活动介绍

Oracle数据库索引技术深度解析

立即解锁
发布时间: 2025-08-23 01:22:16 阅读量: 3 订阅数: 18
### Oracle数据库索引技术深度解析 #### 1. 仅索引部分行 函数式索引除了能辅助使用内置函数(如UPPER、LOWER等)的查询外,还可用于选择性地对表中的部分行进行索引。B*Tree索引不会为全NULL的键创建索引项。例如,创建索引语句 `Create index I on t(a,b);` ,若某行中A和B都为NULL,索引结构中不会有该行的索引项。 以一个大表为例,表中有一个非空列 `PROCESSED_FLAG` ,其值可以为Y或N,默认值为N。新插入的行值为N表示未处理,处理后更新为Y表示已处理。若想快速检索值为N的记录,使用常规的B*Tree索引会有问题。因为表中有数百万行,几乎所有行的值都是Y,创建的索引会很大,且从N更新为Y时维护索引的成本也很高。同时,由于这是一个事务性系统,很多人会同时插入 `PROCESSED_FLAG` 为N的记录,位图索引不适合并发修改,所以也不适用。 下面是具体操作步骤: 1. 使用标准的 `BIG_TABLE` 脚本更新 `TEMPORARY` 列,将Y和N的值互换: ```sql $ sqlplus eoda/foo@PDB1 SQL> update big_table set temporary = decode(temporary,'N','Y','N'); ``` 2. 查看Y和N的比例: ```sql SQL> select temporary, cnt, round( (ratio_to_report(cnt) over ()) * 100, 2 ) rtr from (select temporary, count(*) cnt from big_table group by temporary); ``` 结果如下: | T | CNT | RTR | | - | ---------- | ---------- | | Y | 998728 | 99.87 | | N | 1272 | .13 | 3. 创建常规索引并分析: ```sql SQL> create index processed_flag_idx on big_table(temporary); SQL> analyze index processed_flag_idx validate structure; SQL> select name, btree_space, lf_rows, height from index_stats; ``` 结果显示索引有1,000,000个条目,占用近14MB空间,高度为3。 4. 使用函数式索引只索引值为N的记录: ```sql SQL> drop index processed_flag_idx; SQL> create index processed_flag_idx on big_table( case temporary when 'N' then 'N' end ); SQL> analyze index processed_flag_idx validate structure; SQL> select name, btree_space, lf_rows, height from index_stats; ``` 新索引仅32KB,高度为2,使用该索引进行检索时I/O操作会减少。 #### 2. 实现选择性唯一性 函数式索引还可用于实施某些复杂的约束。例如,有一个包含版本信息的表,如项目表,项目有两种状态:ACTIVE或INACTIVE。需要实施规则“活跃项目的名称必须唯一,非活跃项目则不需要”。 开发者通常的做法是运行查询查看是否有活跃的同名项目,若没有则创建。但在多用户环境中,这种简单实现方式无法工作。若两人同时尝试创建新的活跃项目X,都会成功。可以使用函数式索引让数据库来处理这个问题。 操作步骤如下: ```sql Create unique index active_projects_must_be_unique On projects ( case when status = 'ACTIVE' then name end ); ``` 当状态列为ACTIVE时,NAME列将被唯一索引,任何创建同名活跃项目的尝试都会被检测到,且不会影响表的并发访问。 #### 3. 关于ORA - 01743的注意事项 在创建基于 `TO_DATE` 内置函数的函数式索引时,有时会失败。例如: ```sql $ sqlplus eoda/foo@PDB1 SQL> create table t ( year varchar2(4) ); SQL> create index t_idx on t( to_date(year,'YYYY') ); ``` 会报错 `ORA - 01743: only pure functions can be indexed` 。但有时使用 `TO_DATE` 创建函数式索引是可行的,如: ```sql SQL ```
corwn 最低0.47元/天 解锁专栏
赠100次下载
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。
最低0.47元/天 解锁专栏
赠100次下载
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
立即解锁

专栏目录

最新推荐

Cadence AD库管理:构建与维护高效QFN芯片封装库的终极策略

![Cadence AD库管理:构建与维护高效QFN芯片封装库的终极策略](https://media.licdn.com/dms/image/C4E12AQHv0YFgjNxJyw/article-cover_image-shrink_600_2000/0/1636636840076?e=2147483647&v=beta&t=pkNDWAF14k0z88Jl_of6Z7o6e9wmed6jYdkEpbxKfGs) # 摘要 Cadence AD库管理是电子设计自动化(EDA)中一个重要的环节,尤其在QFN芯片封装库的构建和维护方面。本文首先概述了Cadence AD库管理的基础知识,并详

【水管系统水头损失环境影响分析】:评估与缓解策略,打造绿色管道系统

![柯列布鲁克-怀特](https://andrewcharlesjones.github.io/assets/empirical_bayes_gaussian_varying_replicates.png) # 摘要 水管系统中的水头损失是影响流体输送效率的关键因素,对于设计、运行和维护水输送系统至关重要。本文从理论基础出发,探讨了水头损失的概念、分类和计算方法,并分析了管道系统设计对水头损失的影响。随后,本文着重介绍了水头损失的测量技术、数据分析方法以及环境影响评估。在此基础上,提出了缓解水头损失的策略,包括管道维护、系统优化设计以及创新技术的应用。最后,通过案例研究展示了实际应用的效果

【AutoJs脚本最佳实践】:编写可维护和可扩展的群自动化脚本(专家级指导)

