file-type

探索TensorFlow.js全栈入门套件:AI项目的开发环境

下载需积分: 9 | 424KB | 更新于2025-09-14 | 160 浏览量 | 0 下载量 举报 收藏
download 立即下载
### TensorFlow.js全栈入门套件知识点 #### 标题知识点 - **TensorFlow-Stack-TS**: 表明这是一个基于TensorFlow的全栈开发工具包,使用TypeScript语言进行开发。 - **TensorFlow.js全栈入门套件**: 指明这是一个面向初学者的TensorFlow.js开发环境,涵盖了从基础到应用开发的全过程。 #### 描述知识点 - **AI项目的启动**: 描述了开发AI项目的动机,强调了项目初期概念验证之后,需要进一步开发应用程序或测试床的需求。 - **应用环境的需求**: 在概念验证之后,需要一个可以进行进一步开发的环境,这表明全栈套件提供了完整的应用程序堆栈环境。 - **最新技术的集成**: 作者在尝试建立一个基于AI和TensorFlow的应用程序时,遇到了旧模板不支持最新技术集成的问题,从而引发了创建新套件的想法。 - **探索模型的需求**: TensorFlow.js在NodeJS环境下的应用强调了探索模型、可视化和调整参数的可能性,而不是在该环境下训练大型复杂模型。 #### 标签知识点 - **NodeJS**: 作为运行TensorFlow.js的环境,NodeJS提供了一个服务器端的JavaScript运行环境。 - **GraphQL**: 一种用于API的查询语言,常用于构建API,可能在全栈套件中用于数据的查询和管理。 - **Machine Learning**: 机器学习是AI项目的核心,TensorFlow是实现机器学习功能的主要工具之一。 - **TypeScript**: TypeScript是JavaScript的一个超集,提供了静态类型检查功能,有助于开发大型应用程序。 - **Webpack**: 一个静态模块打包器,用于现代JavaScript应用程序,能够将各种资源如图片、字体和JavaScript模块打包成一个或多个文件。 - **ReactJS**: 一个用于构建用户界面的JavaScript库,由Facebook开发,用于管理应用程序的视图层。 - **TensorFlow**: 开源机器学习框架,用于数据流图的数值计算,广泛应用于研究和生产。 - **Model**: 在AI领域指机器学习模型,是理解和处理数据的算法或函数。 - **Artificial Intelligence**: 人工智能,指的是使计算机模拟人类智能行为的技术。 - **Vega & Vega-Lite**: 两者都是数据可视化语法,提供了声明性的规范来生成交互式图形。 - **KoaJS**: 一个现代的Web框架,用于Node.js应用程序的开发,以更小、更富有表现力和更可靠的代码为目标。 #### 压缩包文件名称列表知识点 - **tensorflow-stack-ts-master**: 这个名称暗示了全栈套件的主目录或主版本,表明用户可以下载并使用这个压缩包来获得完整的开发环境。 ### 总结 TensorFlow-Stack-TS全栈入门套件是一个针对想要快速启动并进行原型开发的AI项目的工具集合。它提供了一个整合了TensorFlow.js、NodeJS、TypeScript和ReactJS等技术栈的开发环境,特别适合那些希望使用JavaScript进行AI项目开发的开发者。全栈套件通过集成现代前端开发技术,如Webpack和Vega图表库,来辅助开发者实现从数据处理到前端界面的全部功能。同时,它还支持使用GraphQL来优化后端数据交互。通过提供一个集中化的资源集合,TensorFlow-Stack-TS帮助开发者避免了技术集成的复杂性,从而能够更快地开始他们的AI应用项目。

相关推荐

filetype

WARNING:tensorflow:From /root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/compat/v2_compat.py:96: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version. Instructions for updating: non-resource variables are not supported in the long term 2025-07-26 19:44:10.231806: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1 2025-07-26 19:44:10.313436: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: pciBusID: 0000:39:00.0 name: NVIDIA GeForce RTX 4090 computeCapability: 8.9 coreClock: 2.52GHz coreCount: 128 deviceMemorySize: 23.55GiB deviceMemoryBandwidth: 938.86GiB/s 2025-07-26 19:44:10.313630: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2025-07-26 19:44:10.313667: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory 2025-07-26 19:44:10.314718: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10 2025-07-26 19:44:10.314970: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10 2025-07-26 19:44:10.315017: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2025-07-26 19:44:10.315049: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusparse.so.10'; dlerror: libcusparse.so.10: cannot open shared object file: No such file or directory 2025-07-26 19:44:10.315080: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudnn.so.7'; dlerror: libcudnn.so.7: cannot open shared object file: No such file or directory 2025-07-26 19:44:10.315086: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1598] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 2025-07-26 19:44:10.315433: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA 2025-07-26 19:44:10.342984: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2000000000 Hz 2025-07-26 19:44:10.349020: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f67d0000b60 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2025-07-26 19:44:10.349043: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version 2025-07-26 19:44:10.350861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix: 2025-07-26 19:44:10.350875: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] WARNING:tensorflow:From /root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/layers/layers.py:1089: Layer.apply (from tensorflow.python.keras.engine.base_layer_v1) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. loaded ./checkpoint/decom_net_train/model.ckpt loaded ./checkpoint/illumination_adjust_net_train/model.ckpt No restoration pre model! (480, 640, 3) (680, 720, 3) (415, 370, 3) Traceback (most recent call last): File "evaluate.py", line 73, in <module> eval_low_im = load_images(eval_low_data_name[idx]) File "/root/Python/KinD-master/KinD-master/utils.py", line 63, in load_images im = Image.open(file) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/PIL/Image.py", line 2975, in open fp = builtins.open(filename, "rb") IsADirectoryError: [Errno 21] Is a directory: './test/results'

filetype

Skipping registering GPU devices... 2025-07-26 19:41:36.404421: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA 2025-07-26 19:41:36.434980: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2000000000 Hz 2025-07-26 19:41:36.441018: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f2764000b60 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2025-07-26 19:41:36.441046: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version 2025-07-26 19:41:36.442874: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix: 2025-07-26 19:41:36.442890: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] WARNING:tensorflow:From /root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/layers/layers.py:1089: Layer.apply (from tensorflow.python.keras.engine.base_layer_v1) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. loaded ./checkpoint/decom_net_train/model.ckpt loaded ./checkpoint/illumination_adjust_net_train/model.ckpt No restoration pre model! (480, 640, 3) (680, 720, 3) (415, 370, 3) Traceback (most recent call last): File "evaluate.py", line 73, in <module> eval_low_im = load_images(eval_low_data_name[idx]) File "/root/Python/KinD-master/KinD-master/utils.py", line 63, in load_images im = Image.open(file) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/PIL/Image.py", line 2975, in open fp = builtins.open(filename, "rb") IsADirectoryError: [Errno 21] Is a directory: './test/results'

基础颜究的三亩叔
  • 粉丝: 44
上传资源 快速赚钱