活动介绍
file-type

FreeRTOS与CNN集成原理分析

版权申诉

RAR文件

1.84MB | 更新于2024-11-04 | 4 浏览量 | 0 下载量 举报 收藏
download 限时特惠:#14.90
FreeRTOS_CNN.rar_CNN_freertos_principleknh 文件是一个关于在FreeRTOS环境下运行卷积神经网络(CNN)的原理和实现指南。此文件可能包含了详细的实现步骤、概念解释以及在嵌入式系统中使用FreeRTOS来支持CNN的优化方法。 首先,CNN(卷积神经网络)是一种深度学习模型,特别适用于图像识别、视频分析和自然语言处理等领域。CNN通过模拟生物视觉处理的机制来实现对输入数据(如图像)的特征提取和模式识别。 FreeRTOS是一个实时操作系统(RTOS),适用于微控制器和小型嵌入式系统。它的设计理念是轻量级、模块化、可裁剪,因此非常适合于资源受限的环境。FreeRTOS提供了任务管理、时间管理、同步和通信等实时操作的基础组件,这为CNN在嵌入式设备上的实时应用提供了可能。 在FreeRTOS中实现CNN主要会涉及到以下几个关键知识点: 1. 任务调度(Task Scheduling):FreeRTOS的核心是它的实时内核,其中包含了任务调度器。任务调度器根据任务的优先级和状态(就绪、运行、阻塞、挂起)来决定哪个任务获得处理器时间。在实现CNN时,必须合理安排任务的优先级和执行顺序,确保CNN算法的各个处理阶段能够顺畅运行,同时不影响系统的其他实时任务。 2. 内存管理(Memory Management):在嵌入式系统中,内存资源通常比较紧张。CNN的实现需要消耗大量的内存资源来存储权重参数和中间层的数据。FreeRTOS支持动态内存分配,但是考虑到嵌入式系统的特殊性,通常推荐使用静态内存分配来避免碎片化和内存泄漏问题。 3. 同步机制(Synchronization Mechanisms):CNN通常由多个处理单元组成,这些单元之间需要进行数据交换和同步。FreeRTOS提供了信号量(Semaphore)、互斥量(Mutex)、队列(Queue)等同步机制,来帮助开发者管理任务之间的数据流和控制流。 4. 中断管理(Interrupt Management):在处理外部事件时,如传感器输入,需要借助中断服务例程(ISR)。FreeRTOS能够通过中断服务例程与实时内核协作,响应外部事件,而不会影响到实时任务的调度。在CNN中,某些处理步骤可能需要与外部事件同步,合理管理中断对于提高CNN处理效率至关重要。 5. 实时性能(Real-Time Performance):CNN在处理数据时对时间非常敏感,尤其是在需要实时响应的应用中。FreeRTOS提供的时间管理功能,如定时器(Timer)和服务周期函数(Service Cycle Functions),可以帮助开发者精确控制任务的执行时间,确保CNN的实时性能。 文件中可能还包含了如何将CNN模型适配到FreeRTOS环境中的具体内容,如模型的量化、优化、以及可能的模型剪枝等技术,以减少模型的计算复杂度和内存占用,使之能够在资源受限的嵌入式设备上运行。 中文译文资料可能将上述概念和知识点结合英文资料进行了翻译和解释,便于读者更容易理解。通过对比中英文资料,可以帮助读者更好地掌握在FreeRTOS环境下部署和优化CNN的整个过程。 最后,FreeRTOS_CNN.pdf文件名暗示,该文档可能是一个PDF格式的指南或教程,其中详细阐述了相关概念、实现步骤、代码示例和操作指南。对于希望在嵌入式设备上部署CNN模型的开发者来说,这是一份宝贵的参考资料。

