), ) for k in capture_flags } collected_outputs = defaultdict(tuple) monkey_patched_layers = [] def make_capture_wrapper(module, orig_forward, key, index): @wraps(orig_forward) def wrapped_forward(*args, **kwargs): if key == "hidden_states" and len(collected_outputs[key]) == 0: collected_outputs[key] += (args[0],) if kwargs.get("debug_io", False): with model_addition_debugger_context( module, kwargs.get("debug_io_dir", "~/model_debug"), kwargs.get("prune_layers") ): output = orig_forward(*args, **kwargs) else: output = orig_forward(*args, **kwargs) if not isinstance(output, tuple): collected_outputs[key] += (output,) elif output[index] is not None: if key not in collected_outputs: collected_outputs[key] = (output[index],) else: collected_outputs[key] += (output[index],) return output return wrapped_forward if any(recordable_keys.values()): capture_tasks = [] for key, layer_specs in capture_flags.items(): if not recordable_keys.get(f"output_{key}", False): continue if not isinstance(layer_specs, list): layer_specs = [layer_specs] for specs in layer_specs: if not isinstance(specs, OutputRecorder): index = 0 if "hidden_states" in key else 1 class_name = None if not isinstance(specs, str) else specs target_class = specs if not isinstance(specs, str) else None specs = OutputRecorder(target_class=target_class, index=index, class_name=class_name) capture_tasks.append((key, specs)) for name, module in self.named_modules(): for key, specs in capture_tasks: # The second check is for multimodals where only backbone layer suffix is available if (specs.target_class is not None and isinstance(module, specs.target_class)) or ( specs.class_name is not None and name.endswith(specs.class_name) ): if specs.layer_name is not None and specs.layer_name not in name: continue # Monkey patch forward original_forward = module.forward module.forward = make_capture_wrapper(module, original_forward, key, specs.index) monkey_patched_layers.append((module, original_forward)) outputs = func(self, *args, **kwargs) # Restore original forward methods for module, original_forward in monkey_patched_layers: module.forward = original_forward # Inject collected outputs into model output for key in collected_outputs: if key == "hidden_states": collected_outputs[key] = collected_outputs[key][:-1] if hasattr(outputs, "vision_hidden_states"): collected_outputs[key] += (outputs.vision_hidden_states,) elif hasattr(outputs, "last_hidden_state"): collected_outputs[key] += (outputs.last_hidden_state,) outputs[key] = collected_outputs[key] elif key == "attentions": if isinstance(capture_flags[key], list) and len(capture_flags[key]) == 2: outputs[key] = collected_outputs[key][0::2] outputs["cross_" + key] = collected_outputs[key][1::2] else: outputs[key] = collected_outputs[key] else: outputs[key] = collected_outputs[key] if return_dict is False: outputs = outputs.to_tuple() return outputs return wrapper class GeneralInterface(MutableMapping): """ Dict-like object keeping track of a class-wide mapping, as well as a local one. Allows to have library-wide modifications though the class mapping, as well as local modifications in a single file with the local mapping. """ # Class instance object, so that a call to register can be reflected into all other files correctly, even if # a new instance is created (in order to locally override a given function) _global_mapping = {} def __init__(self): self._local_mapping = {} def __getitem__(self, key): # First check if instance has a local override if key in self._local_mapping: return self._local_mapping[key] return self._global_mapping[key] def __setitem__(self, key, value): # Allow local update of the default functions without impacting other instances self._local_mapping.update({key: value}) def __delitem__(self, key): del self._local_mapping[key] def __iter__(self): # Ensure we use all keys, with the overwritten ones on top return iter({**self._global_mapping, **self._local_mapping}) def __len__(self): return len(self._global_mapping.keys() | self._local_mapping.keys()) @classmethod def register(cls, key: str, value: Callable): cls._global_mapping.update({key: value}) def valid_keys(self) -> list[str]: return list(self.keys())

