Shor算法的实现与解析
立即解锁
发布时间: 2025-09-01 00:44:56 阅读量: 13 订阅数: 18 AIGC 


量子计算:从理论到实践
### Shor算法的实现与解析
#### 1. 引言
Shor算法是量子计算领域的一个重要算法,主要用于整数分解。本文将使用Cirq库详细介绍Shor算法的实现过程,包括经典的阶查找和量子的阶查找,以及如何利用这些方法完成完整的因式分解。
#### 2. 经典阶查找
经典阶查找是通过计算序列 \(a^2 \bmod n, a^3 \bmod n, a^4 \bmod n, \cdots\) ,直到找到一个整数 \(r\) ,使得 \(a^r \equiv 1 \pmod{n}\) 。以下是实现该功能的Python代码:
```python
import fractions
import math
import random
import numpy as np
import sympy
from typing import Callable, List, Optional, Sequence, Union
import cirq
def classical_order_finder(a: int, n: int) -> Optional[int]:
"""Computes smallest positive r such that a**r mod n == 1."""
# Make sure a is both valid and in Z/nZ
if a < 2 or a >= n or math.gcd(a, n) > 1:
raise ValueError(f"Invalid a={a} for modulus n={n}.")
# Determine the order
r, x = 1, a
while x != 1:
x = (a**r) % n
r += 1
return r
n = 15
a = 8
r = classical_order_finder(a, n)
# Check that the order is indeed correct
print(f"a^r mod n = {a}^{r} mod {n} = {a**r % n}")
```
输出结果为:
```plaintext
a^r mod n = 8^4 mod 15 = 1
```
这个算法的时间复杂度为 \(O(\varphi(n))\) ,大约为 \(O(2^{L/2})\) ,其中 \(L\) 是 \(n\) 的二进制位数,效率较低。
#### 3. 量子阶查找
量子计算部分是Shor算法的核心,主要通过量子相位估计来完成阶查找。具体来说,是使用一个酉算子 \(U\) 来计算模幂函数 \(f_a(z)\) 。
##### 3.1 Cirq中的量子算术运算
首先,我们来看一个简单的量子算术运算示例——加法运算。以下是定义加法运算的代码:
```python
class Adder(cirq.ArithmeticOperation):
"""Quantum addition."""
def __init__(self, target_register, input_register):
self.input_register = input_register
self.target_register = target_register
def registers(self):
return self.target_register, self.input_register
def with_registers(self, *new_registers):
return Adder(*new_registers)
def apply(self, target_value, input_value):
return target_value + input_value
# Two qubit registers
qreg1 = cirq.LineQubit.range(2)
qreg2 = cirq.LineQubit.range(2, 4)
# Define the circuit
circ = cirq.Circuit(
cirq.ops.X.on(qreg1[0]),
cirq.ops.X.on(qreg2[1]),
Adder(input_register=qreg1, target_register=qreg2),
cirq.measure_each(*qreg1),
cirq.measure_each(*qreg2)
)
# Display it
print("Circuit:\n")
print(circ)
# Print the measurement outcomes
print("\n\nMeasurement outcomes:\n")
print(cirq.sample(circ, repetitions=5).data)
```
输出结果如下:
```plaintext
Circuit:
0: ---X---#3------------------------------------------M---
|
1: -------#4------------------------------------------M---
|
2: -------<__main__.Adder object at 0x7fb5bb147be0>---M---
|
3: ---X---#2------------------------------------------M---
Measurement outcomes:
0 1 2 3
0 1 0 1 1
1 1 0 1 1
2 1 0 1 1
3 1 0 1 1
4 1 0 1 1
```
我们还可以查看加法运算的酉矩阵:
```python
print(cirq.unitary(
Adder(target_register=cirq.LineQubit.range(2),
input_register=1)
).astype(np.int32))
```
输出结果为:
```plaintext
array([[0, 0, 0, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]], dtype=int32)
```
这个酉矩阵的第 \(i\) 列表示状态 \(|i + 1 \bmod 4\rangle\) 。
##### 3.2 模幂算术运算
模幂算术运算是Shor算法中非常重要的一部分。以下是定义模幂运算的代码:
```python
class ModularExp(cirq.ArithmeticOperation):
"""Quantum modular exponentiation.
