活动介绍

多智能体系统互操作性的语义Web服务

立即解锁
发布时间: 2025-08-30 01:37:27 阅读量: 10 订阅数: 40 AIGC
### 多智能体系统互操作性的语义 Web 服务 #### 1. 引言 复杂任务的执行通常需要多个原子服务的组合。虽然网络上有各种各样的 Web 服务,但工作流的设计和开发仍然非常耗时,因为需要找到这些服务,它们可能有不同的交互协议,并且往往缺乏对其工作方式、输入和输出的恰当描述。语义 Web 技术被用于描述 Web 服务,以使其描述更丰富,智能软件代理进行服务发现和组合的过程也会更轻松。 单个智能体和多智能体系统(MAS)都可以作为服务提供者。现有的基于 MAS 的决策支持系统经常执行依赖于其他服务输出的任务,但这些服务由于网络配置复杂等原因,往往无法在其环境之外使用。为解决这些问题,我们可以创建一个服务目录,让智能体和 Web 服务都能注册并公开其提供的服务,使其他系统能够使用。 为克服服务的异构性,我们提出了一种具有服务语义描述的架构,以促进服务的发布、发现、组合和互操作性。同时,我们还以 JADE 智能体为例,提出了对 OWL - S 的扩展,用于描述基于智能体的服务。 #### 2. 多智能体系统与语义 Web 服务 智能体常被用于解决和模拟涉及各方有不同目标和需求的场景。在一些复杂场景中,可能会调用多个多智能体系统,需要处理和组合它们的结果。有时需要并发运行多个基于智能体的模拟来比较结果,有时则需要顺序执行模拟,前一个的结果作为后一个的输入。 语义丰富地描述 Web 服务,不仅包括输入和输出,还包括服务的内部过程和执行的任务,能使服务发现、组合和补偿过程更自动化。智能体的互操作性和协调原则与语义 Web 一致,但 Web 服务代表原子、大多无状态的任务,而智能体是有特定目标的主动实体。 虽然有许多语义方法用于描述 Web 服务,但 OWL - S 包含了描述 SOAP 服务的概念和属性,也有对 RESTful 服务的扩展。为了用 OWL - S 描述智能体和多智能体系统,需要向本体中添加新的概念。 #### 3. 基于智能体的服务的语义描述 OWL - S 分为三个主要组件: - 服务概要(Service Profile):供人类阅读,包含服务名称、描述、提供者、限制等相关信息。 - 过程模型(Process Model):描述服务的工作方式,包括输入、输出、前置条件和效果。 - 接地(Grounding):指定交互细节,如交互协议和消息格式。 智能体不像 Web 服务那样通过标准化的描述格式(如 WSDL 或 WADL)来公开其服务。使用静态网关可能会降低服务性能并成为潜在的故障点,因此我们提出动态公开软件智能体和 Web 服务提供的未知服务,以提高系统的互操作性。 为了定义与智能体交互所需的属性,我们定义了一个抽象的智能体本体,JADE 智能体是其扩展。FIPA 为异构智能体之间的通信和服务提供了标准,规定智能体必须说明使用的本体和语言。 以下是智能体相关类的关系图: ```mermaid graph LR classDef startend fill:#F5EBFF,stroke:#BE8FED,stroke-width:2px; classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px; classDef decision fill: ```
corwn 最低0.47元/天 解锁专栏
赠100次下载
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究
最低0.47元/天 解锁专栏
赠100次下载
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
立即解锁

专栏目录

最新推荐

强化学习与合成数据生成:UnityML-Agents深度解析

# 强化学习与合成数据生成:Unity ML - Agents 深度解析 ## 1. 好奇心奖励与超参数设置 在强化学习中,为了激发智能体的好奇心,可以传递与外在奖励相同的超参数。具体如下: - **好奇心奖励信号超参数**: - `reward_signals->curiosity->strength`:用于平衡好奇心奖励与其他奖励(如外在奖励)的缩放系数,取值范围在 0.0 到 1.0 之间。 - `reward_signals->curiosity->gamma`:根据奖励实现所需的时间来调整奖励感知价值的第二个缩放系数,与外在奖励的 `gamma` 类似,取值范围也在

模型生产化:从本地部署到云端容器化

# 模型生产化:从本地部署到云端容器化 ## 1. 引入 FastAPI 在将模型投入生产的过程中,我们首先要安装 FastAPI。由于 FastAPI 是一个 Python 模块,我们可以使用 pip 进行安装。打开一个新的终端,运行以下命令: ```bash $ pip install fastapi uvicorn aiofiles jinja2 ``` 这里我们安装了一些 FastAPI 所需的额外依赖项。uvicorn 是一个用于设置 API 的底层服务器/应用程序接口,而 aiofiles 则使服务器能够异步处理请求,例如同时接受和响应多个独立的并行请求。这两个模块是 FastA

利用Kaen实现PyTorch分布式训练及超参数优化

### 利用Kaen实现PyTorch分布式训练及超参数优化 #### 1. 启用PyTorch分布式训练支持 在进行模型训练时,我们可以使用Kaen框架来支持PyTorch的分布式训练。以下是相关代码示例: ```python train_glob = os.environ['KAEN_OSDS_TRAIN_GLOB'] if 'KAEN_OSDS_TRAIN_GLOB' in os.environ else 'https://raw.githubusercontent.com/osipov/smlbook/master/train.csv' val_glob = os.environ['