import math import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo from models.blocks import CBAMLayer, SPPLayer import logging from functools import partial import torch.nn.functional as F __all__ = ['convnext_tiny', 'convnext_small', 'convnext_base', 'convnext_large', 'convnext_tiny_cbam', 'convnext_small_cbam', 'convnext_base_cbam', 'convnext_large_cbam'] model_urls = { 'convnext_tiny': 'https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth', 'convnext_small': 'https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth', 'convnext_base': 'https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth', 'convnext_large': 'https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth', } class LayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape,) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class Block(nn.Module): def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, cbam=None): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.cbam = CBAMLayer(dim) if cbam else None def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) if self.cbam is not None: x = self.cbam(x) x = input + self.drop_path(x) return x class DropPath(nn.Module): def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): if self.drop_prob == 0. or not self.training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() output = x.div(keep_prob) * random_tensor return output class ConvNeXt(nn.Module): def __init__(self, in_chans=3, num_classes=1000, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., layer_scale_init_value=1e-6, cbam=None): super().__init__() self.downsample_layers = nn.ModuleList() stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value, cbam=cbam) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(dims[-1], eps=1e-6) self.head = nn.Linear(dims[-1], num_classes) if num_classes > 0 else nn.Identity() self.feature_dim = dims[-1] self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) def forward(self, x): features = [] for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) features.append(x) x = x.mean([-2, -1]) x = self.norm(x) x = self.head(x) return x, features def get_features(self): return nn.Sequential( self.downsample_layers[0], self.stages[0], self.downsample_layers[1], self.stages[1], self.downsample_layers[2], self.stages[2], self.downsample_layers[3], self.stages[3], ) def load_state_dict(self, state_dict, strict=True): model_dict = self.state_dict() pretrained_dict = {k: v for k, v in state_dict.items() if k in model_dict and model_dict[k].size() == v.size()} if len(pretrained_dict) == len(state_dict): logging.info('%s: All params loaded' % type(self).__name__) else: logging.info('%s: Some params were not loaded:' % type(self).__name__) not_loaded_keys = [k for k in state_dict.keys() if k not in pretrained_dict.keys()] logging.info(('%s, ' * (len(not_loaded_keys) - 1) + '%s') % tuple(not_loaded_keys)) model_dict.update(pretrained_dict) super(ConvNeXt, self).load_state_dict(model_dict) # ConvNeXt 变体函数 def convnext_tiny(pretrained=False, **kwargs): model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_tiny'] state_dict = model_zoo.load_url(url) model.load_state_dict(state_dict) return model def convnext_small(pretrained=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_small'] state_dict = model_zoo.load_url(url) model.load_state_dict(state_dict) return model def convnext_base(pretrained=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) if pretrained: url = model_urls['convnext_base'] state_dict = model_zoo.load_url(url) model.load_state_dict(state_dict) return model def