高级计算机视觉应用:从迁移学习到目标检测
立即解锁
发布时间: 2025-09-01 00:50:25 阅读量: 7 订阅数: 48 AIGC 

### 高级计算机视觉应用:从迁移学习到目标检测
在计算机视觉领域,卷积神经网络(CNNs)已经取得了显著的成果。本文将深入探讨高级计算机视觉应用,包括迁移学习、目标检测等内容,并提供详细的代码示例和操作步骤。
#### 1. 技术要求
我们将使用Python、PyTorch、Keras和Ultralytics YOLOv8来实现示例。如果没有配置好相关环境,不用担心,示例可以在Google Colab上以Jupyter笔记本的形式运行。代码示例可以在GitHub仓库中找到。
#### 2. 迁移学习(TL)
在处理大型数据集时,训练一个大网络需要很长时间,而且大型标注数据集并不总是可用。迁移学习(TL)是一种将现有训练好的机器学习模型应用于新的但相关问题的技术。
##### 2.1 工作原理
我们从一个现有的预训练网络开始,最常见的是使用ImageNet预训练的网络。通过移除预训练网络的最后几层,并替换为代表新问题类别的新层,将网络的特征翻译为新任务的不同类别。
##### 2.2 训练方式
有两种训练新层的方法:
- **使用原始网络作为特征提取器**:只训练新层,锁定原始网络的权重,防止在新数据上过度拟合。适用于新问题训练数据有限的情况。
- **微调整个网络**:训练整个网络,可以选择锁定前几层的权重,因为前几层检测的是通用特征。适用于有更多训练数据且不用担心过拟合的情况。
##### 2.3 使用PyTorch实现迁移学习
以下是使用PyTorch在CIFAR - 10图像上实现迁移学习的步骤:
1. **定义训练数据集**:
```python
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
batch_size = 50
# training data
train_data_transform = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
train_set = datasets.CIFAR10(
root='data',
train=True,
download=True,
transform=train_data_transform)
train_loader = DataLoader(
dataset=train_set,
batch_size=batch_size,
shuffle=True,
num_workers=2)
```
2. **定义验证数据集**:
```python
val_data_transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
val_set = datasets.CIFAR10(
root='data',
train=False,
download=True,
transform=val_data_transform)
val_order = DataLoader(
dataset=val_set,
batch_size=batch_size,
shuffle=False,
num_workers=2)
```
3. **选择设备**:
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
```
4. **使用预训练网络作为特征提取器**:
```python
import torch.nn as nn
import torch.optim as optim
from torchvision.models import MobileNet_V3_Small_Weights, mobilenet_v3_small
def tl_feature_extractor(epochs=5):
# load the pre-trained model
model = mobilenet_v3_small(
weights=MobileNet_V3_Small_Weights.IMAGENET1K_V1)
# exclude existing parameters from backward pass
# for performance
for param in model.parameters():
param.requires_grad = False
# newly constructed layers have requires_grad=True by default
num_features = model.classifier[0].in_features
model.classifier = nn.Linear(num_features, 10)
# transfer to GPU (if available)
model = model.to(device)
loss_function = nn.CrossEntropyLoss()
# only parameters of the final layer are being optimized
optimizer = optim.Adam(model.classifier.parameters())
# train
test_acc = list() # collect accuracy for plotting
for epoch in range(epochs):
print('Epoch {}/{}'.format(epoch + 1, epochs))
train_model(model, loss_function, optimizer, train_loader)
_, acc = test_model(model, loss_function, val_order)
test_acc.append(acc.cpu())
plot_accuracy(test_acc)
```
5. **实现微调方法**:
```python
def tl_fine_tuning(epochs=5):
# load the pre-trained model
model = mobilenet_v3_small(
weights=MobileNet_V3_Small_Weights.IMAGENET1K_V1)
# replace the last layer
num_features = model.classifier[0].in_features
model.classifier = nn.Linear(num_features, 10)
# transfer the model to the GPU
model = model.to(device)
# loss function
loss_function = nn.CrossEntropyLoss()
# We'll optimize all parameters
optimizer = optim.Adam(model.parameters())
# train
test_acc = list() # collect accuracy for plotting
for epoch in range(epochs):
print('Epoch {}/{}'.format(epoch + 1, epochs))
train_model(model, loss_function, optimizer, train_loader)
_, acc = test_model(model, loss_function, val_order)
test_acc.append(acc.cpu())
plot_accuracy(test_acc)
```
6. **运行代码**:
```python
# 微调方法
tl_fine_tuning(epochs=5)
# 特征提取方法
tl_feature_extractor(epochs=5)
```
使用网络作为特征提取器可获得约81%的准确率,微调可获得89%的准确率,但微调
0
0
复制全文
相关推荐