相关推荐

filetype

参考我给你的图像上传代码和下面的图像识别并在oled上显示的代码,将他们整合在一起/* Edge Impulse Arduino examples * Copyright (c) 2022 EdgeImpulse Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ // These sketches are tested with 2.0.4 ESP32 Arduino Core // https://github.com/espressif/arduino-esp32/releases/tag/2.0.4 /* Includes ---------------------------------------------------------------- */ #include <shibie_inferencing.h> #include "edge-impulse-sdk/dsp/image/image.hpp" #include "esp_camera.h" // Select camera model - find more camera models in camera_pins.h file here // https://github.com/espressif/arduino-esp32/blob/master/libraries/ESP32/examples/Camera/CameraWebServer/camera_pins.h //#define CAMERA_MODEL_ESP_EYE // Has PSRAM #define CAMERA_MODEL_AI_THINKER // Has PSRAM #if defined(CAMERA_MODEL_ESP_EYE) #define PWDN_GPIO_NUM -1 #define RESET_GPIO_NUM -1 #define XCLK_GPIO_NUM 4 #define SIOD_GPIO_NUM 18 #define SIOC_GPIO_NUM 23 #define Y9_GPIO_NUM 36 #define Y8_GPIO_NUM 37 #define Y7_GPIO_NUM 38 #define Y6_GPIO_NUM 39 #define Y5_GPIO_NUM 35 #define Y4_GPIO_NUM 14 #define Y3_GPIO_NUM 13 #define Y2_GPIO_NUM 34 #define VSYNC_GPIO_NUM 5 #define HREF_GPIO_NUM 27 #define PCLK_GPIO_NUM 25 #elif defined(CAMERA_MODEL_AI_THINKER) #define PWDN_GPIO_NUM 32 #define RESET_GPIO_NUM -1 #define XCLK_GPIO_NUM 0 #define SIOD_GPIO_NUM 26 #define SIOC_GPIO_NUM 27 #define Y9_GPIO_NUM 35 #define Y8_GPIO_NUM 34 #define Y7_GPIO_NUM 39 #define Y6_GPIO_NUM 36 #define Y5_GPIO_NUM 21 #define Y4_GPIO_NUM 19 #define Y3_GPIO_NUM 18 #define Y2_GPIO_NUM 5 #define VSYNC_GPIO_NUM 25 #define HREF_GPIO_NUM 23 #define PCLK_GPIO_NUM 22 #else #error "Camera model not selected" #endif /* Constant defines -------------------------------------------------------- */ #define EI_CAMERA_RAW_FRAME_BUFFER_COLS 320 #define EI_CAMERA_RAW_FRAME_BUFFER_ROWS 240 #define EI_CAMERA_FRAME_BYTE_SIZE 3 /* Private variables ------------------------------------------------------- */ static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal static bool is_initialised = false; uint8_t *snapshot_buf; //points to the output of the capture static camera_config_t camera_config = { .pin_pwdn = PWDN_GPIO_NUM, .pin_reset = RESET_GPIO_NUM, .pin_xclk = XCLK_GPIO_NUM, .pin_sscb_sda = SIOD_GPIO_NUM, .pin_sscb_scl = SIOC_GPIO_NUM, .pin_d7 = Y9_GPIO_NUM, .pin_d6 = Y8_GPIO_NUM, .pin_d5 = Y7_GPIO_NUM, .pin_d4 = Y6_GPIO_NUM, .pin_d3 = Y5_GPIO_NUM, .pin_d2 = Y4_GPIO_NUM, .pin_d1 = Y3_GPIO_NUM, .pin_d0 = Y2_GPIO_NUM, .pin_vsync = VSYNC_GPIO_NUM, .pin_href = HREF_GPIO_NUM, .pin_pclk = PCLK_GPIO_NUM, //XCLK 20MHz or 10MHz for OV2640 double FPS (Experimental) .xclk_freq_hz = 20000000, .ledc_timer = LEDC_TIMER_0, .ledc_channel = LEDC_CHANNEL_0, .pixel_format = PIXFORMAT_JPEG, //YUV422,GRAYSCALE,RGB565,JPEG .frame_size = FRAMESIZE_QVGA, //QQVGA-UXGA Do not use sizes above QVGA when not JPEG .jpeg_quality = 12, //0-63 lower number means higher quality .fb_count = 1, //if more than one, i2s runs in continuous mode. Use only with JPEG .fb_location = CAMERA_FB_IN_PSRAM, .grab_mode = CAMERA_GRAB_WHEN_EMPTY, }; /* Function definitions ------------------------------------------------------- */ bool ei_camera_init(void); void ei_camera_deinit(void); bool ei_camera_capture(uint32_t img_width, uint32_t img_height, uint8_t *out_buf) ; /** * @brief Arduino setup function */ void setup() { // put your setup code here, to run once: Serial.begin(115200); //comment out the below line to start inference immediately after upload while (!Serial); Serial.println("Edge Impulse Inferencing Demo"); if (ei_camera_init() == false) { ei_printf("Failed to initialize Camera!\r\n"); } else { ei_printf("Camera initialized\r\n"); } ei_printf("\nStarting continious inference in 2 seconds...