convnext_large(pretrained=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) if pretrained: url = model_urls['convnext_large'] state_dict = model_zoo.load_url(url) model.load_state_dict(state_dict) return model # 带CBAM的ConvNeXt变体 def convnext_tiny_cbam(pretrained=False, **kwargs): return convnext_tiny(pretrained=pretrained, cbam=True, **kwargs) def convnext_small_cbam(pretrained=False, **kwargs): return convnext_small(pretrained=pretrained, cbam=True, **kwargs) def convnext_base_cbam(pretrained=False, **kwargs): return convnext_base(pretrained=pretrained, cbam=True, **kwargs) def convnext_large_cbam(pretrained=False, **kwargs): return convnext_large(pretrained=pretrained, cbam=True, **kwargs)修改上述convnext.py和下述wsdan.py代码,并给我提供完整代码""" WS-DAN models Hu et al., "See Better Before Looking Closer: Weakly Supervised Data Augmentation Network for Fine-Grained Visual Classification", arXiv:1901.09891 Created: May 04,2019 - Yuchong Gu Revised: Dec 03,2019 - Yuchong Gu Revised: May 26,2025 - 增加EfficientNet支持 """ import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import models.vgg as vgg import models.resnet as resnet import models.efficientnet as efficientnet import models.convnext as convnext from models.inception import inception_v3, BasicConv2d __all__ = ['WSDAN'] EPSILON = 1e-12 # Bilinear Attention Pooling class BAP(nn.Module): def __init__(self, pool='GAP'): super(BAP, self).__init__() assert pool in ['GAP', 'GMP'] if pool == 'GAP': self.pool = None else: self.pool = nn.AdaptiveMaxPool2d(1) def forward(self, features, attentions): B, C, H, W = features.size() _, M, AH, AW = attentions.size() # match size if AH != H or AW != W: attentions = F.upsample_bilinear(attentions, size=(H, W)) # feature_matrix: (B, M, C) -> (B, M * C) if self.pool is None: feature_matrix = (torch.einsum('imjk,injk->imn', (attentions, features)) / float(H * W)).view(B, -1) else: feature_matrix = [] for i in range(M): AiF = self.pool(features * attentions[:, i:i + 1, ...]).view(B, -1) feature_matrix.append(AiF) feature_matrix = torch.cat(feature_matrix, dim=1) # sign-sqrt feature_matrix = torch.sign(feature_matrix) * torch.sqrt(torch.abs(feature_matrix) + EPSILON) # l2 normalization along dimension M and C feature_matrix = F.normalize(feature_matrix, dim=-1) return feature_matrix # WS-DAN: Weakly Supervised Data Augmentation Network for FGVC class WSDAN(nn.Module): def __init__(self, num_classes, M=32, net='inception_mixed_6e', pretrained=False): super(WSDAN, self).__init__() self.num_classes = num_classes self.M = M self.net = net # EfficientNet配置 self.EFFICIENTNET_CONFIG = { 'efficientnet_b0': {'stage': 3, 'feat_dim': 1280}, 'efficientnet_b1': {'stage': 3, 'feat_dim': 1280}, 'efficientnet_b2': {'stage': 3, 'feat_dim': 1408}, 'efficientnet_b3': {'stage': 3, 'feat_dim': 1536}, 'efficientnet_b4': {'stage': 3, 'feat_dim': 1792}, 'efficientnet_b5': {'stage': 3, 'feat_dim': 2048}, 'efficientnet_b6': {'stage': 3, 'feat_dim': 2304}, 'efficientnet_b7': {'stage': 3, 'feat_dim': 2560}, 'efficientnet_v2_s': {'stage': 3, 'feat_dim': 1280}, 'efficientnet_v2_m': {'stage': 3, 'feat_dim': 1280}, 'efficientnet_v2_l': {'stage': 3, 'feat_dim': 1280}, } self.CONVNEXT_CONFIG = { 'convnext_tiny': {'feat_dim': 768}, 'convnext_small': {'feat_dim': 768}, 'convnext_base': {'feat_dim': 1024}, 'convnext_large': {'feat_dim': 1536}, } # 其他骨干网络配置 self.BACKBONE_CONFIG = { **self.CONVNEXT_CONFIG, **self.EFFICIENTNET_CONFIG, # 保持其他网络配置不变 'inception_mixed_6e': {'stage': 0, 'feat_dim': 768}, 'inception_mixed_7c': {'stage': 0, 'feat_dim': 2048}, 'vgg16': {'stage': 0, 'feat_dim': 512}, 'resnet50': {'stage': 