file-type

掌握Groovy实现test-runner-pipeline的自动化测试

ZIP文件

下载需积分: 5 | 90KB | 更新于2025-09-04 | 97 浏览量 | 0 下载量 举报 收藏
download 立即下载
标题“test-runner-pipeline”和描述“test-runner-pipeline”指向一个与测试执行和管理相关的流程或管道。在此上下文中,“pipeline”一词通常指的是一系列自动化构建和测试步骤,这些步骤通常在一个持续集成(Continuous Integration,简称CI)环境中执行。CI是一种软件开发实践,开发者频繁地(通常是每天多次)将代码集成到共享仓库中。每次集成都通过自动化构建(包括测试)来验证,从而尽早地发现集成错误。 标签“Groovy”表明这个特定的pipeline可能与Groovy语言相关。Groovy是一种运行在Java虚拟机(JVM)上的敏捷开发语言,它支持动态语言特性,并且和Java语言兼容。Groovy被广泛用于编写测试脚本,特别是在自动化测试框架如Spock和Geb中。因此,提到“Groovy”可能意味着这个pipeline涉及使用Groovy语言编写的测试脚本或者自动化测试的实现。 “压缩包子文件的文件名称列表”中的“test-runner-pipeline-master”似乎是指一个压缩包文件的名称。虽然描述没有提供更多的信息,但我们可以合理推断这个文件可能包含了上述提及的测试运行管道的所有相关文件和资源。这种压缩包可能是用于分发、部署或存储测试管道的代码和配置的。 由于描述部分没有提供更详细的信息,我们可以进一步扩展有关测试管道、Groovy语言和持续集成的知识点。 ### 测试管道知识点 1. **持续集成(CI)背景:** 持续集成是一个开发实践,要求开发人员频繁地(可能是每天多次)将代码变更集成到主干上。每次集成都要通过自动化构建(包括编译、运行测试等)来验证,从而尽早地发现集成错误。 2. **测试管道的组成:** 测试管道通常包括以下几个部分: - **版本控制**:代码变更被提交到一个中央版本控制系统,如Git。 - **构建管理**:对代码进行编译,生成可执行文件。 - **测试自动化**:运行单元测试、集成测试、系统测试等自动化测试。 - **代码质量分析**:检查代码是否满足预定的质量标准,例如代码风格、代码复杂度等。 - **部署**:将构建的代码部署到测试服务器或生产服务器。 - **报告和反馈**:将测试结果和构建状态报告给开发团队,并提供反馈。 3. **Jenkins管道:** Jenkins是一个流行的开源自动化服务器,它可以用来自动化各种任务,包括构建、测试和部署软件。Jenkins管道(Jenkins Pipeline)是一种用代码(如Groovy脚本)来定义整个CI/CD工作流的方式。 ### Groovy语言知识点 1. **Groovy特性:** Groovy是基于JVM的敏捷开发语言,它与Java完全兼容,同时提供了一些动态语言的特性。这些特性包括: - 类型推断 - 闭包 - 动态类型和方法 - 语法简洁,例如使用`def`关键字代替明确的类型声明 2. **Groovy在自动化测试中的应用:** - **Spock测试框架**:Spock是一个基于Groovy的测试框架,它提供了丰富的功能来编写可读性强的、规范化的测试代码。 - **Geb**:Geb是一种基于Groovy的自动化Web测试工具,它结合了Selenium Web驱动器的强大功能和Groovy的简洁语法。 3. **Groovy脚本在CI/CD管道中的作用:** - **配置管理**:使用Groovy脚本配置Jenkins管道,定义步骤和阶段。 - **环境准备**:Groovy可以用来设置和配置测试执行所需的环境。 - **测试逻辑编写**:编写测试逻辑,控制测试的执行流。 ### 持续集成和部署(CI/CD) 1. **CI/CD的必要性:** CI/CD是现代软件开发的关键实践,有助于团队快速交付软件。其核心价值在于自动化和持续的反馈。 2. **CI/CD管道工具**: 除了Jenkins,其他流行的CI/CD工具包括GitLab CI, CircleCI, Travis CI等。 3. **CI/CD的优势:** - **提高生产效率**:自动化减少了重复性工作,允许团队专注于更高价值的任务。 - **降低风险**:快速频繁的集成帮助发现和修复问题。 - **提升产品质量**:持续的测试确保新的更改不会破坏现有功能。 综合上述知识点,一个名为“test-runner-pipeline”的测试运行管道可能是一种自动化的、以Groovy语言实现的CI/CD流程,它旨在简化测试执行与管理,提高开发团队的效率和软件质量。由于缺乏具体描述,这里对测试管道的细节仅能做一般性推测,实际应用中测试管道的设计和实现可能会根据项目需求和组织结构有所不同。

