活动介绍

图像检索技术全解析

立即解锁
发布时间: 2025-08-30 00:50:19 阅读量: 7 订阅数: 14 AIGC
### 图像检索技术全解析 #### 1. 模型导出与服务 在图像检索的流程中,首先要进行模型的导出与服务部署。分类签名借助 TensorFlow 的分类 API,输入是必需的,有预测类别和预测概率两个可选输出,且至少要有一个输出。预测签名在输入和输出数量上具有灵活性,客户端可以定义多个输出并明确查询。以下是签名定义的代码: ```python signature_def = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={'x': tf.saved_model.utils.build_tensor_info(x_input)}, outputs={'y': tf.saved_model.utils.build_tensor_info(y_input)}, method_name="tensorflow/serving/predict")) ``` 接着,将元图和变量添加到构建器中,并使用预测签名: ```python model_path = os.path.join(work_dir, str(model_version)) saved_model_builder = tf.saved_model.builder.SavedModelBuilder(model_path) saved_model_builder.add_meta_graph_and_variables( session, [tf.saved_model.tag_constants.SERVING], signature_def_map={ 'prediction': signature_def }, legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')) saved_model_builder.save() ``` 导出的模型可以通过 TensorFlow Serving 进行服务,使用以下命令: ```bash tensorflow_model_server --port=9000 --model_name=mnist --model_base_path=/tmp/mnist_model/ ``` #### 2. 模型推理测试 为了测试模型服务,需要导入必要的库: ```python from grpc.beta import implementations import numpy import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2 ``` 设置并发数、测试数量和工作目录等常量,并定义一个用于计数预测结果的远程过程调用(RPC)回调函数: ```python concurrency = 1 num_tests = 100 host = '' port = 8000 work_dir = '/tmp' def _create_rpc_callback(): def _callback(result): response = numpy.array( result.result().outputs['y'].float_val) prediction = numpy.argmax(response) print(prediction) return _callback ``` 运行推理,调用服务器进行预测: ```python test_data_set = mnist.test test_image = mnist.test.images[0] predict_request = predict_pb2.PredictRequest() predict_request.model_spec.name = 'mnist' predict_request.model_spec.signature_name = 'prediction' predict_channel = implementations.insecure_channel(host, int(port)) predict_stub = prediction_service_pb2.beta_create_PredictionService_stub(predict_channel) predict_request.inputs['x'].CopyFrom( tf.contrib.util.make_tensor_proto(test_image, shape=[1, test_image.size])) result = predict_stub.Predict.future(predict_request, 3.0) result.add_done_callback( _create_rpc_callback()) ``` 多次调用推理可以评估模型的准确性、延迟和吞吐量,推理错误率应在 90% 左右,并发性能要好。 #### 3. 基于内容的图像检索(CBIR) CBIR 技术以查询图像为输入,对目标图像数据库中的图像进行排序并输出结果。它是一种有特定目标的图像搜索引擎,需要一个目标图像数据库。直接使用图像进行相似度比较存在一些问题: - 图像维度大。 - 像素存在大量冗余。 - 像素不携带语义信息。 因此,我们训练一个目标分类模型,使用模型的特征进行检索。将查询图像和目标数据库通过同一模型获取特征,这些模型也可称为编码器,应能捕获全局和局部特征。为了加快检索速度,可以采用以下方法: | 方法 | 描述 | | ---- | ---- | | 局部敏感哈希(LSH) | 将特征投影到子空间,给出候选列表,后续进行精细特征排序,也是一种降维技术,有低维特征桶。 | | 多索引哈希 | 对特征进行哈希,类似鸽巢原理,使用汉明距离加快计算,汉明距离是二进制表示下数字位置差异的数量。 | 这些方法速度快、内存需求少,但准确性会有所牺牲,且不能捕获语义差异。可以对匹配结果进行重新排序以获得更好的结果,重新排序可采用以下技术: - 几何验证:匹配几何形状,只返回几何形状相似的目标图像。 - 查询扩展:扩展目标图像列表并进行详尽搜索。 - 相关性反馈:获取用户反馈并返回结果,根据用户输入进行重新排序。 #### 4. 构建检索管道 检索管道是为查询图像从目标图像中获取最佳匹配的一系列步骤。其流程如下: ```mermaid graph LR A[离线提取图像数据库特征] --> B[存储特征到数据库] C[查询图像] --> D[提取查询图像特征] D --> E[计算与所有目标图像的相似度] E --> F[对图像进行排序] F --> G[输出最终结果] B --> E ``` 特征提取步骤要快,可以使用 TensorFlow Serving。根据应用需求选择使用的特征,例如纹理匹配可使用初始层,对象级匹配可使用后续层。 #### 5. 提取图像的瓶颈特征 瓶颈特征是预分类层计算的值。下面介绍如何使用 TensorFlow 从预训练模型中提取瓶颈特征。 首先,导入必要的库: ```python import os import urllib.request from tensorflow.python.platform import gfile import tarfile ``` 下载预训练模型并解压到本地文件夹: ```python model_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' file_name = model_url.split('/')[-1] file_path = os.path.join(work_dir, file_name) if not os.path.exists(file_path): file_path, _ = urllib.request.urlretrieve(model_url, file_path) tarfile.open(file_path, 'r:gz').extractall(work_dir) ``` 读取图定义并加载到内存: ```python model_path = os.path.join(work_dir, 'classify_image_graph_def.pb') with gfile.FastGFile(model_path, 'rb') as f: graph_defnition = tf.GraphDef() graph_defnition.P ```
corwn 最低0.47元/天 解锁专栏
赠100次下载
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究
最低0.47元/天 解锁专栏
赠100次下载
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
立即解锁

