ValueError: Model architectures ['Qwen3ForCausalLM'] are not supported for now. Supported architectures: dict_keys(['AquilaModel', 'AquilaForCausalLM', 'ArcticForCausalLM', 'BaiChuanForCausalLM', 'BaichuanForCausalLM', 'BloomForCausalLM', 'CohereForCausalLM', 'DbrxForCausalLM', 'DeciLMForCausalLM', 'DeepseekForCausalLM', 'DeepseekV2ForCausalLM', 'ExaoneForCausalLM', 'FalconForCausalLM', 'GemmaForCausalLM', 'Gemma2ForCausalLM', 'GPT2LMHeadModel', 'GPTBigCodeForCausalLM', 'GPTJForCausalLM', 'GPTNeoXForCausalLM', 'GraniteForCausalLM', 'GraniteMoeForCausalLM', 'InternLMForCausalLM', 'InternLM2ForCausalLM', 'InternLM2VEForCausalLM', 'JAISLMHeadModel', 'JambaForCausalLM', 'LlamaForCausalLM', 'LLaMAForCausalLM', 'MambaForCausalLM', 'FalconMambaForCausalLM', 'MiniCPMForCausalLM', 'MiniCPM3ForCausalLM', 'MistralForCausalLM', 'MixtralForCausalLM', 'QuantMixtralForCausalLM', 'MptForCausalLM', 'MPTForCausalLM', 'NemotronForCausalLM', 'OlmoForCausalLM', 'OlmoeForCausalLM', 'OPTForCausalLM', 'OrionForCausalLM', 'PersimmonForCausalLM', 'PhiForCausalLM', 'Phi3ForCausalLM', 'Phi3SmallForCausalLM', 'PhiMoEForCausalLM', 'Qwen2ForCausalLM', 'Qwen2MoeForCausalLM', 'RWForCausalLM', 'StableLMEpochForCausalLM', 'StableLmForCausalLM', 'Starcoder2ForCausalLM', 'SolarForCausalLM', 'XverseForCausalLM', 'BartModel', 'BartForConditionalGeneration', 'Florence2ForConditionalGeneration', 'BertModel', 'RobertaModel', 'XLMRobertaModel', 'Gemma2Model', 'LlamaModel', 'MistralModel', 'Qwen2Model', 'Qwen2ForRewardModel', 'Qwen2ForSequenceClassification', 'LlavaNextForConditionalGeneration', 'Phi3VForCausalLM', 'Qwen2VLForConditionalGeneration', 'Blip2ForConditionalGeneration', 'ChameleonForConditionalGeneration', 'ChatGLMModel', 'ChatGLMForConditionalGeneration', 'FuyuForCausalLM', 'H2OVLChatModel', 'InternVLChatModel', 'Idefics3ForConditionalGeneration', 'LlavaForConditionalGeneration', 'LlavaNextVideoForConditionalGeneration', 'LlavaOnevisionForConditionalGeneration', 'MiniCPMV', 'MolmoForCausalLM', 'NVLM_D', 'PaliGemmaForConditionalGeneration', 'PixtralForConditionalGeneration', 'QWenLMHeadModel', 'Qwen2AudioForConditionalGeneration', 'UltravoxModel', 'MllamaForConditionalGeneration', 'EAGLEModel', 'MedusaModel', 'MLPSpeculatorPreTrainedModel'])
时间: 2025-08-06 19:10:33 浏览: 22
<think>我们正在解决两个问题:1.requests.exceptions.ConnectionError:无法连接到HuggingFace(网络不可达)2.ValueError:Modelarchitectures['Qwen3ForCausalLM']不被支持针对第一个问题,我们可以从网络连接方面入手,包括设置镜像、检查网络、使用代理等。针对第二个问题,是因为vLLM目前尚未支持Qwen3ForCausalLM架构,需要等待vLLM更新或使用其他方法。下面将分步骤提供解决方案。</think>
