不确定性处理:概率与模糊逻辑
立即解锁
发布时间: 2025-08-29 11:22:09 阅读量: 15 订阅数: 30 AIGC 


智能系统:AI实践指南
# 不确定性处理:概率与模糊逻辑
## 1. 确定性理论
### 1.1 证据组合算法
在规则中,证据之间的关系通过“and”和“or”明确表示。若不同证据要独立地对单个假设做出贡献,则需放在不同规则中。证据组合算法借鉴了Zadeh的可能性理论,涵盖了合取(and)、析取(or)和否定(not)三种情况:
- **合取**:对于形如“if <证据E1> and <证据E2> then <假设> with certainty factor <CF>”的规则,组合证据的确定性为 \(C(E_1 \text{ and } E_2) = \min[C(E_1), C(E_2)]\)。
- **析取**:对于形如“if <证据E1> or <证据E2> then <假设> with certainty factor <CF>”的规则,组合证据的确定性为 \(C(E_1 \text{ or } E_2) = \max[C(E_1), C(E_2)]\)。
- **否定**:对于形如“if not <证据E> then <假设> with certainty factor <CF>”的规则,否定证据的确定性为 \(C(\sim E) = 1 - C(E)\)。
### 1.2 确定性理论示例
为说明确定性理论的应用,以电站锅炉安全阀是否需要清洗为例。有四条规则,每条规则都有规则编写者估计的确定性因子:
```plaintext
uncertainty_rule r3_1c
if release_valve is stuck
then task becomes clean_release_valve
with certainty factor 1.0 .
uncertainty_rule r3_2c
if warning_light is on
then release_valve becomes stuck
with certainty factor 0.2 .
uncertainty_rule r3_3c
if pressure is high
then release_valve becomes stuck
with certainty factor 0.9 .
uncertainty_rule r3_4c
if temperature is high
and water_level is not low
then pressure becomes high
with certainty factor 0.5 .
```
输入数据为:
- water_level is not low.
- warning_light is on.
- temperature is high.
假设规则按 \(r3_4c \to r3_3c \to r3_2c \to r3_1c\) 的顺序触发,规则跟踪结果如下:
```plaintext
uncertainty_rule r3_4c; CF = 0.5
H = pressure is high; C(H) = 0
E1 = temperature is high; C(E1) = 1
E2 = water_level is low; C(E2) = -1, C(~E2) = 1
C(E1&~E2) = min[C(E1),C(~E2)] = 1
CF' = CF × C(E1&~E2) = CF
C(H|(E1&~E2)) = CF' = 0.5
/* Updated certainty of "pressure is high" is 0.5 */
uncertainty_rule r3_3c; CF = 0.9
H = release_valve is stuck; C(H) = 0
E = pressure is high; C(E) = 0.5
CF' = CF × C(E) = 0.45
C(H|(E)) = CF' = 0.45
/* Updated certainty of "release_valve is stuck" is 0.45 */
uncertainty_rule r3_2c; CF = 0.2
H = release_valve is stuck; C(H) = 0.45
E = warning_light is on; C(E) = 1
CF' = CF × C(E) = CF
C(H|(E)) = C(H) + [CF' × (1-C(H))] = 0.56
/* Updated certainty of "release_valve is stuck" is 0.56 */
uncertainty_rule r3_1c; CF = 1
H = task is clean_release_valve; C(H) = 0
E = release_valve is stuck; C(E) = 0.56
CF' = CF × C(E) = 0.56
C(H|(E)) = CF' = 0.56
/* Updated certainty of "task is clean_release_valve" is 0.56 */
```
### 1.3 示例讨论
给定上述确定性因子,该示例得出安全阀需要清洗的结果,其置信度与贝叶斯更新示例相似。在贝叶斯更新中,规则 \(r3_2b\) 和 \(r3_3b\) 可合并为一条规则而不改变效果;但在确定性理论中,若将规则 \(r3_2c\) 和 \(r3_3c\) 合并,需选择一个单一的确定性因子。合并后的规则可能如下:
```plaintext
uncertainty_rule r3_5c
if warning_light is on
and pressure is hig
```
0
0
复制全文
相关推荐