0, 'feat_dim': 2048}, # 可以添加更多网络配置 } # Network Initialization if 'convnext' in net: # 新增ConvNeXt处理 assert net in self.CONVNEXT_CONFIG, f"Unsupported ConvNeXt version: {net}" cfg = self.CONVNEXT_CONFIG[net] model = getattr(convnext, net)(pretrained=pretrained) self.features = model.get_features() self.num_features = cfg['feat_dim'] elif 'efficientnet' in net: assert net in self.EFFICIENTNET_CONFIG, f"Unsupported EfficientNet version: {net}" cfg = self.EFFICIENTNET_CONFIG[net] # 获取EfficientNet模型 model = getattr(efficientnet, net)(pretrained=pretrained) # 获取特征提取器和特征维度 self.features, self.num_features = model.get_features_blocks(index=cfg['stage']) elif 'inception' in net: if net == 'inception_mixed_6e': self.features = inception_v3(pretrained=pretrained).get_features_mixed_6e() self.num_features = 768 elif net == 'inception_mixed_7c': self.features = inception_v3(pretrained=pretrained).get_features_mixed_7c() self.num_features = 2048 else: raise ValueError('Unsupported net: %s' % net) elif 'vgg' in net: self.features = getattr(vgg, net)(pretrained=pretrained).get_features() self.num_features = 512 elif 'resnet' in net: self.features = getattr(resnet, net)(pretrained=pretrained).get_features() self.num_features = 512 * self.features[-1][-1].expansion else: raise ValueError('Unsupported net: %s' % net) # Attention Maps self.attentions = BasicConv2d(self.num_features, self.M, kernel_size=1) # Bilinear Attention Pooling self.bap = BAP(pool='GAP') # Classification Layer self.fc = nn.Linear(self.M * self.num_features, self.num_classes, bias=False) logging.info('WSDAN: using {} as feature extractor, num_classes: {}, num_attentions: {}'.format(net, self.num_classes, self.M)) def forward(self, x): batch_size = x.size(0) if 'convnext' in self.net: # ConvNeXt特殊处理 x = self.features(x) feature_maps = x # ConvNeXt的特征图直接输出 else: feature_maps = self.features(x) # Feature Maps, Attention Maps and Feature Matrix if self.net != 'inception_mixed_7c': attention_maps = self.attentions(feature_maps) else: attention_maps = feature_maps[:, :self.M, ...] feature_matrix = self.bap(feature_maps, attention_maps) # Classification p = self.fc(feature_matrix * 100.) # Generate Attention Map if self.training: # Randomly choose one of attention maps Ak attention_map = [] for i in range(batch_size): attention_weights = torch.sqrt(attention_maps[i].sum(dim=(1, 2)).detach() + EPSILON) attention_weights = F.normalize(attention_weights, p=1, dim=0) k_index = np.random.choice(self.M, 2, p=attention_weights.cpu().numpy()) attention_map.append(attention_maps[i, k_index, ...]) attention_map = torch.stack(attention_map) # (B, 2, H, W) - one for cropping, the other for dropping else: # Object Localization Am = mean(Ak) attention_map = torch.mean(attention_maps, dim=1, keepdim=True) # (B, 1, H, W) # p: (B, self.num_classes) # feature_matrix: (B, M * C) # attention_map: (B, 2, H, W) in training, (B, 1, H, W) in val/testing return p, feature_matrix, attention_map def load_state_dict(self, state_dict, strict=True): model_dict = self.state_dict() pretrained_dict = {k: v for k, v in state_dict.items() if k in model_dict and model_dict[k].size() == v.size()} if len(pretrained_dict) == len(state_dict): logging.info('%s: All params loaded' % type(self).__name__) else: logging.info('%s: Some params were not loaded:' % type(self).__name__) not_loaded_keys = [k for k in state_dict.keys() if k not in pretrained_dict.keys()] logging.info(('%s, ' * (len(not_loaded_keys) - 1) + '%s') % tuple(not_loaded_keys)) model_dict.update(pretrained_dict) super(WSDAN, self).load_state_dict(model_dict)