![【AutoJs脚本最佳实践】:编写可维护和可扩展的群自动化脚本(专家级指导)](https://user-images.githubusercontent.com/11514346/71579758-effe5c80-2af5-11ea-97ae-dd6c91b02312.PNG) # 摘要 AutoJs作为一种基于JavaScript的Android自动化脚本工具,提供了强大的脚本编写能力,使得开发者能够在Android平台上快速实现各种自动化任务。本文旨在为AutoJs脚本的初学者和中级用户介绍基础知识与实用技巧,从脚本基础结构、控制流、调试优化、实用技巧到高级应用和案例分析,逐步深

【MATLAB信号处理项目管理】:高效组织与实施分析工作的5个黄金法则

![MATLAB在振动信号处理中的应用](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 摘要 本文旨在提供对使用MATLAB进行信号处理项目管理的全面概述,涵盖了项目规划与需求分析、资源管理与团队协作、项目监控与质量保证、以及项目收尾与经验总结等方面。通过对项目生命周期的阶段划分、需求分析的重要性、资源规划、团队沟通协作、监控技术、质量管理、风险应对策略以及经验传承等关键环节的探讨,本文旨在帮助项目管理者和工程技术人员提升项目执行效率和成果质

【LabView图像轮廓分析】:算法选择与实施策略的专业解析

# 摘要 本文探讨了图像轮廓分析在LabView环境下的重要性及其在图像处理中的应用。首先介绍了LabView图像处理的基础知识,包括图像数字化处理和色彩空间转换,接着深入分析了图像预处理技术和轮廓分析的关键算法,如边缘检测技术和轮廓提取方法。文中还详细讨论了LabView中轮廓分析的实施策略,包括算法选择、优化以及实际案例应用。最后,本文展望了人工智能和机器学习在图像轮廓分析中的未来应用,以及LabView平台的扩展性和持续学习资源的重要性。 # 关键字 图像轮廓分析;LabView;边缘检测;轮廓提取;人工智能;机器学习 参考资源链接:[LabView技术在图像轮廓提取中的应用与挑战]

嵌入式系统开发利器:Hantek6254BD应用全解析

# 摘要 Hantek6254BD作为一款在市场中具有明确定位的设备,集成了先进的硬件特性,使其成为嵌入式开发中的有力工具。本文全面介绍了Hantek6254BD的核心组件、工作原理以及其硬件性能指标。同时,深入探讨了该设备的软件与编程接口,包括驱动安装、系统配置、开发环境搭建与SDK工具使用,以及应用程序编程接口(API)的详细说明。通过对Hantek6254BD在嵌入式开发中应用实例的分析,本文展示了其在调试分析、实时数据采集和信号监控方面的能力,以及与其他嵌入式工具的集成策略。最后,针对设备的进阶应用和性能扩展提供了深入分析,包括高级特性的挖掘、性能优化及安全性和稳定性提升策略,旨在帮助

海洋工程仿真:Ls-dyna应用挑战与解决方案全攻略

![海洋工程仿真:Ls-dyna应用挑战与解决方案全攻略](https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs40684-021-00331-w/MediaObjects/40684_2021_331_Fig5_HTML.png) # 摘要 本文系统介绍了海洋工程仿真基础与Ls-dyna软件的应用。首先,概述了海洋工程仿真与Ls-dyna的基础知识,随后详细阐述了Ls-dyna的仿真理论基础,包括有限元分析、材料模型、核心算法和仿真模型的建立与优化。文章还介绍了Ls-dyna的仿真实践

深度学习模型的部署难题:pix2pixHD在生产环境中的部署秘技

![深度学习模型的部署难题:pix2pixHD在生产环境中的部署秘技](https://opengraph.githubassets.com/28dd2afc1c270789fa94d794dd136cea37f9bc2c2303b8ba59a9b66623727a9e/NVlabs/SPADE/issues/121) # 摘要 随着深度学习技术的迅猛发展,模型部署已成为实现其商业价值的关键环节。本文聚焦于pix2pixHD模型的部署挑战与机遇,深入解析其架构、核心算法及其在图像到图像转换中的应用。接着,文章探讨了模型部署的理论基础,包括部署环境的准备、模型转换与优化以及持续集成与自动化部署

【探索】:超越PID控制,水下机器人导航技术的未来趋势

![PID控制](https://ucc.alicdn.com/pic/developer-ecology/m77oqron7zljq_1acbc885ea0346788759606576044f21.jpeg?x-oss-process=image/resize,s_500,m_lfit) # 摘要 水下机器人导航技术是实现有效水下作业和探索的关键。本文首先概述了水下机器人导航技术的发展现状,并对传统PID控制方法的局限性进行了分析,特别关注了其在环境适应性和复杂动态环境控制中的不足。接着,探讨了超越PID的新导航技术,包括自适应和鲁棒控制策略、智能优化算法的应用以及感知与环境建模技术的最

RD3数据处理全流程攻略:从加载到深度分析

![RD3数据处理全流程攻略:从加载到深度分析](https://epirhandbook.com/en/images/data_cleaning.png) # 摘要 本文深入探讨了RD3数据格式的特点及应用,并对数据加载、预处理、深度分析及实战应用进行了系统性的介绍。首先概述了RD3数据格式的基本概念和特点,随后详细阐述了加载技术和预处理方法,包括数据读取、类型理解、缺失值处理、数据清洗转换、异常值检测等。紧接着,文章介绍了高级数据处理技术和数据可视化方法,以及在RD3数据中应用机器学习和深度学习技术进行分析。实战应用部分,则涉及了RD3数据在不同行业中的案例分析,数据处理流程优化及项目管