file-type

MATLAB深度学习工具箱:经典代码集成

RAR文件

下载需积分: 12 | 28.31MB | 更新于2025-04-29 | 141 浏览量 | 4 评论 | 14 下载量 举报 收藏
download 立即下载
深度学习(Deep Learning)是机器学习(Machine Learning)领域的一个分支,它基于神经网络的结构和算法,通过模拟人脑的神经元连接方式,以多层的神经网络结构处理大量数据,从而能够进行更加复杂的模式识别和数据预测。深度学习的发展极大地推动了人工智能技术的进步,并在图像识别、自然语言处理、自动驾驶、医疗诊断等领域取得了显著的成果。 提到的“MATLAB版本的深度学习工具箱”是一个专门为MATLAB环境设计的工具箱,它提供了一系列的函数和工具,使开发者能够更加便捷地构建、训练和部署深度学习模型。MATLAB是一种广泛使用的数值计算和可视化软件,它非常适合于工程计算、算法开发和数据分析等领域,同时也拥有强大的矩阵计算能力和丰富的工具箱资源,是进行深度学习研究和应用的理想平台。 MATLAB深度学习工具箱包含了许多经典的代码和算法,它们是深度学习领域的基础,包括但不限于: 1. 前馈神经网络(Feedforward Neural Networks):这是最基本的神经网络结构,网络中的信息单向流动,没有循环,一般用于分类和回归任务。 2. 卷积神经网络(Convolutional Neural Networks, CNNs):CNN是处理图像和视频数据特别有效的网络结构,它包含了卷积层、池化层和全连接层等,能够提取图像中的空间特征。 3. 循环神经网络(Recurrent Neural Networks, RNNs):RNN在处理序列数据方面表现突出,能够利用之前的信息进行当前的决策,特别适用于语音识别、文本生成等任务。 4. 长短时记忆网络(Long Short-Term Memory, LSTM):LSTM是一种特殊的RNN,它能学习长期依赖信息,有效地解决了传统RNN难以处理长期依赖的难题。 5. 自动编码器(Autoencoders):自动编码器是一种无监督的学习算法,它通过学习输入数据的表示(编码)以压缩信息,然后重构输入数据(解码),通常用于降维、特征提取和数据去噪。 6. 深度强化学习(Deep Reinforcement Learning):结合了深度学习和强化学习的方法,用于让智能体(agent)通过与环境的交互学习策略,并最大化累积奖励。 在使用MATLAB深度学习工具箱时,用户通常需要进行以下几个步骤: - 数据准备:收集并预处理数据,包括数据加载、清洗、标注和归一化等。 - 网络设计:根据特定任务设计深度神经网络的结构,选择合适的层类型和参数。 - 训练模型:使用准备好的数据对设计好的网络进行训练,设置合适的优化算法、损失函数和评价指标。 - 模型验证与测试:在验证集和测试集上评估模型的性能,调整网络参数和结构优化模型。 - 模型部署:将训练好的模型部署到实际应用中,进行预测或实时处理。 MATLAB深度学习工具箱的使用,降低了深度学习的入门门槛,使得更多的研究者和开发者能够利用MATLAB强大的工具箱资源,快速实现深度学习模型的构建和应用。不过,值得注意的是,尽管MATLAB环境为深度学习提供了便捷的工具和接口,但对于大规模数据处理和生产环境部署,可能需要考虑其他更加高效或更易于集成的深度学习框架,如TensorFlow、PyTorch等。