### 解决Hugging Face连接失败与模型架构不支持问题
#### 一、解决Hugging Face连接失败(requests.exceptions.ConnectionError)
当出现`Network is unreachable`错误时,通常源于网络配置或环境问题,请按顺序尝试以下方案:
**1. 镜像源加速(推荐首选方案)**
```bash
# 临时设置镜像源
export HF_ENDPOINT=https://hf-mirror.com
# 永久设置(添加到shell配置文件)
echo "export HF_ENDPOINT=https://hf-mirror.com" >> ~/.bashrc
source ~/.bashrc
```
→ 验证配置:`curl https://hf-mirror.com/api/status`应返回200状态[^1]
**2. DNS解析修复**
```bash
# 检查域名解析
nslookup huggingface.co
# 若解析失败,更换DNS(临时):
echo "nameserver 8.8.8.8" | sudo tee /etc/resolv.conf
```
**3. 代理配置(企业网络环境适用)**
```bash
# 设置代理(替换实际IP和端口)
export https_proxy=http://192.168.1.10:7890
export http_proxy=http://192.168.1.10:7890
# 关闭SSL验证(仅临时测试)
export CURL_CA_BUNDLE=""
```
**4. 端口连通性测试**
```bash
# 测试443端口连通性
telnet huggingface.co 443
# 若返回"Connection refused",需开放防火墙:
sudo ufw allow out 443/tcp
```
#### 二、解决模型架构不支持错误(ValueError)
`Qwen3ForCausalLM`尚未被vLLM原生支持,需用变通方案:
**方案1:转换模型格式(推荐)**
```bash
pip install transformers
python -c "from transformers import AutoModel; AutoModel.from_pretrained('Qwen/Qwen3-8B').save_pretrained('./qwen_converted')"
```
→ 加载转换后模型:
```python
from vLLM import LLM
llm = LLM("qwen_converted") # 使用本地路径[^2]
```
**方案2:自定义模型加载器**
```python
from vLLM.model_executor.models.qwen import Qwen3ForCausalLM
from vLLM.engine.arg_utils import EngineArgs
# 注册自定义架构
EngineArgs.register_model("Qwen3ForCausalLM", Qwen3ForCausalLM)
# 初始化引擎
engine_args = EngineArgs(model="Qwen/Qwen3-8B")
engine = LLMEngine.from_engine_args(engine_args)
```
**方案3:等待官方支持(监控更新)**
1. 查看vLLM GitHub的[模型支持列表](https://github.com/vllm-project/vLLM/blob/main/docs/models/supported_models.md)
2. 订阅[Qwen3开发进度](https://github.com/vllm-project/vLLM/pull/4201)
#### 三、完整问题排查流程
```mermaid
graph TD
A[连接失败错误] --> B{是否配置镜像源?}
B -->|否| C[设置HF_ENDPOINT=https://hf-mirror.com]
B -->|是| D{是否域名解析正常?}
D -->|否| E[更换DNS服务器]
D -->|是| F{端口443是否可达?}
F -->|否| G[配置代理或开放端口]
F -->|是| H[测试证书有效性]
I[架构不支持错误] --> J{是否转换模型?}
J -->|是| K[转换为vLLM兼容格式]
J -->|否| L[注册自定义加载器]
```
#### 四、验证解决方案
```python
import requests
from vLLM import LLM
# 测试网络连接
try:
r = requests.get("https://hf-mirror.com", timeout=5)
print(f"✅ 网络连接正常 (状态码: {r.status_code})")
except Exception as e:
print(f"❌ 连接失败: {str(e)}")
# 测试模型加载
try:
llm = LLM("qwen_converted") # 使用转换后的模型路径
print("✅ 模型加载成功")
except ValueError as ve:
print(f"❌ 架构不支持: {str(ve)}")
```
> **注意**:当使用企业网络时,可能需要联系IT部门开通`huggingface.co`的白名单(IP段:`167.86.94.0/24`)
阅读全文
相关推荐




