相关推荐

filetype

.gitlab-ci.yml文件 # This file is a template, and might need editing before it works on your project. # To contribute improvements to CI/CD templates, please follow the Development guide at: # https://docs.gitlab.com/ee/development/cicd/templates.html # This specific template is located at: # https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Getting-Started.gitlab-ci.yml # This is a sample GitLab CI/CD configuration file that should run without any modifications. # It demonstrates a basic 3 stage CI/CD pipeline. Instead of real tests or scripts, # it uses echo commands to simulate the pipeline execution. # # A pipeline is composed of independent jobs that run scripts, grouped into stages. # Stages run in sequential order, but jobs within stages run in parallel. # # For more information, see: https://docs.gitlab.com/ee/ci/yaml/index.html#stages image: 12.22.9 # add 'node_modules' to cache for speeding up builds cache: paths: - node_modules/ # Node modules and dependencies before_script: - npm install gitbook-cli -g # install gitbook - gitbook fetch 3.2.3 # fetch final stable version - gitbook install # add any requested plugins in book.json test: stage: test script: - gitbook build . public # build to public path only: - branches # this job will affect every branch except 'master' except: - master # the 'pages' job will deploy and build your site to the 'public' path pages: stage: deploy script: - gitbook build . public # build to public path artifacts: paths: - public expire_in: 1 week only: - master # this job will affect only the 'master' branch 运行后,结果在哪里呢?/home/gitlab-runner 中没有看到 build结果,我如何访问 gitbook呢?

filetype

Traceback (most recent call last): File "/root/mmdetection-main/tools/test.py", line 149, in <module> main() File "/root/mmdetection-main/tools/test.py", line 141, in main runner.test_evaluator.metrics.append( File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/runner/runner.py", line 635, in test_evaluator return self.test_loop.evaluator File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/runner/runner.py", line 609, in test_loop self._test_loop = self.build_test_loop(self._test_loop) File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/runner/runner.py", line 1604, in build_test_loop loop = LOOPS.build( File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/registry/registry.py", line 570, in build return self.build_func(cfg, *args, **kwargs, registry=self) File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg obj = obj_cls(**args) # type: ignore File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/runner/loops.py", line 434, in __init__ super().__init__(runner, dataloader) File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/runner/base_loop.py", line 26, in __init__ self.dataloader = runner.build_dataloader( File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/runner/runner.py", line 1370, in build_dataloader dataset = DATASETS.build(dataset_cfg) File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/registry/registry.py", line 570, in build return self.build_func(cfg, *args, **kwargs, registry=self) File "/root/miniconda3/envs/mmdet_py39/lib/python3.9/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg obj = obj_cls(**args) # type: ignore File "/root/mmdetection-main/mmdet/datasets/base_det_dataset.py

filetype

[root@elk-server config]# /usr/local/logstash-8.4.0/bin/logstash --config.test_and_exit -f /usr/local/logstash-8.4.0/config/kafka2es-pipeline.conf Using bundled JDK: /usr/local/logstash-8.4.0/jdk Sending Logstash logs to /usr/local/logstash-8.4.0/logs which is now configured via log4j2.properties [2025-08-28T11:56:43,608][INFO ][logstash.runner ] Log4j configuration path used is: /usr/local/logstash-8.4.0/config/log4j2.properties [2025-08-28T11:56:43,614][INFO ][logstash.runner ] Starting Logstash {"logstash.version"=>"8.4.0", "jruby.version"=>"jruby 9.3.6.0 (2.6.8) 2022-06-27 7a2cbcd376 OpenJDK 64-Bit Server VM 17.0.4+8 on 17.0.4+8 +indy +jit [x86_64-linux]"} [2025-08-28T11:56:43,618][INFO ][logstash.runner ] JVM bootstrap flags: [-Xms1g, -Xmx1g, -Djava.awt.headless=true, -Dfile.encoding=UTF-8, -Djruby.compile.invokedynamic=true, -Djruby.jit.threshold=0, -XX:+HeapDumpOnOutOfMemoryError, -Djava.security.egd=file:/dev/urandom, -Dlog4j2.isThreadContextMapInheritable=true, -Djruby.regexp.interruptible=true, -Djdk.io.File.enableADS=true, --add-exports=jdk.compiler/com.sun.tools.javac.api=ALL-UNNAMED, --add-exports=jdk.compiler/com.sun.tools.javac.file=ALL-UNNAMED, --add-exports=jdk.compiler/com.sun.tools.javac.parser=ALL-UNNAMED, --add-exports=jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED, --add-exports=jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED, --add-opens=java.base/java.security=ALL-UNNAMED, --add-opens=java.base/java.io=ALL-UNNAMED, --add-opens=java.base/java.nio.channels=ALL-UNNAMED, --add-opens=java.base/sun.nio.ch=ALL-UNNAMED, --add-opens=java.management/sun.management=ALL-UNNAMED] [2025-08-28T11:56:44,099][WARN ][logstash.config.source.multilocal] Ignoring the 'pipelines.yml' file because modules or command line options are specified [2025-08-28T11:56:44,779][FATAL][logstash.runner ] The given configuration is invalid. Reason: Expected one of [A-Za-z0-9_-], [ \t\r\n], "#", "=>" at line 14, column 10 (byte 434) after input { kafka { # 1. Kafka集群地址(多个用逗号分隔) bootstrap_servers => "kafka-zk1:9092,kafka-zk2:9092" # 2. 订阅的Kafka主题(需与Kafka中创建的主题一致) topics => ["log-monitor-topic"] # 3. 消费组ID(确保唯一,避免重复消费) group_id => "logstash-monitor-group" # 4. 日志格式(Kafka中日志的编码格式,通常为JSON) codec => "json" # 5. 消费线程数(建议与Kafka主题的分区数匹配,此处5分区对应5线程) consumer_threads => 5 # 6. 可选:批量拉取最小字节数(优化网络请求,1MB=1048576字节,可省略用默认值) fetch [2025-08-28T11:56:44,784][FATAL][org.logstash.Logstash ] Logstash stopped processing because of an error: (SystemExit) exit org.jruby.exceptions.SystemExit: (SystemExit) exit at org.jruby.RubyKernel.exit(org/jruby/RubyKernel.java:790) ~[jruby.jar:?] at org.jruby.RubyKernel.exit(org/jruby/RubyKernel.java:753) ~[jruby.jar:?] at usr.local.logstash_minus_8_dot_4_dot_0.lib.bootstrap.environment.<main>(/usr/local/logstash-8.4.0/lib/bootstrap/environment.rb:91) ~[?:?]

