生成对抗网络(GAN)与分布式TensorFlow模型实践
立即解锁
发布时间: 2025-08-30 00:50:15 阅读量: 8 订阅数: 14 AIGC 

### 生成对抗网络(GAN)与分布式TensorFlow模型实践
#### 一、GAN构建与训练的最佳实践
在某些数据集上,判别器可能在区分真实和虚假图像方面表现过好,导致无法为生成器提供足够的梯度反馈。为了使判别器变弱,可以采用以下最佳实践:
1. **学习率设置**:判别器的学习率应远高于生成器的学习率。
2. **优化器选择**:判别器使用梯度下降优化器(GradientDescent),生成器使用Adam优化器。
3. **正则化处理**:判别器采用Dropout正则化,而生成器不使用。
4. **网络结构**:判别器的层数和神经元数量少于生成器。
5. **激活函数**:生成器的输出使用tanh激活函数,判别器的输出使用sigmoid激活函数。
6. **标签设置**:在Keras模型中,真实数据的标签使用0.9而非1.0,虚假数据的标签使用0.1而非0.0,以在标签中引入一点噪声。
#### 二、使用TensorFlow构建简单GAN
可以参考Jupyter笔记本ch - 14a_SimpleGAN中的代码,构建简单GAN的步骤如下:
1. **定义超参数**
```python
# graph hyperparameters
g_learning_rate = 0.00001
d_learning_rate = 0.01
n_x = 784 # number of pixels in the MNIST image
# number of hidden layers for generator and discriminator
g_n_layers = 3
d_n_layers = 1
# neurons in each hidden layer
g_n_neurons = [256, 512, 1024]
d_n_neurons = [256]
# define parameter ditionary
d_params = {}
g_params = {}
activation = tf.nn.leaky_relu
w_initializer = tf.glorot_uniform_initializer
b_initializer = tf.zeros_initializer
```
2. **定义生成器网络**
```python
z_p = tf.placeholder(dtype=tf.float32, name='z_p',
shape=[None, n_z])
layer = z_p
# add generator network weights, biases and layers
with tf.variable_scope('g'):
for i in range(0, g_n_layers):
w_name = 'w_{0:04d}'.format(i)
g_params[w_name] = tf.get_variable(
name=w_name,
shape=[n_z if i == 0 else g_n_neurons[i - 1],
g_n_neurons[i]],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
g_params[b_name] = tf.get_variable(
name=b_name, shape=[g_n_neurons[i]],
initializer=b_initializer())
layer = activation(
tf.matmul(layer, g_params[w_name]) +
g_params[b_name])
# output (logit) layer
i = g_n_layers
w_name = 'w_{0:04d}'.format(i)
g_params[w_name] = tf.get_variable(
name=w_name,
shape=[g_n_neurons[i - 1], n_x],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
g_params[b_name] = tf.get_variable(
name=b_name, shape=[n_x], initializer=b_initializer())
g_logit = tf.matmul(layer, g_params[w_name]) +
g_params[b_name]
g_model = tf.nn.tanh(g_logit)
```
3. **定义两个判别器网络的权重和偏置**
```python
with tf.variable_scope('d'):
for i in range(0, d_n_layers):
w_name = 'w_{0:04d}'.format(i)
d_params[w_name] = tf.get_variable(
name=w_name,
shape=[n_x if i == 0 else d_n_neurons[i - 1],
d_n_neurons[i]],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
d_params[b_name] = tf.get_variable(
name=b_name, shape=[d_n_neurons[i]],
initializer=b_initializer())
#output (logit) layer
i = d_n_layers
w_name = 'w_{0:04d}'.format(i)
d_params[w_name] = tf.get_variable(
name=w_name, shape=[d_n_neurons[i - 1], 1],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
d_params[b_name] = tf.get_variable(
name=b_name, shape=[1], initializer=b_initializer())
```
4. **构建以真实图像为输入的判别器**
```python
# define discriminator_real
# input real images
x_p = tf.placeholder(dtype=tf.float32, name='x_p',
shape=[None, n_x])
layer = x_p
with tf.variable_scope('d'):
for i in range(0, d_n_layers):
w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
layer = activation(
tf.matmul(layer, d_params[w_name]) +
d_params[b_name])
layer = tf.nn.dropout(layer,0.7)
#output (logit) layer
i = d_n_layers
w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
d_logit_real = tf.matmul(layer,
d_params[w_name]) + d_params[b_name]
d_model_real = tf.nn.sigmoid(d_logit_real)
```
5. **构建以生成器输出为输入的判别器**
```python
# define discriminator_fake
# input generated fake images
z = g_model
layer = z
with tf.variable_scope('d'):
for i in range(0, d_n_layers):
w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
layer = activation(
tf.matmul(layer, d_params[w_name]) +
d_params[b_name])
layer = tf.nn.dropout(layer,0.7)
#output (logit) layer
i = d_n_layers
w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
d_logit_fake = tf.matmul(layer,
d_params[w_name]) + d_params[b_name]
d_model_fake = tf.nn.sigmoid(d_logit_fake)
```
6. **定义损失、优化器和训练函数**
```python
g_loss = -tf.reduce_mean(tf.log(d_model_fake))
d_loss = -tf.reduce_mea
```
0
0
复制全文
相关推荐