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

ValueError: You are trying to load a weight file containing 12 layers into a model with 0 layers. ``` 这个错误表明模型在加载权重时,发现权重文件中的层数与当前模型的层数不匹配。这通常是因为模型在...
recommend-type

永磁同步电机PMSM效率优化Simulink建模及仿真分析 Simulink v1.0

作者自行搭建的永磁同步电机(PMSM)效率优化Simulink模型,涵盖基于FOC(全桥正交电流控制)的进退法和黄金分割法效率优化,以及基于DTC(直接转矩控制)的最小损耗LMC模型。通过调整控制策略如电流波形、控制参数等,探讨了不同方法对电机效率的影响,并强调了使用2018及以上版本Matlab进行仿真的重要性。 适合人群:从事电机控制系统设计的研究人员和技术人员,尤其是对永磁同步电机效率优化感兴趣的工程师。 使用场景及目标:适用于需要进行电机效率优化和性能仿真的场合,旨在帮助研究人员理解和应用各种优化方法,提升电机系统的能效水平。 其他说明:文中提到的方法不仅有助于理论研究,还能指导实际工程应用,确保仿真结果的准确性和可靠性。
recommend-type

GHCN气象站邻接矩阵的Python实现及地理距离应用

根据提供的文件信息,我们可以解析出以下知识点: **标题:“GHCN_邻接矩阵”** 全球历史气候网络(Global Historical Climatology Network,简称GHCN)是一个国际性项目,旨在收集和提供全球范围内的历史气候数据。邻接矩阵(Adjacency Matrix)是图论中的一个概念,用来表示图中各个顶点之间的相邻关系。 **知识点详细说明:** 1. **全球历史气候网络(GHCN):** - GHCN是一个汇集了全球范围内的历史气候数据资料的大型数据库。该数据库主要收集了全球各地的气象站提供的气温、降水、风速等气象数据。 - 这些数据的时间跨度很广,有些甚至可以追溯到19世纪中叶,为气候学家和相关研究人员提供了丰富的气候变迁数据。 - 通过分析这些数据,科学家可以研究气候变化的趋势、模式以及影响因素等。 2. **邻接矩阵:** - 在图论中,邻接矩阵是用来表示图中各个顶点之间相互连接关系的矩阵。 - 无向图的邻接矩阵是一个对称矩阵,如果顶点i与顶点j之间存在一条边,则矩阵中的元素A[i][j]和A[j][i]为1;否则为0。 - 邻接矩阵常用于计算机算法中,比如用于计算最短路径、网络的连通性、以及进行图的遍历等。 3. **地理距离:** - 在这个问题的上下文中,指的是气象站之间的空间距离。 - 计算气象站之间的地理距离通常使用地理信息系统(GIS)或球面几何学的方法,比如使用哈弗辛公式(Haversine formula)计算两个地点之间的大圆距离。 - 通过地理距离数据,可以推断出气候数据在空间分布上的相关性或依赖性。 4. **Python编程语言:** - 标签中提及的Python是一种广泛应用于数据科学、人工智能、网络开发等领域的高级编程语言。 - Python因其易学易用、语法简洁、库支持丰富等特点,在科研、教育、工业界等领域得到广泛应用。 5. **代码实现:** - 提到的代码应该会涉及获取GHCN数据集、计算气象站间的地理距离、以及根据这些距离构建无向图的邻接矩阵。 - 代码可能使用了Python中的科学计算库,如NumPy或SciPy,以及地理计算库,如geopy或Shapely。 - 通过构建邻接矩阵,此代码可以进一步用于分析气候数据的空间分布特征或执行图相关的数据分析任务。 **文件名称列表:“GHCN_Adjacency_Matrix-main”** 文件名“GHCN_Adjacency_Matrix-main”表明这是一个包含主要代码文件的文件夹。在Python中,“main”一词通常表示该文件夹中的某个脚本文件(如“main.py”)是程序的入口点,它是运行程序时最先被调用的文件。 总结以上内容,我们可知该文件描述了一个使用Python语言,通过处理全球历史气候网络(GHCN)中的数据来生成气象站之间地理距离的邻接矩阵的代码。这种邻接矩阵可以用于气候数据分析中的图论应用,如研究气象站点数据的空间分布模式和关系。代码的实现可能用到了多种Python库,旨在为气候研究提供一种新的数据处理和分析视角。
recommend-type

并发编程:多语言实践与策略选择

### 并发编程:多语言实践与策略选择 #### 1. 文件大小计算的并发实现 在并发计算文件大小的场景中,我们可以采用数据流式方法。具体操作如下: - 创建两个 `DataFlowQueue` 实例,一个用于记录活跃的文件访问,另一个用于接收文件和子目录的大小。 - 创建一个 `DefaultPGroup` 来在线程池中运行任务。 ```plaintext graph LR A[创建 DataFlowQueue 实例] --> B[创建 DefaultPGroup] B --> C[执行 findSize 方法] C --> D[执行 findTotalFileS
recommend-type

3utools使用教程

<think>我们注意到用户查询的是"3utools",但引用中提到的都是"uTools"(没有数字3)。这可能是一个拼写错误或版本差异。 根据引用内容,uTools是一个桌面效率工具,提供插件化的功能。因此,我们假设用户指的是uTools,并据此提供使用指南。 如果确实存在名为"3uTools"的软件(例如,苹果设备管理工具),那么我们需要澄清:引用中提到的uTools与3uTools不同。 但是,由于引用中只提到了uTools,且用户的问题中写的是“3utools”(可能是uTools的误写),我们将按照uTools来回答。 如果用户确实指的是另一个软件(3uTools),那么
recommend-type