专栏目录

最新推荐

数据在不同部门的应用与挑战及后续提升建议

### 数据在不同部门的应用与挑战及后续提升建议 在当今数字化时代,数据在各个部门的运营中扮演着至关重要的角色。下面我们将深入探讨数据在营销、销售和信息技术部门的应用情况,以及如何提升数据沟通技能。 #### 数据在营销部门的应用与挑战 在营销领域,数据的影响力无处不在。以Prep Air为例,数字营销主管Alex指出,数字营销的兴起带来了海量数据,彻底改变了整个营销领域。过去,营销研究主要依赖焦点小组和调查,一次只能针对一个个体。如今,除了这些传统方法,还可以收集和跟踪社交媒体参与度、网站流量等多方面的数据。 数据来源广泛,包括人口普查记录、谷歌分析的网站流量报告以及Facebook、

软件定义网络的数据可视化与负载均衡实验

### 软件定义网络的数据可视化与负载均衡实验 在当今的网络环境中,软件定义网络(SDN)的应用越来越广泛。本文将详细介绍一个关于软件定义网络的数据可视化与负载均衡的实验,包括实验步骤、遇到的问题及解决方法,以及如何生成相关的分析图表。 #### 1. 流量生成与结果过滤 在实验中,我们首先需要生成流量并记录相关事件。以下是具体的操作步骤: - **定义服务器与客户端**: - 停止Host - 3服务器,在h8控制台输入命令 `iperf -s -p 6653 -i 1 > result - H8`,将IP地址为10.0.0.8的Host - 8定义为服务器,“result -

数据可视化:静态与交互式的优劣及团队模式分析

# 数据可视化:静态与交互式的优劣及团队模式分析 ## 1. 幻灯片与数据可视化 在数据沟通中,幻灯片是一种常用且有效的方式。能通过幻灯片清晰沟通是一项重要技能,无论是使用PowerPoint还是Google Slides,掌握设计工具都需大量时间和实践。 幻灯片之所以是有效的沟通方式,是因为其具备与数据可视化相同的有效元素: - **简化信息**:幻灯片应尽量少用文字,需将关键概念浓缩成简单要点。 - **清晰标题**:如同数据可视化,幻灯片标题应明确所回答的问题或表达的观点,让观众能轻松理解展示内容。 - **视觉线索**:图像、字体、颜色和主题等都能为幻灯片内的信息提供视觉线索。

数据科学家绩效评估方法解析

### 数据科学家绩效评估方法解析 在数据科学领域,衡量数据科学家的绩效是一项具有挑战性的任务。虽然数据科学本身强调测量和指标跟踪,但为数据科学家的工作价值赋予一个确切的数字并非易事。下面将详细探讨几种评估数据科学家绩效的方法。 #### 1. 工作时间评估 工作时间是最直接的绩效衡量方式。比如,早上9点上班,晚上9点下班,减去午休时间,就是一天的工作时长。对于那些具有固定或相对稳定价值产出率的工作,工作时间是一个可行的绩效指标,就像在日本街头,拿着道路施工标志站岗的人员,他们投入的工作时长能准确反映其工作绩效。 然而,对于需要解决复杂问题的工作,工作时间和实际工作投入是两个不同的概念。

