活动介绍

迈向人工智能公平性:使用生成对抗网络解决数据偏差问题

立即解锁
发布时间: 2025-08-29 10:58:13 阅读量: 8 订阅数: 19 AIGC
### 迈向人工智能公平性:使用生成对抗网络解决数据偏差问题 #### 1. 背景 人工智能中的算法偏差问题日益受到关注,许多研究致力于识别、评估和改善人工智能的公平性,并探究导致偏差的潜在因素。 例如,COMPAS系统的预测对非裔美国人存在偏差,这些有偏差的预测用于法庭决策,可能会不公平地偏袒某些群体。又如,一个用于推广STEM领域工作的广告算法,虽设计为性别中立,但实际上向女性投放广告的比例较低。 造成人工智能模型不公平的潜在因素大多归因于训练数据。这些因素包括: - 设备测量偏差导致的数据偏差。 - 历史上人为决策造成的偏差。 - 数据缺失和不平衡导致的偏差。 - 代理非敏感属性引起的偏差等。 模型算法本身也会导致偏差,其目标函数旨在最小化整体预测误差,这往往使多数群体受益,而忽视了少数群体。 为衡量公平性,引入了多种公平性指标和定义,可分为以下几类: |公平性类别|描述| | ---- | ---- | |群体公平性|关注不同群体之间的公平性| |个体公平性|强调个体层面的公平对待| |子群体公平性|聚焦于特定子群体的公平性| 以数据集 \(D = \{X, S, Y\}\) 为例,其中 \(X \in R^n\) 表示非受保护属性,\(S\) 是确定弱势群体的受保护属性(如性别或种族),\(Y \in \{0, 1\}\) 是标签或决策。假设 \(Y = 0\) 是不期望的标签(如预测个体犯罪),\(Y = 1\) 是期望的标签。标记数据集中的人口统计学均等性定义为 \(P(Y = 1|S = 1) - P(Y = 1|S \neq 0)\),值越低表示基于受保护属性的期望预测率越相似。此外,还提出了其他公平性衡量方法,如差异影响、平等机会和平等赔率。 除了上述公平性衡量方法,还有一些新兴的算法公平性研究子领域,如公平词嵌入和公平视觉描述。公平词嵌入旨在解决词嵌入中固有的偏差,因为词嵌入广泛应用于自然语言处理系统。公平视觉描述则指出,大多数数据集中女性深色皮肤面孔的代表性不足会导致这些群体的误分类率较高。 一种简单的实现公平性的方法是忽略敏感属性,在不使用敏感属性的情况下训练机器学习模型。然而,这种方法存在技术问题。被排除的属性可能仍会对非敏感属性产生隐性影响,例如,仅从数据中删除“种族”属性并不能解决贷款决策中的偏差问题,因为“邮政编码”属性可能仍作为种族的代理产生影响。而且,即使删除敏感属性,某些种族可能获得的合适贷款比例仍然较低,这也会影响贷款决策结果。 更高级的公平性执行方法可分为以下三类: - **预处理**:在将训练数据集输入机器学习算法之前对其进行修改,包括更改数据点的标签、在训练前重新加权数据,以及更高级的修改特征表示等方法。 - **处理中**:在算法训练过程中执行公平性。 - **后处理**:通过访问在模型训练过程中未使用的保留集来执行公平性。 近年来,一些研究尝试使用对抗学习来解决公平性问题。例如,Wadsworth等人开发了一个对抗训练的神经网络,除了进行预测外,还能减轻分类器中的种族偏差。另一个研究使用生成对抗网络(GAN)生成与真实数据集相似的合成数据集,在保留显著统计特性的同时减少偏差。 #### 2. 生成对抗网络(GAN) 原始的GAN基于生成器和判别器之间的极小极大博弈。生成器从随机噪声潜在向量中采样,试图生成与真实数据分布相似的向量,以欺骗判别器将生成的数据识别为真实数据。判别器则尝试将生成的数据分类为假数据,将真实数据分类为真实数据。GAN的极小极大目标函数如下: \[ \min_G \max_D E_{x \sim P_{data}(x)}[\log D(x)] + E_{z \sim P_z(z)}[\log(1 - D(G(z)))] \] 其中,\(P_{data}\) 是真实数据分布,\(P_z\) 是输入生成器的噪声分布,\(G(z)\) 是生成器生成的数据。训练判别器至最优等价于最小化Jensen - Shannon散度。 然而,GAN存在一些常见的训练问题,如需要在判别器和生成器的训练中保持谨慎的平衡,以及模式崩溃现象(模型仅生成可能结果的有限子集)。为解决这些问题,Arjovky等人开发了Wasserstein GAN,用批评者(critic)代替判别器,用Earth - Mover距离代替Jensen - Shannon散度。新的价值函数通过Kantorovich - Rubinstein对偶性构建: \[ \min_G \max_{D \in \mathcal{D}} E_{x \sim P_{data}(x)}[D(x)] - E_{z \sim P_z(z)}[D(G(z))] \] 其中,\(\mathcal{D}\) 是1 - Lipschitz函数的集合。在最优批评者的情况下,相对于生成器最小化价值函数可最小化Earth - Mover距离。在本研究中,提出了一个WGAN网络,其中1 - Lipschitz约束通过梯度裁剪来执行。 #### 3. 模型架构 本部分设计的GAN模型旨在生成表格数据,同时保持变量的联合概率分布与原始数据相似。该模型是一个WGAN,与Xu等人使用两个判别器的方法不同,本模型使用一个批评者,并在训练的两个阶段采用不同的损失函数。 ##### 3.1 数据转换 表格数据集包含 \(m\) 个连续变量和 \(n\) 个离散变量。在将数据输入模型之前,需要进行以下转换: - 每个连续变量使用分位数变换器转
corwn 最低0.47元/天 解锁专栏
赠100次下载
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
最低0.47元/天 解锁专栏
赠100次下载
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
立即解锁

