卷积神经网络在计算机视觉中的应用
立即解锁
发布时间: 2025-09-01 00:50:24 阅读量: 6 订阅数: 33 AIGC 

# 卷积神经网络在计算机视觉中的应用
## 图像增强技术
在计算机视觉任务中,图像增强是一种重要的技术手段,它可以增加数据的多样性,提高模型的泛化能力。常见的图像增强方法包括:
- 缩放(Zoom in/out)
- 裁剪(Crop)
- 倾斜(Skew)
- 对比度和亮度调整(Contrast and brightness adjustment)
## 使用PyTorch进行图像分类
### 1. 选择设备
优先选择GPU进行训练,因为该神经网络比MNIST的网络更大,CPU训练会非常缓慢。
```python
import torch
from torchsummary import summary
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
```
### 2. 加载训练数据集
```python
import torchvision.transforms as transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# 训练数据集
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
train_data = datasets.CIFAR10(
root='data',
train=True,
download=True,
transform=train_transform)
batch_size = 50
train_loader = DataLoader(
dataset=train_data,
batch_size=batch_size,
shuffle=True,
num_workers=2)
```
`train_transform` 执行随机水平和垂直翻转,并使用z-score归一化对数据集进行归一化。硬编码的数值代表了CIFAR - 10数据集手动计算的通道均值和标准差。`train_loader` 负责提供训练小批量数据。
### 3. 加载验证数据集
```python
validation_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
validation_data = datasets.CIFAR10(
root='data',
train=False,
download=True,
transform=validation_transform)
validation_loader = DataLoader(
dataset=validation_data,
batch_size=100,
shuffle=True)
```
注意,我们使用训练数据集的均值和标准差对验证集进行归一化。
### 4. 定义CNN模型
```python
from torch.nn import Sequential, Conv2d, BatchNorm2d, GELU, MaxPool2d, Dropout2d, Linear, Flatten
model = Sequential(
Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1),
BatchNorm2d(32),
GELU(),
Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1),
BatchNorm2d(32),
GELU(),
MaxPool2d(kernel_size=2, stride=2),
Dropout2d(0.2),
Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),
BatchNorm2d(64),
GELU(),
Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1),
BatchNorm2d(64),
GELU(),
MaxPool2d(kernel_size=2, stride=2),
Dropout2d(p=0.3),
Conv2d(in_channels=64, out_channels=128, kernel_size=3),
BatchNorm2d(128),
GELU(),
Conv2d(in_channels=128, out_ch
```
0
0
复制全文
相关推荐