数据分析与分层模型解读

### 数据分析与分层模型解读 在数据分析中,我们常常会用到各种模型来解读数据背后的规律。这里主要探讨分层模型的相关内容,包括如何分析数据、模型的构建与评估,以及结果的呈现与解读。 #### 1. R² 值的计算 在分析数据时,我们可能会注意到不同模型的 R² 值情况。例如,对于某些模型的输出,能直接看到 R² 值,而对于分层模型,需要额外的操作来获取。以分层模型 `fit_lmer1` 为例,若要计算其 R² 值,可按以下步骤操作: 1. 安装并加载 `MuMIn` 包。 2. 运行 `r.squaredGLMM(fit_lmer1)` 函数。 运行该函数后,会得到两个 R² 值: -

数据可视化:工具与Python库的综合指南

# 数据可视化:工具与Python库的综合指南 ## 一、数据可视化的基础技巧 ### (一)创建对比 在展示数据时,应尽可能多地进行对比。当同时展示两个关于同一参数在不同时期的图表或图示时,能清晰地解释数据的影响,并突出趋势、高低点、优势和劣势,便于大家理解和思考。例如,对比2019年第一季度和2020年第一季度的销售折线图。 ### (二)讲述数据故事 以可视化方式呈现数据如同讲故事,能向受众传达目标或信息,提高参与度,让人们轻松理解数据。科学研究表明,人类更喜欢听故事,对讲述得当的故事反应更好。通过可视化来讲述故事,不仅能更好地传达信息,还能在展示中脱颖而出。可以通过整理信息,借鉴作

利用GARCH模型变体进行股票市场预测中的情感分析实现

### 利用GARCH模型变体进行股票市场预测中的情感分析实现 在金融领域,股票市场预测一直是一个备受关注的话题。由于金融数据具有高波动性和异方差性(即方差随时间变化),传统的时间序列分析方法往往难以准确建模。广义自回归条件异方差(GARCH)模型因其能够有效处理异方差问题而成为时间序列预测中的常用工具。同时,社交媒体数据和金融新闻也对股票价格预测产生着重要影响,情感分析技术可以从中提取有用信息,帮助我们更好地理解市场行为。本文将详细介绍如何运用情感分析和GARCH模型变体对苹果公司的股票数据进行预测。 #### 1. 研究背景 GARCH模型由Bollerslev于1986年提出,此后被

打造与分享Excel仪表盘:设计、保护与部署全攻略

# 打造与分享 Excel 仪表盘:设计、保护与部署全攻略 在数据可视化的领域中,Excel 仪表盘是一种强大的工具,它能够将复杂的数据以直观的方式呈现给用户。本文将详细介绍如何设计一个美观且实用的 Excel 仪表盘,以及如何保护和分享它。 ## 1. 仪表盘设计优化 ### 1.1 突出关键数据 为了让用户更聚焦于仪表盘的关键数据点或特定部分,可以使用加粗字体进行突出显示。具体操作如下: - 仔细审视仪表盘,找出那些需要强调特定信息或数据点的区域。 - 在后续步骤中,再添加标题和标签。 ### 1.2 优化文本框格式 为了让用户更轻松地识别关键数字,可以对文本框进行如下格式优化: 1

基于文本的关系提取与知识图谱构建

### 基于文本的关系提取与知识图谱构建 #### 1. 引言 在分析公司网络时,共现图能为我们提供一些有趣的见解,但它无法告知我们关系的具体类型。例如,在某些子图中,我们能看到公司之间存在关联,但具体是什么样的关系却并不清楚。为了解决这个问题,我们需要进行关系提取,从而构建知识图谱,以更清晰地展示公司之间的关系。 #### 2. 关系提取的重要性 有时候,最有趣的关系往往不是频繁出现的那些。比如,即将到来的合并的首次公告,或者过去曾被提及几次但随后被遗忘的惊人关系。以前不相关的实体突然同时出现,可能是开始对该关系进行深入分析的信号。 #### 3. 基于短语匹配的关系提取蓝图 - **

Rasa开发:交互式学习、调试、优化与社区生态

### Rasa开发:交互式学习、调试、优化与社区生态 #### 1. 交互式学习中的数据保存与退出 在交互式学习的每一轮中,都需要确认自然语言理解(NLU)分析结果以及多个动作预测结果。若对为何有多个动作存在疑惑,可参考相关原理内容。当我们完成与聊天机器人的交互学习后,需要手动保存反馈数据。具体操作步骤如下: - 按下 `Ctrl + C`,会出现如下选项: - `Continue`:继续当前的交互式学习。 - `Undo Last`:撤销上一步操作。 - `Fork`:分叉当前对话流程。 - `Start Fresh`:重新开始。 - `Export & Quit`: