温度传感器与压电发电机的原理及应用分析
立即解锁
发布时间: 2025-08-24 00:11:20 阅读量: 2 订阅数: 3 


压电设备的分析与应用
# 温度传感器与压电发电机的原理及应用分析
## 1. 温度传感器相关原理
### 1.1 小偏置变形下的自由能密度
在许多应用场景中,偏置变形通常较小。此时,只需考虑其对增量场的线性影响。对应的自由能密度表达式如下:
\[
\rho_0 H(S_{KL}, \theta) = \frac{1}{2}a(\theta) - f_{AB}(\theta)S_{AB} + \frac{1}{2}C_{ABCD}(\theta)S_{AB}S_{CD} + \frac{1}{6}C'_{ABCDEF}(\theta)S_{AB}S_{CD}S_{EF}
\]
其中,\(a\)和\(f_{AB}\)与比热和热弹性常数相关。由此可得到:
\[
G_{KaLr}(\theta^0) = c_{KaLr}(\theta^0) + \frac{\partial c_{KaLr}}{\partial \theta}(\theta^0 - \theta^R) + C_{KaLN}(\theta^R)\gamma_{,N} + C_{KNLy}(\theta^R)w_{,N} + C_{KaLyAB}(\theta^R)S_{AB} + [C_{KLMN}(\theta^R)S^0_{MN} - \lambda_{KL}(\theta^R)(\theta^0 - \theta^R)]\sigma_{\alpha\beta}
\]
这里的\(\lambda_{\alpha\beta}(\theta)\)为热弹性常数。
### 1.2 自由板的厚度 - 剪切模式
考虑一个旋转 Y 切石英板,其参考状态、偏置变形和增量运动分别如图所示。假设运动与\(X_3\)无关(即\(\frac{\partial}{\partial X_3} = 0\),\(v_3 = 0\),\(w_3 = 0\)),且偏置场较小,遵循热弹性线性理论。相关本构关系如下:
\[
\begin{cases}
c_{11}S^0_1 + c_{12}S^0_2 - \lambda_1\Delta\theta = 0 \\
c_{21}S^0_1 + c_{22}S^0_2 - \lambda_2\Delta\theta = 0
\end{cases}
\]
其中,\(T^0_1\)和\(T^0_2\)是\(X_1\)和\(X_2\)方向的初始拉伸应力,\(S^0_1\)和\(S^0_2\)是相应的初始应变,\(\Delta\theta = \theta^0 - \theta^R\)。求解上述方程可得应变表达式:
\[
\begin{cases}
w_{1,1} = S^0_1 = \alpha_1\Delta\theta \\
w_{2,2} = S^0_2 = \frac{\lambda_2 c_{11} - \lambda_1 c_{12}}{c_{11}c_{22} - c_{12}^2}\Delta\theta
\end{cases}
\]
其中,\(\alpha_1 = \frac{\lambda_1}{c_{11}}\),\(\lambda_1 = \lambda_1(1 - \frac{c_{12}}{c_{22}})\)。
对于增量运动,忽略边缘效应和\(X_1\)方向的变化。在\(X_1\)方向的厚度 - 剪切振动中,\(u_1 = u_1(X_2, t)\),\(u_2 = u_3 = 0\)。忽略有效弹性常数的等熵修正后,相关应力分量为:
\[
T_{21} = \{c_{66}(\theta^0) + [2c_{66}(\theta^R) + c_{661}(\theta^R)]S^0_1 + c_{662}(\theta^R)S^0_2\}u_{1,2} = c_{66}(\theta^R)(1 + 2\alpha\Delta\theta)u_{1,2}
\]
其中,
\[
2\alpha = \frac{1}{c_{66}(\theta^R)}\frac{\partial c_{66}}{\partial \theta}(\theta^R) + \frac{2c_{66}(\theta^R) + c_{661}(\theta^R)\alpha_1(\theta^R)c_{11}(\theta^R)h + c_{662}(\theta^R)\alpha_2(\theta^R)c_{22}(\theta^R)h}{c_{66}(\theta^R)(E(\theta^R)t + c_{11}(\theta^R)h)}
\]
运动方程为:
\[
c_{66}(\theta^R)(1 + 2\alpha\Delta\theta)u_{1,22} = \rho_0\ddot{u}_1
\]
对于奇数厚度 - 剪切模式,\(u_1(X_2, t) = u(t)\sin(\frac{n\pi}{2b}X_2)\)(\(n = 1, 3, 5, \cdots\)),运动方程可转化为关于\(u(t)\)的常微分方程:
\[
\ddot{u} + \omega_0^2(1 + 2\alpha\Delta\theta)u = 0
\]
其中,\(\omega_n^2 = \frac{n^2\pi^2c_{66}(\theta^R)}{4b^2\rho_0}\)。由此可得频率偏移:
\[
\frac{\Delta\omega}{\omega_n} = \alpha\Delta\theta
\]
该式表明频率偏移与\(\Delta\theta\)呈线性关系,适用于小温度变化的温度传感。
### 1.3 约束板的厚度 - 剪切模式
考虑一个旋转 Y 切石英板通过刚性端壁连接到两个弹性层的情况。弹性层各向同性,杨氏模量为\(E\),热膨胀系数为\(\alpha\)。由于晶体板和弹性层的热膨胀系数不同,在温度变化时会产生应变和应力。
假设运动与\(X_3\)无关,相关本构关系如下:
\[
\begin{cases}
T^0_1 = c_{11}S^0_1 + c_{12}S^0_2 - \lambda_1\Delta\theta \\
T^0_2 = c_{21}S^0_1 + c_{22}S^0_2 - \lambda_2\Delta\theta
\end{cases}
\]
假设板较薄(\(T_2 = 0\)),可求解出\(S^0_2\)并代入\(T^0_1\)的表达式,得到一维本构关系:
\[
S^0_1 = \frac{1}{c_{11} - \frac{c_{12}^2}{c_{22}}}T^0_1 + \alpha_1\Delta\theta
\]
弹性层的相关本构关系为:
\[
S^0_1 = \frac{1}{E}T^0_1 + \alpha\Delta\theta
\]
求解约束热膨胀问题,可得:
\[
\begin{cases}
w_{1,1} = S^0_1 = \frac{aEt + \alpha_1c_{11}h}{Et + c_{11}h}\Delta\theta \\
w_{2,2} = S^0_2 = -\frac{c_{12}}{c_{22}}S^0_1 + \frac{\lambda_2}{c_{22}}\Delta\theta
\end{cases}
\]
相关应力分量为:
\[
T_{21} = \{c_{66}(\theta^0) + [2c_{66}(\theta^R) + c_{661}(\theta^R)]S^0_1 + c_{662}(\theta^R)S^0_2\}u_{1,2} = c_{66}(\theta^R)(1 + 2\alpha\Delta\theta)u_{1,2}
\]
其中,
\[
2\alpha = \frac{1}{c_{66}(\theta^R)}\frac{\partial c_{66}}{\partial \theta}(\theta^R) + \frac{2c_{66}(\theta^R) + c_{661}(\theta^R)\alpha(\theta^R)E(\theta^R)t + \alpha_1(\theta^R)c_{11}(\theta^R)h}{c_{66}(\theta^R)(E(\theta^R)t + c_{11}(\theta^R)h)} + \frac{c_{662}(\theta^R)}{c_{66}(\theta^R)}\frac{c_{21}(\theta^R)\alpha(\theta^R)E(\theta^R)t + \alpha_1(\theta^R)c_{11}(\theta^R)h}{c
0
0
复制全文
相关推荐