filetype

# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp from mmdet.engine.hooks.utils import trigger_visualization_hook from mmengine.config import Config, ConfigDict, DictAction from mmengine.evaluator import DumpResults from mmengine.runner import Runner from mmyolo.registry import RUNNERS from mmyolo.utils import is_metainfo_lower # TODO: support fuse_conv_bn def parse_args(): parser = argparse.ArgumentParser( description='MMYOLO test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work-dir', help='the directory to save the file containing evaluation metrics') parser.add_argument( '--out', type=str, help='output result file (must be a .pkl file) in pickle format') parser.add_argument( '--json-prefix', type=str, help='the prefix of the output json file without perform evaluation, ' 'which is useful when you want to format the result to a specific ' 'format and submit it to the test server') parser.add_argument( '--tta', action='store_true', help='Whether to use test time augmentation') parser.add_argument( '--show', action='store_true', help='show prediction results') parser.add_argument( '--deploy', action='store_true', help='Switch model to deployment mode') parser.add_argument( '--show-dir', help='directory where painted images will be saved. ' 'If specified, it will be automatically saved ' 'to the work_dir/timestamp/show_dir') parser.add_argument( '--wait-time', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-valu

filetype

Traceback (most recent call last): File "/home/hpe/zj/Rein/tools/test.py", line 144, in <module> main() File "/home/hpe/zj/Rein/tools/test.py", line 140, in main runner.test() File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmengine/runner/runner.py", line 1823, in test metrics = self.test_loop.run() # type: ignore ^^^^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmengine/runner/loops.py", line 462, in run for idx, data_batch in enumerate(self.dataloader): File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 633, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1345, in _next_data return self._process_data(data) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1371, in _process_data data.reraise() File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/torch/_utils.py", line 644, in reraise raise exception RuntimeError: Caught RuntimeError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop data = fetcher.fetch(index) ^^^^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 51, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 51, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] ~~~~~~~~~~~~^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmengine/dataset/dataset_wrapper.py", line 171, in __getitem__ return self.datasets[dataset_idx][sample_idx] ~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmengine/dataset/base_dataset.py", line 410, in __getitem__ data = self.prepare_data(idx) ^^^^^^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmengine/dataset/base_dataset.py", line 793, in prepare_data return self.pipeline(data_info) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmengine/dataset/base_dataset.py", line 60, in __call__ data = t(data) ^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmcv/transforms/base.py", line 12, in __call__ return self.transform(results) ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmseg/datasets/transforms/formatting.py", line 72, in transform img = to_tensor(img).contiguous() ^^^^^^^^^^^^^^ File "/home/hpe/anaconda3/envs/rein/lib/python3.11/site-packages/mmcv/transforms/formatting.py", line 31, in to_tensor return torch.from_numpy(data) ^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: Numpy is not available

kudrei
  • 粉丝: 52
上传资源 快速赚钱