活动介绍
file-type

CSS技术构建vis2x的个人网站

ZIP文件

下载需积分: 5 | 3KB | 更新于2025-08-17 | 163 浏览量 | 0 下载量 举报 收藏
download 立即下载
根据提供的文件信息,我们可以提取到以下知识点: ### 标题知识点:vis2x.github.io 1. **网站域名解析**:从标题可以推断出,"vis2x.github.io" 是一个网站的域名。通常以 ".github.io" 结尾的域名是由GitHub提供的,用于托管用户通过GitHub Pages服务创建的静态网站。 2. **GitHub Pages介绍**:GitHub Pages是GitHub提供的一个免费的静态网页托管服务。用户可以创建个人或项目的页面,并使用Jekyll、Hugo等静态网站生成器或者直接使用HTML/CSS/JavaScript来设计自己的网站。 3. **域名和网站的关系**:域名系统(DNS)是互联网上用于将域名和IP地址相互映射的一个分布式数据库系统。通过域名(如 "vis2x.github.io"),用户能够通过更易记的名称访问特定服务器上的资源。 ### 描述知识点:我的网站 1. **网站定义**:描述中的“我的网站”说明这是一个个人或组织的网络站点。网站可以用于个人展示、分享资源、发布博客文章、提供服务等多种目的。 2. **网站开发技术**:虽然描述没有直接指出,但是根据常识,我们可以推测网站可能涉及前端开发技术,例如HTML、CSS和JavaScript,因为这些是构建现代网站的基础技术。 3. **网站维护与管理**:提到是“我的网站”,表明拥有者需要对其内容、设计和功能进行定期更新和维护,确保网站内容的时效性和用户的良好体验。 ### 标签知识点:CSS 1. **CSS简介**:CSS,全称为层叠样式表(Cascading Style Sheets),是一种用来表现HTML或XML(包括各种XML方言,如SVG或XHTML)文档的样式层叠语言。 2. **CSS的作用**:CSS主要负责网页的布局、颜色、字体等视觉呈现方面的控制,它与HTML结合使用,可以定义网页内容的外观和格式。通过使用CSS,开发者能够将内容和设计分离,使得网页设计更加灵活和易于维护。 3. **CSS的特性**: - **层叠性**:同一个元素可以应用多个CSS规则,浏览器会根据层叠规则来决定最终样式。 - **继承性**:某些CSS属性会被子元素继承,例如字体和颜色等。 - **可维护性**:通过定义外部样式表,可以对整个网站的布局和设计进行统一修改。 - **选择器的多样性**:CSS支持多种选择器,如类选择器、ID选择器、属性选择器、伪类选择器等。 ### 压缩包子文件的文件名称列表知识点:vis2x.github.io-main 1. **文件命名**:文件名“vis2x.github.io-main”暗示了这是一个与主网站相关的文件,可能包含了网站的主要内容、资源或核心代码。 2. **压缩包的作用**:通常,开发者会将网站的所有相关文件打包成一个压缩包(如.zip或.tar.gz格式),这样做可以方便地归档和传输这些文件,同时减少所需的存储空间。 3. **解压与部署**:压缩包中可能包含多种资源文件,如HTML文件、CSS文件、JavaScript文件、图片资源等。网站的所有者或开发者需要将这些文件解压并部署到服务器上,以确保网站能够正常运行。 4. **版本控制和部署实践**:考虑到文件名中包含“main”,这可能意味着这是主分支的主要部署版本。在现代的Web开发实践中,使用版本控制系统(如Git)来管理代码和文件是一个标准的做法。其中,"main"或"master"通常作为默认分支,存放着准备上线或正在使用的代码。 综合上述信息,我们可以构建以下知识体系:用户拥有一个托管在GitHub Pages上的个人网站,网站使用了CSS技术进行样式设计,并且可能使用了Git作为版本控制工具来管理代码。网站的相关文件被打包成压缩包以备部署之用。了解这些知识点有助于更好地管理和维护一个静态网站。