探索更多视频功能的JavaScript实现

从给定的信息中我们可以提炼出关键词"更多视频"以及"JavaScript",以及一个与文件相关的命名"MoreVideo-master"。接下来,我会针对这些关键词展开详细的IT知识点阐述。 首先,关于“更多视频”,这个描述暗示了我们即将探讨的是与视频内容相关的技术或应用。在现代IT领域中,视频内容的处理、存储、传输和播放是一个非常重要的分支,涉及到的技术包括但不限于视频编码、流媒体技术、网络协议、前端展示技术等。视频内容的增多以及互联网带宽的不断提升,使得在线视频消费成为可能。从最早的ASCII动画到现代的高清视频,技术的演进一直不断推动着我们向更高质量和更多样化的视频内容靠近。 其次,“JavaScript”是IT行业中的一个关键知识点。它是一种广泛使用的脚本语言,特别适用于网页开发。JavaScript可以实现网页上的动态交互,比如表单验证、动画效果、异步数据加载(AJAX)、以及单页应用(SPA)等。作为一种客户端脚本语言,JavaScript可以对用户的输入做出即时反应,无需重新加载页面。此外,JavaScript还可以运行在服务器端(例如Node.js),这进一步拓宽了它的应用范围。 在探讨JavaScript时,不得不提的是Web前端开发。在现代的Web应用开发中,前端开发越来越成为项目的重要组成部分。前端开发人员需要掌握HTML、CSS和JavaScript这三大核心技术。其中,JavaScript负责赋予网页以动态效果,提升用户体验。JavaScript的库和框架也非常丰富,比如jQuery、React、Vue、Angular等,它们可以帮助开发者更加高效地编写和管理前端代码。 最后,关于文件名“MoreVideo-master”,这里的“Master”通常表示这是一个项目或者源代码的主版本。例如,在使用版本控制系统(如Git)时,“Master”分支通常被认为是项目的主分支,包含最新的稳定代码。文件名中的“MoreVideo”表明该项目与视频相关的内容处理功能正在增加或扩展。可能是对现有功能的增强,也可能是为视频播放、视频处理或视频管理增加了新的模块或特性。 综合上述内容,我们可以总结出以下几个IT知识点: 1. 视频技术:包括视频编解码技术、流媒体技术、网络协议、视频格式转换等。在客户端和服务器端,视频技术的应用场景广泛,如在线视频平台、视频会议系统、视频监控系统等。 2. JavaScript应用:JavaScript在Web前端开发中的应用十分广泛,用于实现网页的动态效果和交互性,以及在后端通过Node.js提供服务器端编程能力。 3. 前端开发技术:前端开发不仅仅是页面的静态显示,更重要的是通过JavaScript、CSS和HTML等技术实现用户界面与用户之间的交互。前端框架和库的使用大大提高了开发效率。 4. 版本控制:在IT项目开发过程中,版本控制是一个重要的环节。它帮助开发者管理代码的变更历史,支持多人协作开发,使得代码维护和升级变得更加容易。 通过以上知识点,我们可以看到,无论是“更多视频”的技术应用还是“JavaScript”编程语言的使用,以及文件命名所隐含的项目管理概念,都是IT领域内相互关联且密不可分的几个重要方面。
recommend-type

并发编程中的Clojure代理与相关技术解析

### 并发编程中的Clojure代理与相关技术解析 #### 1. Clojure代理概述 Clojure代理代表内存中的单个标识或位置。与软件事务内存(STM)的引用管理多个标识的协调同步更改不同,代理允许对其管理的单个标识进行独立的异步更改。这些更改以函数或操作的形式表达,并异步应用于该位置。多个独立的并发操作会按顺序依次运行。操作成功完成后,代理将更新为操作返回的新状态,该新状态用于后续对代理的读取或操作。 调用在代理上运行操作的方法会立即返回,操作随后会使用Clojure管理的线程池中的一个线程应用于代理。如果操作主要受CPU限制,可使用`send()`方法运行;如果函数中可能发
recommend-type

windows电脑如何安装华为电脑管家

<think>首先,用户的问题是:“我想在Windows电脑上安装华为电脑管家 请问如何在Windows系统上安装和配置华为电脑管家”。这基于之前的引用,是关于在非华为电脑上安装华为电脑管家的指南。 引用提供了几个来源: - [^1]:非华为电脑安装华为电脑管家指南,项目地址:https://gitcode.com/open-source-toolkit/90481 - [^2]:win10或11非华为电脑安装最新的电脑管家,包括安装方法和问题解决 - [^3]:华为电脑管家傻瓜一键安装版,适用于win10,支持非华为电脑 - [^4]:提供旧版本华为电脑管家的链接和卸载方法 - [^5]:
recommend-type