排行榜接入全攻略:第三方SDK集成实战详解

![cocos2d-x 塔防游戏源码](https://docs.godotengine.org/en/3.1/_images/ui_mockup_break_down.png) # 1. 排行榜系统概述与应用场景 在现代互联网应用中,排行榜系统已成为增强用户参与感和提升活跃度的重要工具。无论是在游戏、社交、电商,还是内容平台中,排行榜都能有效激发用户的竞争意识与社交互动。排行榜系统不仅展示用户之间的排名关系,还承载着数据聚合、实时更新、多维度统计等复杂功能。本章将从排行榜的基本概念出发,探讨其在不同业务场景中的典型应用,并为后续技术实现打下理论基础。 # 2. 排行榜技术原理与架构设计

利用PyTorch进行快速原型开发

### 利用 PyTorch 进行快速原型开发 在深度学习领域,快速搭建和验证模型是非常重要的。本文将介绍两个基于 PyTorch 的高级库:fast.ai 和 PyTorch Lightning,它们可以帮助我们更高效地进行模型的训练和评估。 #### 1. 使用 fast.ai 进行模型训练和评估 fast.ai 是一个基于 PyTorch 的高级库,它可以让我们在几分钟内完成模型的训练设置。下面是使用 fast.ai 训练和评估手写数字分类模型的步骤: ##### 1.1 模型训练日志分析 在训练过程中,我们可以看到冻结网络的第一个训练周期,然后是解冻网络的两个后续训练周期。日志中

使用PyTorch构建电影推荐系统

### 使用 PyTorch 构建电影推荐系统 在当今数字化时代,推荐系统在各个领域都发挥着至关重要的作用,尤其是在电影推荐领域。本文将详细介绍如何使用 PyTorch 构建一个电影推荐系统,从数据处理到模型训练,再到最终的推荐生成,为你呈现一个完整的推荐系统构建流程。 #### 1. 数据探索与处理 首先,我们需要对 MovieLens 数据集进行探索和处理。该数据集包含用户对电影的评分信息,其中存在一些缺失的评分值,用 NaN 表示。我们的目标是利用非空评分训练推荐系统,并预测这些缺失的评分,从而为每个用户生成电影推荐。 以下是处理数据集的代码: ```python import p

二维和三维偏微分方程耦合求解及生命科学中常微分方程问题的解决

### 二维和三维偏微分方程耦合求解及生命科学中常微分方程问题的解决 #### 1. 二维和三维偏微分方程耦合求解 在求解二维和三维偏微分方程时,有几个具体的问题和解决方法值得探讨。 ##### 1.1 获取相同网格点的 v 值 要在与 u 相同的网格点上获取 v 值,可以输入以下命令: ```matlab >> T_table=tri2grid(p,t,u(length(p)+1:end,end),x,y) ``` 示例结果如下: ``` T_table = 0.6579 0.5915 0.5968 0.6582 0 0.6042 0.4892 0.5073 0.6234 0 0.543

电力电子中的Simulink应用:锁相环、静止无功补偿器与变流器建模

# 电力电子中的Simulink应用:锁相环、静止无功补偿器与变流器建模 ## 1. 锁相环(PLL) ### 1.1 锁相环原理 锁相环(PLL)是一种控制算法,用于确定正弦输入的频率和相位角。它主要用于两个系统之间的频率匹配,匹配完成后会存在一个恒定的相位差,从而实现相位“锁定”。PLL由相位检测机制、PID控制器和用于生成相位角信息的振荡器组成。此外,系统中还包含一个低通滤波器,用于获取正弦输入的频率信息。在柔性交流输电系统(FACTS)设备中,PLL增益对稳定系统性能起着至关重要的作用。 ### 1.2 Simulink环境下的PLL设置 为了直观展示PLL如何反映频率和相位的变化

多视图检测与多模态数据融合实验研究

# 多视图检测与多模态数据融合实验研究 ## 1. 多视图检测实验 ### 1.1 实验数据集 实验参考了Wildtrack数据集和MultiviewX数据集,这两个数据集的特点如下表所示: | 数据集 | 相机数量 | 分辨率 | 帧数 | 区域面积 | | ---- | ---- | ---- | ---- | ---- | | Wildtrack | 7 | 1080×1920 | 400 | 12×36 m² | | MultiviewX | 6 | 1080×1920 | 400 | 16×25 m² | ### 1.2 评估指标 为了评估算法,使用了精度(Precision)、

模糊推理系统对象介绍

# 模糊推理系统对象介绍 ## 1. fistree 对象 ### 1.1 概述 fistree 对象用于表示相互连接的模糊推理系统树。通过它可以创建一个相互关联的模糊推理系统网络。 ### 1.2 创建方法 可以使用以下语法创建 fistree 对象: ```matlab fisTree = fistree(fis,connections) fisTree = fistree( ___ ,'DisableStructuralChecks',disableChecks) ``` - `fisTree = fistree(fis,connections)`:创建一个相互连接的模糊推理系统对象