活动介绍

监控GoogleAPI与Kubernetes集群

立即解锁
发布时间: 2025-08-25 01:31:15 阅读量: 2 订阅数: 5
PDF

现代DevOps实施指南:加速IT交付与创新

# 监控 Google API 与 Kubernetes 集群 在当今的软件开发和运维领域,监控是保障系统稳定运行的关键环节。下面将详细介绍如何监控 Google API 以及 Kubernetes 集群,并利用 Stackdriver 实现自动化监控和告警。 ## 一、监控 Google API ### 1. 列出可用 API 要列出 Google 上所有可用的 API,我们可以通过执行 HTTP GET 请求到 `https://www.googleapis.com/discovery/v1/apis` 这个 URL。具体操作步骤如下: 1. 在 Google Cloud Platform 的虚拟机(VM)中重新部署该请求。 2. 访问你的 VM 的 `/discovery` 端点。此时,屏幕上会显示一个大的 JSON 负载,但更有趣的是背后发生的事情。 ### 2. 查看跟踪信息 回到 Stackdriver 的跟踪列表部分,你会看到有一个新的跟踪被捕获。从这里,你可以看到我们的程序是如何与远程 API 进行通信的,以及它的响应时间。例如,在某些情况下,响应时间可能需要 68 秒。 实时获取这类信息非常强大。如果客户遇到非常长的响应时间,我们可以几乎实时地看到应用程序内部发生了什么。 ## 二、监控 Kubernetes 集群 ### 1. Kubernetes 监控的问题 Kubernetes 能够满足任何软件公司 99% 的需求,但在嵌入式监控方面表现不佳,这就需要第三方工具来填补这一空白。主要问题源于 Docker,容器是短暂的,因此常见的做法是将日志转储到标准输出/错误中,并使用 `syslogd` 将它们集中收集。 使用 Kubernetes 时,还会有额外的问题。Docker 之上的编排器需要知道如何获取日志,以便通过 API 或仪表板提供给用户。此外,通常日志会根据时间进行轮转和存档,以避免日志泛滥消耗服务器的所有可用空间,从而影响应用程序和操作系统的正常运行。 ### 2. 解决方案:使用外部系统聚合日志 最好的解决方案是使用外部系统来聚合集群内的日志和事件,这样可以将复杂性转移到一边,让 Kubernetes 专注于其最擅长的事情:编排容器。 ### 3. 集成 Stackdriver 进行监控 #### 步骤一:创建集群并启用监控 要将我们的集群与 Google Cloud Platform 中的 Stackdriver 集成,我们只需要在集群创建屏幕上勾选两个复选框。这将启用跨集群不同节点的监控,并改善我们处理应用程序中出现问题的方式。 1. 点击“创建”,等待集群被配置(可能需要几秒钟甚至几分钟)。不需要创建大型集群,使用小型机器,两个虚拟机就足够了。在负载测试期间,我们可能需要减小集群规模以加快告警部分的响应速度。 2. 当 GKE 监控激活时,Kubernetes 会将日志发送到 Stackdriver 的日志记录功能,因此你无需连接到节点来获取日志。 #### 步骤二:添加 Stackdriver 监控 集群创建完成后,我们
corwn 最低0.47元/天 解锁专栏
赠100次下载
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

史东来

安全技术专家
复旦大学计算机硕士,资深安全技术专家,曾在知名的大型科技公司担任安全技术工程师,负责公司整体安全架构设计和实施。
最低0.47元/天 解锁专栏
赠100次下载
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看

最新推荐

【高级图像识别技术】:PyTorch深度剖析,实现复杂分类

![【高级图像识别技术】:PyTorch深度剖析,实现复杂分类](https://www.pinecone.io/_next/image/?url=https%3A%2F%2Fsiteproxy.ruqli.workers.dev%3A443%2Fhttps%2Fcdn.sanity.io%2Fimages%2Fvr8gru94%2Fproduction%2Fa547acaadb482f996d00a7ecb9c4169c38c8d3e5-1000x563.png&w=2048&q=75) # 摘要 随着深度学习技术的快速发展,PyTorch已成为图像识别领域的热门框架之一。本文首先介绍了PyTorch的基本概念及其在图像识别中的应用基础,进而深入探讨了PyTorch的深度学习

未知源区域检测与子扩散过程可扩展性研究

### 未知源区域检测与子扩散过程可扩展性研究 #### 1. 未知源区域检测 在未知源区域检测中,有如下关键公式: \((\Lambda_{\omega}S)(t) = \sum_{m,n = 1}^{\infty} \int_{t}^{b} \int_{0}^{r} \frac{E_{\alpha,\alpha}(\lambda_{mn}(r - t)^{\alpha})}{(r - t)^{1 - \alpha}} \frac{E_{\alpha,\alpha}(\lambda_{mn}(r - \tau)^{\alpha})}{(r - \tau)^{1 - \alpha}} g(\

分布式应用消息监控系统详解

### 分布式应用消息监控系统详解 #### 1. 服务器端ASP页面:viewAllMessages.asp viewAllMessages.asp是服务器端的ASP页面,由客户端的tester.asp页面调用。该页面的主要功能是将消息池的当前状态以XML文档的形式显示出来。其代码如下: ```asp <?xml version="1.0" ?> <% If IsObject(Application("objMonitor")) Then Response.Write cstr(Application("objMonitor").xmlDoc.xml) Else Respo