专栏目录

最新推荐

数据可视化:静态与交互式的优劣及团队模式分析

# 数据可视化:静态与交互式的优劣及团队模式分析 ## 1. 幻灯片与数据可视化 在数据沟通中,幻灯片是一种常用且有效的方式。能通过幻灯片清晰沟通是一项重要技能,无论是使用PowerPoint还是Google Slides,掌握设计工具都需大量时间和实践。 幻灯片之所以是有效的沟通方式,是因为其具备与数据可视化相同的有效元素: - **简化信息**:幻灯片应尽量少用文字,需将关键概念浓缩成简单要点。 - **清晰标题**:如同数据可视化,幻灯片标题应明确所回答的问题或表达的观点,让观众能轻松理解展示内容。 - **视觉线索**:图像、字体、颜色和主题等都能为幻灯片内的信息提供视觉线索。

数据在不同部门的应用与挑战及后续提升建议

### 数据在不同部门的应用与挑战及后续提升建议 在当今数字化时代,数据在各个部门的运营中扮演着至关重要的角色。下面我们将深入探讨数据在营销、销售和信息技术部门的应用情况,以及如何提升数据沟通技能。 #### 数据在营销部门的应用与挑战 在营销领域,数据的影响力无处不在。以Prep Air为例,数字营销主管Alex指出,数字营销的兴起带来了海量数据,彻底改变了整个营销领域。过去,营销研究主要依赖焦点小组和调查,一次只能针对一个个体。如今,除了这些传统方法,还可以收集和跟踪社交媒体参与度、网站流量等多方面的数据。 数据来源广泛,包括人口普查记录、谷歌分析的网站流量报告以及Facebook、

利用GARCH模型变体进行股票市场预测中的情感分析实现

### 利用GARCH模型变体进行股票市场预测中的情感分析实现 在金融领域,股票市场预测一直是一个备受关注的话题。由于金融数据具有高波动性和异方差性(即方差随时间变化),传统的时间序列分析方法往往难以准确建模。广义自回归条件异方差(GARCH)模型因其能够有效处理异方差问题而成为时间序列预测中的常用工具。同时,社交媒体数据和金融新闻也对股票价格预测产生着重要影响,情感分析技术可以从中提取有用信息,帮助我们更好地理解市场行为。本文将详细介绍如何运用情感分析和GARCH模型变体对苹果公司的股票数据进行预测。 #### 1. 研究背景 GARCH模型由Bollerslev于1986年提出,此后被

打造与分享Excel仪表盘:设计、保护与部署全攻略

# 打造与分享 Excel 仪表盘:设计、保护与部署全攻略 在数据可视化的领域中,Excel 仪表盘是一种强大的工具,它能够将复杂的数据以直观的方式呈现给用户。本文将详细介绍如何设计一个美观且实用的 Excel 仪表盘,以及如何保护和分享它。 ## 1. 仪表盘设计优化 ### 1.1 突出关键数据 为了让用户更聚焦于仪表盘的关键数据点或特定部分,可以使用加粗字体进行突出显示。具体操作如下: - 仔细审视仪表盘,找出那些需要强调特定信息或数据点的区域。 - 在后续步骤中,再添加标题和标签。 ### 1.2 优化文本框格式 为了让用户更轻松地识别关键数字,可以对文本框进行如下格式优化: 1

