深度学习在游戏和金融领域的应用
立即解锁
发布时间: 2025-08-30 01:10:54 阅读量: 18 订阅数: 33 AIGC 


AI入门:从理论到实践
### 深度学习在游戏与金融领域的应用
#### 深度学习在游戏中的应用
在游戏领域,深度学习有着广泛的应用,尤其是在开发能够玩游戏的人工智能方面。以玩Atari游戏为例,我们可以使用深度Q学习(Deep Q-Learning)方法来构建一个智能体。
##### 策略选择与epsilon值调整
在网络的测试阶段,epsilon值会显著降低,从而更倾向于采用开发策略。以下是在Python中实现该策略的代码:
```python
def select(self):
## Select a Q Value from the Base Q Network
QValue = self.QValue.eval(feed_dict =
{self.iputVal:[self.currentState]})[0]
## Initialize actions as zeros
action = np.zeros(self.action)
action_index = 0
## If this timestep is the first, start with a random action
if self.timeStep % 1 == 0:
##
if random.random() <= self.starting_ep:
a_index = random.randrange(self.action)
action[a_index] = 1
else:
action_index = np.argmax(QValue)
action[action_index] = 1
else:
action[0] = 1
## Anneal the value of epsilon
if self.starting_ep > self.ending_ep and self.timeStep > self.observe:
self.starting_ep -= (self.starting_ep - self.ending_ep) /
self.explore
```
##### 训练方法
我们定义了一个训练方法`trainingPipeline`,它接收动作输入和目标Q值输入,并使用均方误差(MSE)损失函数来计算损失。同时,使用RMSProp优化器进行优化。
```python
def trainingPipeline(self):
self.actionInput = tf.placeholder("float",[None,self.actions])
self.yInput = tf.placeholder("float", [None])
Q_Action = tf.reduce_sum(tf.multiply(self.QValue, self.actionInput),
reduction_indices = 1)
self.cost = tf.reduce_mean(tf.square(self.yInput - Q_Action))
self.trainStep =
tf.train.RMSPropOptimizer(0.00025,0.99,0.0,1e-6).minimize(self.cost)
```
##### 网络训练
训练函数`train`会从经验回放内存中随机抽取小批量数据进行训练,并计算每个批次的Q值。同时,会在特定迭代次数保存网络权重和状态。
```python
def train(self):
''' Training procedure for the Q Network'''
minibatch = random.sample(self.replayBuffer, 32)
stateBatch = [data[0] for data in minibatch]
actionBatch = [data[1] for data in minibatch]
rewardBatch = [data[2] for data in minibatch]
nextBatch = [data[3] for data in minibatch]
batch = []
qBatch = self.QValueT.eval(feed_dict = {self.inputValT: nextBatch})
for i in range(0, 32):
terminal = minibatch[i][4]
if terminal:
batch.append(rewardBatch[i])
else:
batch.append(rewardBatch[i] + self.gamma * np.max(qBatch[i]))
self.trainStep.run(feed_dict={
self.yInput : batch,
self.actionInput : actionBatch,
self.inputVal : stateBatch
})
## Save the network on specific iterations
if self.timeStep % 10000 == 0:
self.saver.save(self.session, './savedweights' + '-atari',
global_step = self.timeStep)
```
##### 经验回放
`er_replay`函数用于将新的经验添加到经验回放内存中,并在满足条件时进行训练。
```python
def er_replay(self, nextObservation, action, reward, terminal):
newState = np.append(nextObservation, self.currentState[:,:,1:], axis =
2)
self.replayMemory.append((self.currentState, action, reward, newState,
terminal))
if len(self.replayBuffer) > 40000:
self.replayBuffer.popleft()
if self.timeStep > self.explore:
self.trainQNetwork()
self.currentState = newState
self.timeStep += 1
```
##### 运行网络
以下是运行网络的代码,包括初始化环境、预处理输入数据、选择动作等步骤。
```python
import cv2
import sys
from deepQ import deepQ
import numpy as np
import gym
class Atari:
def __init__(self):
self.env = gym.make('SpaceInvaders-v0')
self.env.reset()
self.actions = self.env.action_space.n
self.deepQ = deepQ(self.actions)
self.action0 = 0
def preprocess(self,observation):
observation = cv2.cvtColor(cv2.resize(observation, (84, 110)),
cv2.COLOR_BGR2GRAY)
observation = observation[26:110,:]
ret, observation = cv2.threshold(ob
```
0
0
复制全文
相关推荐