This class represents the unitary which multiplies base raised to
exponent
into the target modulo the given modulus. More precisely, it
represents the
unitary V which computes modular exponentiation a**e mod n:
V|y>|e> = |y * a**e mod n> |e> 0 <= y < n
V|y>|e> = |y> |e>
n <= y
where y is the target register, e is the exponent register, a is
the base
and n is the modulus. Consequently,
V|y>|e> = (U**e|r>)|e>
where U is the unitary defined as
U|y> = |y * a mod n> 0 <= y < n
U|y> = |y>
n <= y
"""
def __init__(
self,
target: Sequence[cirq.Qid],
exponent: Union[int, Sequence[cirq.Qid]],
base: int,
modulus: int
) -> None:
if len(target) < modulus.bit_length():
raise ValueError(f'Register with {len(target)} qubits is too small '
f'for modulus {modulus}')
self.target = target
self.exponent = exponent
self.base = base
self.modulus = modulus
def registers(self) -> Sequence[Union[int, Sequence[cirq.Qid]]]:
return self.target, self.exponent, self.base, self.modulus
def with_registers(
self,
*new_registers: Union[int, Sequence['cirq.Qid']],
) -> cirq.ArithmeticOperation:
if len(new_registers) != 4:
raise ValueError(f'Expected 4 registers (target, exponent, base, '
f'modulus), but got {len(new_registers)}')
target, exponent, base, modulus = new_registers
if not isinstance(target, Sequence):
raise ValueError(
f'Target must be a qubit register, got {type(target)}')
if not isinstance(base, int):
raise ValueError(
f'Base must be a classical constant, got {type(base)}')
if not isinstance(modulus, int):
raise ValueError(
f'Modulus must be a classical constant, got {type(modulus)}')
return ModularExp(target, exponent, base, modulus)
def apply(self, *register_values: int) -> int:
assert len(register_values) == 4
target, exponent, base, modulus = register_values
if target >= modulus:
return target
return (target * base**exponent) % modulus
def _circuit_diagram_info_(
self,
args: cirq.CircuitDiagramInfoArgs,
) -> cirq.CircuitDiagramInfo:
assert args.known_qubits is not None
wire_symbols: List[str] = []
t, e = 0, 0
for qubit in args.known_qubits:
if qubit in self.target:
if t == 0:
if isinstance(self.exponent, Sequence):
e_str = 'e'
else:
e_str = str(self.exponent)
wire_symbols.append(
f'ModularExp(t*{self.base}**{e_str} % {self.modulus})')
else:
wire_symbols.append('t' + str(t))
t += 1
if isinstance(self.exponent, Sequence) and qubit in self.exponent:
wire_symbols.append('e' + str(e))
e += 1
return cirq.CircuitDiagramInfo(wire_symbols=tuple(wire_symbols))
```
以 \(n = 15\) 为例,我们可以计算分解该数所需的量子比特数:
```python
n = 15
L = n.bit_length()
# The target register has L qubits
target = cirq.LineQubit.range(L)
# The exponent register has 2L + 3 qubits
exponent = cirq.LineQubit.range(L, 3 * L + 3)
# Display the total number of qubits to factor this n
print(f"To factor n = {n} which has L = {L} bits, we need 3L + 3 = {3 * L + 3} qubits.")
```
输出结果为:
```plaintext
To factor n = 15 which has L = 4 bits, we need 3L + 3 = 15 qubits.
```
##### 3.3 在电路中使用模幂运算
Shor算法的量子部分是通过相位估计完成的,其中使用了我们定义的模幂运算。以下是创建阶查找量子电路的函数:
```python
def make_order_finding_circuit(a: int, n: int) -> cirq.Circuit:
"""Returns quantum circuit which computes the order of a modulo n.
The circuit uses Quantum Phase Estimation to compute an eigenvalue of
the unitary
U|y> = |y * a mod n> 0 <= y < n
U|y> = |y>
n <= y
"""
L = n.bit_length()
target = cirq.LineQubit.range(L)
exponent = cirq.LineQubit.range(L, 3 * L + 3)
return cirq.Circuit(
cirq.X(target[L - 1]),
cirq.H.on_each(*exponent),
ModularExp(target, exponent, a, n),
cirq.QFT(*exponent, inverse=True),
cirq.measure(*exponent, key='exponent'),
)
n = 15
a = 7
circuit = make_order_finding_circuit(a, n)
print(circuit)
```
我们可以通过一个较小的电路来展示测量结果:
```python
circuit = make_order_finding_circuit(a=5, n=6)
res = cirq.sample(circuit, repetitions=8)
print("Raw measurements:")
print(res)
print
```
0
0
复制全文
相关推荐