相关推荐

filetype

将以下vega-lite代码转换为vega代码: { "$schema": "https://vega.github.io/schema/vega-lite/v5.json", "data": { "url": { "%context%": true, "%timefield%": "Base.CreatedAt", "index": "security_score", "body": { "aggs": { "test_buckets": { "filter": { "terms": { "ScoreType.keyword": ["TotalScore", "impactScore"] } }, "aggs": { "time_buckets": { "date_histogram": { "field": "Base.CreatedAt", "fixed_interval": "1m", "extended_bounds": { "min": {"%timefilter%": "min"}, "max": {"%timefilter%": "max"} }, "min_doc_count": 1 }, "aggs": { "score_sum": { "sum": { "script": { "source": "if(doc['ScoreType.keyword'].value == 'TotalScore') {return doc['Score'].value}", "lang": "painless" } } }, "impact_data_GeneratorId": { "terms": { "field": "CompleteInfo.Base.GeneratorId.keyword", "size": 10000 } }, "impact_data_FixTime": { "terms": { "field": "CompleteInfo.Score.FixTime.keyword", "size": 10000 } } } } } } }, "size": 0 } }, "format": {"property": "aggregations.test_buckets.time_buckets.buckets"} }, "transform": [ { "calculate": "max(0, datum.score_sum.value)", "as": "final_score" } { "calculate": "datum.impact_data_GeneratorId.buckets", "as": "GeneratorId" }, { "calculate": "datum.impact_data_FixTime.buckets", "as": "FixTime" } ], "layer": [ { "mark": {"type": "line", "color": "#32CD32"} }, { "mark": {"type": "point", "filled": true, "color": "#FF3030", "size": 50} } ], "encoding": { "x": { "field": "key", "type": "temporal", "title": "Time", "axis": {"format": "%Y-%m-%d"} }, "y": { "field": "final_score", "type": "quantitative", "title": "Security Score", "scale": {"domain": [0, 100]} }, "tooltip": [ {"field": "key", "type": "temporal", "title": "时间", "format": "%Y-%m-%d %H:%M"}, {"field": "final_score", "title": "最终分数", "format": ".2f"}, {"field": "GeneratorId", "title": "事件类型"}, {"field": "FixTime", "title": "修复时间"} ] }, autosize: { type: fit contains: content resize: true } }