社交媒体与C#技术的结合应用

根据提供的文件信息,我们可以看出标题、描述和标签均指向“社交媒体”。虽然描述部分并未提供具体的内容,我们可以假设标题和描述共同指向了一个与社交媒体相关的项目或话题。同时,由于标签为"C#",这可能意味着该项目或话题涉及使用C#编程语言。而文件名称“socialMedia-main”可能是指一个包含了社交媒体项目主要文件的压缩包或源代码库的主目录。 下面,我将从社交媒体和C#的角度出发,详细说明可能涉及的知识点。 ### 社交媒体知识点 1. **社交媒体定义和类型** 社交媒体是人们用来创造、分享和交流信息和想法的平台,以达到社交目的的网络服务和站点。常见的社交媒体类型包括社交网络平台(如Facebook, LinkedIn),微博客服务(如Twitter),内容共享站点(如YouTube, Instagram),以及即时消息服务(如WhatsApp, WeChat)等。 2. **社交媒体的功能** 社交媒体的核心功能包括用户个人资料管理、好友/关注者系统、消息发布与分享、互动评论、点赞、私信、群组讨论、直播和短视频分享等。 3. **社交媒体的影响** 社交媒体对个人生活、企业营销、政治运动、新闻传播等多个领域都产生了深远的影响。它改变了人们沟通、获取信息的方式,并且成为品牌营销的重要渠道。 4. **社交媒体营销** 利用社交媒体进行营销活动是当前企业推广产品和服务的常见手段。这包括创建品牌页面、发布广告、开展促销活动、利用影响者营销以及社交媒体优化(SMO)等策略。 5. **社交媒体的数据分析** 社交媒体产生了大量数据,对其进行分析可帮助企业洞察市场趋势、了解消费者行为、评估营销活动效果等。 ### C#相关知识点 1. **C#简介** C#(读作“C Sharp”)是一种由微软公司开发的面向对象的编程语言。它是.NET框架的主要语言之一,用于开发Windows应用程序、游戏(尤其是通过Unity引擎)、移动应用(通过Xamarin)和Web服务。 2. **C#在社交媒体中的应用** 在社交媒体应用的开发中,C#可以用来构建后端服务器,处理用户认证、数据库操作、数据处理、API开发等后端任务。如果是在Windows平台上,也可能被用于开发桌面应用或服务端组件。 3. **C#和ASP.NET** ASP.NET是建立在.NET框架之上用于构建动态Web应用程序的技术,C#是开发ASP.NET应用程序的主要语言。使用C#编写的ASP.NET Web Forms或MVC (Model-View-Controller) 应用程序可以处理社交媒体网站的前端逻辑和后端业务逻辑。 4. **C#和LINQ** LINQ(语言集成查询)是.NET框架提供的一个强大的查询功能,它允许使用C#对数据进行查询和操作。在社交媒体数据处理中,LINQ可以用来查询存储在数据库中的用户数据、帖子和其他内容。 5. **C#和异步编程** C#对异步编程提供了良好的支持,通过async和await关键字可以方便地编写异步代码。在处理社交媒体平台时,异步编程非常关键,因为需要同时处理成千上万的并发用户和数据流。 6. **C#和安全性** 在开发社交媒体平台时,安全性是一个关键考虑因素。C#提供了许多用于保护数据和防止攻击(如SQL注入、跨站脚本攻击等)的安全特性,比如通过使用参数化查询防止SQL注入。 通过以上知识点的总结,我们可以推断,给定的文件信息可能关联到一个使用C#语言开发的社交媒体应用程序或项目,该程序或项目可能涉及用户界面、后端服务器、数据库交互、安全性保障等多个方面。在实际开发中,开发者需要综合运用C#的语法、框架、库和.NET提供的各种服务,以实现社交媒体平台的多样化功能和高效稳定运行。
recommend-type

深入探索Akka中Actors与STM的融合应用

# 深入探索 Akka 中 Actors 与 STM 的融合应用 ## 1. Actors 与 STM 融合的背景与需求 在并发编程中,Actors 是一种强大的模型,它允许我们隔离可变状态。当一个问题可以分解为独立运行的并发任务,并且这些任务可以通过消息进行异步通信时,Actors 表现出色。然而,Actors 本身并不提供跨任务的一致性管理机制。我们可能希望两个或多个 Actor 的操作要么全部成功,要么全部失败,即实现事务性的操作。为了实现这一目标,我们可以将软件事务内存(STM)与 Actors 结合使用。 以账户转账为例,存款和取款操作可以独立应用于单个账户,因此可以使用简单的