相关推荐

filetype
深度学习工具包 Deprecation notice. ----- This toolbox is outdated and no longer maintained. There are much better tools available for deep learning than this toolbox, e.g. [Theano](http://deeplearning.net/software/theano/), [torch](http://torch.ch/) or [tensorflow](http://www.tensorflow.org/) I would suggest you use one of the tools mentioned above rather than use this toolbox. Best, Rasmus. DeepLearnToolbox ================ A Matlab toolbox for Deep Learning. Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng. * [The Next Generation of Neural Networks](http://www.youtube.com/watch?v=AyzOUbkUf3M) (Hinton, 2007) * [Recent Developments in Deep Learning](http://www.youtube.com/watch?v=VdIURAu1-aU) (Hinton, 2010) * [Unsupervised Feature Learning and Deep Learning](http://www.youtube.com/watch?v=ZmNOAtZIgIk) (Ng, 2011) If you use this toolbox in your research please cite [Prediction as a candidate for learning deep hierarchical models of data](http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6284) ``` @MASTERSTHESIS\{IMM2012-06284, author = "R. B. Palm", title = "Prediction as a candidate for learning deep hierarchical models of data", year = "2012", } ``` Contact: rasmusbergpalm at gmail dot com Directories included in the toolbox ----------------------------------- `NN/` - A library for Feedforward Backpropagation Neural Networks `CNN/` - A library for Convolutional Neural Networks `DBN/` - A library for Deep Belief Networks `SAE/` - A library for Stacked Auto-Encoders `CAE/` - A library for Convolutional Auto-Encoders `util/` - Utility functions used by the libraries `data/` - Data used by the examples `tests/` - unit tests to verify toolbox is working For references on each library check REFS.md Setup ----- 1. Download. 2. addpath(genpath('DeepLearnToolbox')); Example: Deep Belief Network --------------------- ```matlab function test_example_DBN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit RBM and visualize its weights rand('state',0) dbn.sizes = [100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); figure; visualize(dbn.rbm{1}.W'); % Visualize the RBM weights %% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN rand('state',0) %train dbn dbn.sizes = [100 100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); %unfold dbn to nn nn = dbnunfoldtonn(dbn, 10); nn.activation_function = 'sigm'; %train nn opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.10, 'Too big error'); ``` Example: Stacked Auto-Encoders --------------------- ```matlab function test_example_SAE load mnist_uint8; train_x = double(train_x)/255; test_x = double(test_x)/255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN % Setup and train a stacked denoising autoencoder (SDAE) rand('state',0) sae = saesetup([784 100]); sae.ae{1}.activation_function = 'sigm'; sae.ae{1}.learningRate = 1; sae.ae{1}.inputZeroMaskedFraction = 0.5; opts.numepochs = 1; opts.batchsize = 100; sae = saetrain(sae, train_x, opts); visualize(sae.ae{1}.W{1}(:,2:end)') % Use the SDAE to initialize a FFNN nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; nn.learningRate = 1; nn.W{1} = sae.ae{1}.W{1}; % Train the FFNN opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.16, 'Too big error'); ``` Example: Convolutional Neural Nets --------------------- ```matlab function test_example_CNN load mnist_uint8; train_x = double(reshape(train_x',28,28,60000))/255; test_x = double(reshape(test_x',28,28,10000))/255; train_y = double(train_y'); test_y = double(test_y'); %% ex1 Train a 6c-2s-12c-2s Convolutional neural network %will run 1 epoch in about 200 second and get around 11% error. %With 100 epochs you'll get around 1.2% error rand('state',0) cnn.layers = { struct('type', 'i') %input layer struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %sub sampling layer struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %subsampling layer }; cnn = cnnsetup(cnn, train_x, train_y); opts.alpha = 1; opts.batchsize = 50; opts.numepochs = 1; cnn = cnntrain(cnn, train_x, train_y, opts); [er, bad] = cnntest(cnn, test_x, test_y); %plot mean squared error figure; plot(cnn.rL); assert(er<0.12, 'Too big error'); ``` Example: Neural Networks --------------------- ```matlab function test_example_NN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); % normalize [train_x, mu, sigma] = zscore(train_x); test_x = normalize(test_x, mu, sigma); %% ex1 vanilla neural net rand('state',0) nn = nnsetup([784 100 10]); opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples [nn, L] = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.08, 'Too big error'); %% ex2 neural net with L2 weight decay rand('state',0) nn = nnsetup([784 100 10]); nn.weightPenaltyL2 = 1e-4; % L2 weight decay opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex3 neural net with dropout rand('state',0) nn = nnsetup([784 100 10]); nn.dropoutFraction = 0.5; % Dropout fraction opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex4 neural net with sigmoid activation function rand('state',0) nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; % Sigmoid activation function nn.learningRate = 1; % Sigm require a lower learning rate opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex5 plotting functionality rand('state',0) nn = nnsetup([784 20 10]); opts.numepochs = 5; % Number of full sweeps through data nn.output = 'softmax'; % use softmax output opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex6 neural net with sigmoid activation and plotting of validation and training error % split training data into training and validation data vx = train_x(1:10000,:); tx = train_x(10001:end,:); vy = train_y(1:10000,:); ty = train_y(10001:end,:); rand('state',0) nn = nnsetup([784 20 10]); nn.output = 'softmax'; % use softmax output opts.numepochs = 5; % Number of full sweeps through data opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, tx, ty, opts, vx, vy); % nntrain takes validation set as last two arguments (optionally) [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); ``` [![Bitdeli Badge](https://d2weczhvl823v0.cloudfront.net/rasmusbergpalm/deeplearntoolbox/trend.png)](https://bitdeli.com/free "Bitdeli Badge")
filetype
Deep Learning Toolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。 对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。 了解深度学习工具箱的基础知识 深度学习图像 从头开始训练卷积神经网络或使用预训练网络快速学习新任务 使用时间序列,序列和文本进行深度学习 为时间序列分类,回归和预测任务创建和训练网络 深度学习调整和可视化 绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能 并行和云中的深度学习 通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络 深度学习应用 通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程 深度学习导入,导出和自定义 导入和导出网络,定义自定义深度学习图层以及自定义数据存储 深度学习代码生成 生成MATLAB代码或CUDA ®和C ++代码和部署深学习网络 函数逼近和聚类 使用浅层神经网络执行回归,分类和聚类 时间序列和控制系统 基于浅网络的模型非线性动态系统; 使用顺序数据进行预测。
资源评论
用户头像
一筐猪的头发丝
2025.07.23
MATLAB版本深度学习工具箱,帮助快速实现经典算法。🍔
用户头像
西西里的小裁缝
2025.06.16
适合初学者和研究者使用的MATLAB深度学习资源。☁️
用户头像
白绍伟
2025.06.04
深度学习工具箱中的代码示例为学习者提供了便利。🍔
用户头像
不美的阿美
2025.04.21
适合MATLAB用户的深度学习入门神器,操作简单,代码丰富。
573671712
  • 粉丝: 0
上传资源 快速赚钱