分布式系统中的共识变体技术解析

### 分布式系统中的共识变体技术解析 在分布式系统里,确保数据的一致性和事务的正确执行是至关重要的。本文将深入探讨非阻塞原子提交(Nonblocking Atomic Commit,NBAC)、组成员管理(Group Membership)以及视图同步通信(View - Synchronous Communication)这几种共识变体技术,详细介绍它们的原理、算法和特性。 #### 1. 非阻塞原子提交(NBAC) 非阻塞原子提交抽象用于可靠地解决事务结果的一致性问题。每个代表数据管理器的进程需要就事务的结果达成一致,结果要么是提交(COMMIT)事务,要么是中止(ABORT)事务。

【PJSIP高效调试技巧】:用Qt Creator诊断网络电话问题的终极指南

![【PJSIP高效调试技巧】:用Qt Creator诊断网络电话问题的终极指南](https://www.contus.com/blog/wp-content/uploads/2021/12/SIP-Protocol-1024x577.png) # 摘要 PJSIP 是一个用于网络电话和VoIP的开源库,它提供了一个全面的SIP协议的实现。本文首先介绍了PJSIP与网络电话的基础知识,并阐述了调试前所需的理论准备,包括PJSIP架构、网络电话故障类型及调试环境搭建。随后,文章深入探讨了在Qt Creator中进行PJSIP调试的实践,涵盖日志分析、调试工具使用以及调试技巧和故障排除。此外,

C#并发编程:加速变色球游戏数据处理的秘诀

![并发编程](https://img-blog.csdnimg.cn/1508e1234f984fbca8c6220e8f4bd37b.png) # 摘要 本文旨在深入探讨C#并发编程的各个方面,从基础到高级技术,包括线程管理、同步机制、并发集合、原子操作以及异步编程模式等。首先介绍了C#并发编程的基础知识和线程管理的基本概念,然后重点探讨了同步原语和锁机制,例如Monitor类和Mutex与Semaphore的使用。接着,详细分析了并发集合与原子操作,以及它们在并发环境下的线程安全问题和CAS机制的应用。通过变色球游戏案例,本文展示了并发编程在实际游戏数据处理中的应用和优化策略,并讨论了

深度学习 vs 传统机器学习:在滑坡预测中的对比分析

![基于 python 的滑坡地质灾害危险性预测毕业设计机器学习数据分析决策树【源代码+演示视频+数据集】](https://opengraph.githubassets.com/f6155d445d6ffe6cd127396ce65d575dc6c5cf82b0d04da2a835653a6cec1ff4/setulparmar/Landslide-Detection-and-Prediction) 参考资源链接:[Python实现滑坡灾害预测:机器学习数据分析与决策树建模](https://wenku.csdn.net/doc/3bm4x6ivu6?spm=1055.2635.3001.

多项式相关定理的推广与算法研究

### 多项式相关定理的推广与算法研究 #### 1. 定理中 $P_j$ 顺序的优化 在相关定理里,$P_j$ 的顺序是任意的。为了使得到的边界最小,需要找出最优顺序。这个最优顺序是按照 $\sum_{i} \mu_i\alpha_{ij}$ 的值对 $P_j$ 进行排序。 设 $s_j = \sum_{i=1}^{m} \mu_i\alpha_{ij} + \sum_{i=1}^{m} (d_i - \mu_i) \left(\frac{k + 1 - j}{2}\right)$ ,定理表明 $\mu f(\xi) \leq \max_j(s_j)$ 。其中,$\sum_{i}(d_i

以客户为导向的离岸团队项目管理与敏捷转型

### 以客户为导向的离岸团队项目管理与敏捷转型 在项目开发过程中,离岸团队与客户团队的有效协作至关重要。从项目启动到进行,再到后期收尾,每个阶段都有其独特的挑战和应对策略。同时,帮助客户团队向敏捷开发转型也是许多项目中的重要任务。 #### 1. 项目启动阶段 在开发的早期阶段,离岸团队应与客户团队密切合作,制定一些指导规则,以促进各方未来的合作。此外,离岸团队还应与客户建立良好的关系,赢得他们的信任。这是一个奠定基础、确定方向和明确责任的过程。 - **确定需求范围**:这是项目启动阶段的首要任务。业务分析师必须与客户的业务人员保持密切沟通。在早期,应分解产品功能,将每个功能点逐层分

嵌入式平台架构与安全:物联网时代的探索

# 嵌入式平台架构与安全:物联网时代的探索 ## 1. 物联网的魅力与挑战 物联网(IoT)的出现,让我们的生活发生了翻天覆地的变化。借助包含所有物联网数据的云平台,我们在驾车途中就能连接家中的冰箱,随心所欲地查看和设置温度。在这个过程中,嵌入式设备以及它们通过互联网云的连接方式发挥着不同的作用。 ### 1.1 物联网架构的基本特征 - **设备的自主功能**:物联网中的设备(事物)具备自主功能,这与我们之前描述的嵌入式系统特性相同。即使不在物联网环境中,这些设备也能正常运行。 - **连接性**:设备在遵循隐私和安全规范的前提下,与同类设备进行通信并共享适当的数据。 - **分析与决策