软件定义网络的数据可视化与负载均衡实验

### 软件定义网络的数据可视化与负载均衡实验 在当今的网络环境中,软件定义网络(SDN)的应用越来越广泛。本文将详细介绍一个关于软件定义网络的数据可视化与负载均衡的实验,包括实验步骤、遇到的问题及解决方法,以及如何生成相关的分析图表。 #### 1. 流量生成与结果过滤 在实验中,我们首先需要生成流量并记录相关事件。以下是具体的操作步骤: - **定义服务器与客户端**: - 停止Host - 3服务器,在h8控制台输入命令 `iperf -s -p 6653 -i 1 > result - H8`,将IP地址为10.0.0.8的Host - 8定义为服务器,“result -

基于文本的关系提取与知识图谱构建

### 基于文本的关系提取与知识图谱构建 #### 1. 引言 在分析公司网络时,共现图能为我们提供一些有趣的见解,但它无法告知我们关系的具体类型。例如,在某些子图中,我们能看到公司之间存在关联,但具体是什么样的关系却并不清楚。为了解决这个问题,我们需要进行关系提取,从而构建知识图谱,以更清晰地展示公司之间的关系。 #### 2. 关系提取的重要性 有时候,最有趣的关系往往不是频繁出现的那些。比如,即将到来的合并的首次公告,或者过去曾被提及几次但随后被遗忘的惊人关系。以前不相关的实体突然同时出现,可能是开始对该关系进行深入分析的信号。 #### 3. 基于短语匹配的关系提取蓝图 - **

数据科学家绩效评估方法解析

### 数据科学家绩效评估方法解析 在数据科学领域,衡量数据科学家的绩效是一项具有挑战性的任务。虽然数据科学本身强调测量和指标跟踪,但为数据科学家的工作价值赋予一个确切的数字并非易事。下面将详细探讨几种评估数据科学家绩效的方法。 #### 1. 工作时间评估 工作时间是最直接的绩效衡量方式。比如,早上9点上班,晚上9点下班,减去午休时间,就是一天的工作时长。对于那些具有固定或相对稳定价值产出率的工作,工作时间是一个可行的绩效指标,就像在日本街头,拿着道路施工标志站岗的人员,他们投入的工作时长能准确反映其工作绩效。 然而,对于需要解决复杂问题的工作,工作时间和实际工作投入是两个不同的概念。

Rasa开发:交互式学习、调试、优化与社区生态

### Rasa开发:交互式学习、调试、优化与社区生态 #### 1. 交互式学习中的数据保存与退出 在交互式学习的每一轮中,都需要确认自然语言理解(NLU)分析结果以及多个动作预测结果。若对为何有多个动作存在疑惑,可参考相关原理内容。当我们完成与聊天机器人的交互学习后,需要手动保存反馈数据。具体操作步骤如下: - 按下 `Ctrl + C`,会出现如下选项: - `Continue`:继续当前的交互式学习。 - `Undo Last`:撤销上一步操作。 - `Fork`:分叉当前对话流程。 - `Start Fresh`:重新开始。 - `Export & Quit`:

数据分析与分层模型解读

### 数据分析与分层模型解读 在数据分析中,我们常常会用到各种模型来解读数据背后的规律。这里主要探讨分层模型的相关内容,包括如何分析数据、模型的构建与评估,以及结果的呈现与解读。 #### 1. R² 值的计算 在分析数据时,我们可能会注意到不同模型的 R² 值情况。例如,对于某些模型的输出,能直接看到 R² 值,而对于分层模型,需要额外的操作来获取。以分层模型 `fit_lmer1` 为例,若要计算其 R² 值,可按以下步骤操作: 1. 安装并加载 `MuMIn` 包。 2. 运行 `r.squaredGLMM(fit_lmer1)` 函数。 运行该函数后,会得到两个 R² 值: -

数据可视化:工具与Python库的综合指南

# 数据可视化:工具与Python库的综合指南 ## 一、数据可视化的基础技巧 ### (一)创建对比 在展示数据时,应尽可能多地进行对比。当同时展示两个关于同一参数在不同时期的图表或图示时,能清晰地解释数据的影响,并突出趋势、高低点、优势和劣势,便于大家理解和思考。例如,对比2019年第一季度和2020年第一季度的销售折线图。 ### (二)讲述数据故事 以可视化方式呈现数据如同讲故事,能向受众传达目标或信息,提高参与度,让人们轻松理解数据。科学研究表明,人类更喜欢听故事,对讲述得当的故事反应更好。通过可视化来讲述故事,不仅能更好地传达信息,还能在展示中脱颖而出。可以通过整理信息,借鉴作