filetype

(foundationpose) root@localhost:/mnt/e/wsl/foundationpose-main# python run_demo.py /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/torch/utils/cpp_extension.py:25: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. from pkg_resources import packaging # type: ignore[attr-defined] Warp 1.0.2 initialized: CUDA Toolkit 11.5, Driver 12.6 Devices: "cpu" : "x86_64" "cuda:0" : "NVIDIA GeForce RTX 2070 SUPER" (8 GiB, sm_75, mempool enabled) Kernel cache: /root/.cache/warp/1.0.2 Traceback (most recent call last): File "/mnt/e/wsl/foundationpose-main/run_demo.py", line 29, in <module> mesh = trimesh.load(args.mesh_file) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/trimesh/exchange/load.py", line 114, in load ) = _parse_file_args(file_obj=file_obj, file_type=file_type, resolver=resolver) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/trimesh/exchange/load.py", line 608, in _parse_file_args raise ValueError(f"string is not a file: {file_obj}") ValueError: string is not a file: /mnt/e/wsl/foundationpose-main/demo_data/mustard0/mesh/textured_simple.obj (foundationpose) root@localhost:/mnt/e/wsl/foundationpose-main# python run_demo.py /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/torch/utils/cpp_extension.py:25: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. from pkg_resources import packaging # type: ignore[attr-defined] Warp 1.0.2 initialized: CUDA Toolkit 11.5, Driver 12.6 Devices: "cpu" : "x86_64" "cuda:0" : "NVIDIA GeForce RTX 2070 SUPER" (8 GiB, sm_75, mempool enabled) Kernel cache: /root/.cache/warp/1.0.2 Traceback (most recent call last): File "/mnt/e/wsl/foundationpose-main/run_demo.py", line 29, in <module> mesh = trimesh.load(args.mesh_file) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/trimesh/exchange/load.py", line 114, in load ) = _parse_file_args(file_obj=file_obj, file_type=file_type, resolver=resolver) File "/root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/trimesh/exchange/load.py", line 608, in _parse_file_args raise ValueError(f"string is not a file: {file_obj}") ValueError: string is not a file: /mnt/e/wsl/foundationpose-main/demo_data/mustard0/mesh/textured_simple.obj (foundationpose) root@localhost:/mnt/e/wsl/foundationpose-main# python run_demo.py /root/anaconda3/envs/foundationpose/lib/python3.9/site-packages/torch/utils/cpp_extension.py:25: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. from pkg_resources import packaging # type: ignore[attr-defined] Warp 1.0.2 initialized: CUDA Toolkit 11.5, Driver 12.6 Devices: "cpu" : "x86_64" "cuda:0" : "NVIDIA GeForce RTX 2070 SUPER" (8 GiB, sm_75, mempool enabled) Kernel cache: /root/.cache/warp/1.0.2 [__init__()] self.cfg: lr: 0.0001 c_in: 6 zfar: 'Infinity' debug: null n_view: 1 run_id: 3wy8qqex use_BN: true exp_name: 2024-01-11-20-02-45 n_epochs: 62 save_dir: /home/bowenw/debug/2024-01-11-20-02-45/ use_mask: false loss_type: pairwise_valid optimizer: adam batch_size: 64 crop_ratio: 1.1 enable_amp: true use_normal: false max_num_key: null warmup_step: -1 input_resize: - 160 - 160 max_step_val: 1000 vis_interval: 1000 weight_decay: 0 normalize_xyz: true resume_run_id: null clip_grad_norm: 'Infinity' lr_epoch_decay: 500 render_backend: nvdiffrast train_num_pair: 5 lr_decay_epochs: - 50 n_epochs_warmup: 1 make_pair_online: false gradient_max_norm: 'Infinity' max_step_per_epoch: 10000 n_rendering_workers: 1 save_epoch_interval: 100 n_dataloader_workers: 100 split_objects_across_gpus: true ckpt_dir: /mnt/e/wsl/foundationpose-main/learning/training/../../weights/2024-01-11-20-02-45/model_best.pth [__init__()] self.h5_file:None [__init__()] Using pretrained model from /mnt/e/wsl/foundationpose-main/learning/training/../../weights/2024-01-11-20-02-45/model_best.pth [__init__()] init done [__init__()] welcome [__init__()] self.cfg: lr: 0.0001 c_in: 6 zfar: .inf debug: null w_rot: 0.1 n_view: 1 run_id: null use_BN: true rot_rep: axis_angle ckpt_dir: /mnt/e/wsl/foundationpose-main/learning/training/../../weights/2023-10-28-18-33-37/model_best.pth exp_name: 2023-10-28-18-33-37 save_dir: /tmp/2023-10-28-18-33-37/ loss_type: l2 optimizer: adam trans_rep: tracknet batch_size: 64 crop_ratio: 1.2 use_normal: false BN_momentum: 0.1 max_num_key: null warmup_step: -1 input_resize: - 160 - 160 max_step_val: 1000 normal_uint8: false vis_interval: 1000 weight_decay: 0 n_max_objects: null normalize_xyz: true clip_grad_norm: 'Infinity' rot_normalizer: 0.3490658503988659 trans_normalizer: - 0.019999999552965164 - 0.019999999552965164 - 0.05000000074505806 max_step_per_epoch: 25000 val_epoch_interval: 10 n_dataloader_workers: 60 enable_amp: true use_mask: false [__init__()] self.h5_file: [__init__()] Using pretrained model from /mnt/e/wsl/foundationpose-main/learning/training/../../weights/2023-10-28-18-33-37/model_best.pth [__init__()] init done