大数据处理与朴素贝叶斯分类器的实现与优化
立即解锁
发布时间: 2025-08-21 01:07:25 阅读量: 2 订阅数: 5 


Python数据挖掘实战指南
### 大数据处理与朴素贝叶斯分类器的实现与优化
#### 1. 朴素贝叶斯训练代码实现
在处理大数据时,我们可以通过一系列步骤来实现朴素贝叶斯分类器,以预测文档作者的性别。首先,我们需要实现一个比较单词的归约器函数:
```python
def compare_words_reducer(self, word, values):
per_gender = {}
for value in values:
gender, s = value
per_gender[gender] = s
yield word, per_gender
```
当文件作为脚本运行时,我们设置代码来运行这个模型:
```python
if __name__ == '__main__':
NaiveBayesTrainer.run()
```
我们可以运行以下脚本,其输入是之前帖子提取脚本的输出:
```bash
python nb_train.py <your_data_folder>/blogposts/ --output-dir=<your_data_folder>/models/ --no-output
```
输出目录将存储一个包含 MapReduce 作业输出的文件,这些输出是运行朴素贝叶斯分类器所需的概率。
#### 2. 运行朴素贝叶斯分类器
在 IPython Notebook 中,我们可以使用这些概率来运行朴素贝叶斯分类器。首先,我们需要导入一些必要的库:
```python
import os
import re
import numpy as np
from collections import defaultdict
from operator import itemgetter
```
重新定义单词搜索的正则表达式,确保训练和测试时以相同的方式提取单词:
```python
word_search_re = re.compile(r"[\w']+")
```
创建一个函数来从给定的文件名加载模型:
```python
def load_model(model_filename):
model = defaultdict(lambda: defaultdict(float))
with open(model_filename) as inf:
for line in inf:
word, values = line.split(maxsplit=1)
word = eval(word)
values = eval(values)
model[word] = values
return model
```
加载实际的模型,你可能需要更改模型文件名:
```python
model_filename = os.path.join(os.path.expanduser("~"), "models", "part-00000")
model = load_model(model_filename)
```
例如,我们可以查看单词 “i” 在男性和女性使用上的差异:
```python
model["i"]["male"], model["i"]["female"]
```
#### 3. 创建预测函数
接下来,我们创建一个使用该模型进行预测的函数,该函数接受模型和文档作为参数,并返回最可能的性别:
```python
def nb_predict(model, document):
probabilities = defaultdict(lambda : 1)
words = word_search_re.findall(document)
for word in set(words):
probabilities["male"] += np.log(model[word].get("male", 1e-15))
probabilities["female"] += np.log(model[word].get("female", 1e-15))
most_likely_genders = sorted(probabilities.items(), key=itemgetter(1), reverse=True)
return most_likely_genders[0][0]
```
需要注意的是,我们使用 `np.log` 来计算概率,以避免小概率值相乘导致的下溢错误。
#### 4. 测试预测函数
我们可以通过复制数据集中的一个帖子来测试预测函数:
```python
new_post = """ Every day should be a half day. Took the afternoon
off to hit the dentist, and while I was out I managed to get my oil
changed, too. Remember that business with my car dealership this
winter? Well, consider this the epilogue. The friendly fellas at the
Valvoline Instant Oil Change on Snelling were nice enough to notice
that my dipstick was broken, and the metal piece was too far down in
its little dipstick tube to pull out. Looks like I'm going to need a
magnet. Damn you, Kline Nissan, daaaaaaammmnnn yooouuuu.... Today
I let my boss know that I've su
```
0
0
复制全文