\n"); ei_sleep(2000); } /** * @brief Get data and run inferencing * * @param[in] debug Get debug info if true */ void loop() { // instead of wait_ms, we'll wait on the signal, this allows threads to cancel us... if (ei_sleep(5) != EI_IMPULSE_OK) { return; } snapshot_buf = (uint8_t*)malloc(EI_CAMERA_RAW_FRAME_BUFFER_COLS * EI_CAMERA_RAW_FRAME_BUFFER_ROWS * EI_CAMERA_FRAME_BYTE_SIZE); // check if allocation was successful if(snapshot_buf == nullptr) { ei_printf("ERR: Failed to allocate snapshot buffer!\n"); return; } ei::signal_t signal; signal.total_length = EI_CLASSIFIER_INPUT_WIDTH * EI_CLASSIFIER_INPUT_HEIGHT; signal.get_data = &ei_camera_get_data; if (ei_camera_capture((size_t)EI_CLASSIFIER_INPUT_WIDTH, (size_t)EI_CLASSIFIER_INPUT_HEIGHT, snapshot_buf) == false) { ei_printf("Failed to capture image\r\n"); free(snapshot_buf); return; } // Run the classifier ei_impulse_result_t result = { 0 }; EI_IMPULSE_ERROR err = run_classifier(&signal, &result, debug_nn); if (err != EI_IMPULSE_OK) { ei_printf("ERR: Failed to run classifier (%d)\n", err); return; } // print the predictions ei_printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n", result.timing.dsp, result.timing.classification, result.timing.anomaly); #if EI_CLASSIFIER_OBJECT_DETECTION == 1 ei_printf("Object detection bounding boxes:\r\n"); for (uint32_t i = 0; i < result.bounding_boxes_count; i++) { ei_impulse_result_bounding_box_t bb = result.bounding_boxes[i]; if (bb.value == 0) { continue; } ei_printf(" %s (%f) [ x: %u, y: %u, width: %u, height: %u ]\r\n", bb.label, bb.value, bb.x, bb.y, bb.width, bb.height); } // Print the prediction results (classification) #else ei_printf("Predictions:\r\n"); for (uint16_t i = 0; i < EI_CLASSIFIER_LABEL_COUNT; i++) { ei_printf(" %s: ", ei_classifier_inferencing_categories[i]); ei_printf("%.5f\r\n", result.classification[i].value); } #endif // Print anomaly result (if it exists) #if EI_CLASSIFIER_HAS_ANOMALY ei_printf("Anomaly prediction: %.3f\r\n", result.anomaly); #endif #if EI_CLASSIFIER_HAS_VISUAL_ANOMALY ei_printf("Visual anomalies:\r\n"); for (uint32_t i = 0; i < result.visual_ad_count; i++) { ei_impulse_result_bounding_box_t bb = result.visual_ad_grid_cells[i]; if (bb.value == 0) { continue; } ei_printf(" %s (%f) [ x: %u, y: %u, width: %u, height: %u ]\r\n", bb.label, bb.value, bb.x, bb.y, bb.width, bb.height); } #endif free(snapshot_buf); } /** * @brief Setup image sensor & start streaming * * @retval false if initialisation failed */ bool ei_camera_init(void) { if (is_initialised) return true; #if defined(CAMERA_MODEL_ESP_EYE) pinMode(13, INPUT_PULLUP); pinMode(14, INPUT_PULLUP); #endif //initialize the camera esp_err_t err = esp_camera_init(&camera_config); if (err != ESP_OK) { Serial.printf("Camera init failed with error 0x%x\n", err); return false; } sensor_t * s = esp_camera_sensor_get(); // initial sensors are flipped vertically and colors are a bit saturated if (s->id.PID == OV3660_PID) { s->set_vflip(s, 1); // flip it back s->set_brightness(s, 1); // up the brightness just a bit s->set_saturation(s, 0); // lower the saturation } #if defined(CAMERA_MODEL_M5STACK_WIDE) s->set_vflip(s, 1); s->set_hmirror(s, 1); #elif defined(CAMERA_MODEL_ESP_EYE) s->set_vflip(s, 1); s->set_hmirror(s, 1); s->set_awb_gain(s, 1); #endif is_initialised = true; return true; } /** * @brief Stop streaming of sensor data */ void ei_camera_deinit(void) { //deinitialize the camera esp_err_t err = esp_camera_deinit(); if (err != ESP_OK) { ei_printf("Camera deinit failed\n"); return; } is_initialised = false; return; } /** * @brief Capture, rescale and crop image * * @param[in] img_width width of output image * @param[in] img_height height of output image * @param[in] out_buf pointer to store output image, NULL may be used * if ei_camera_frame_buffer is to be used for capture and resize/cropping. * * @retval false if not initialised, image captured, rescaled or cropped failed * */ bool ei_camera_capture(uint32_t img_width, uint32_t img_height, uint8_t *out_buf) { bool do_resize = false; if (!is_initialised) { ei_printf("ERR: Camera is not initialized\r\n"); return false; } camera_fb_t *fb = esp_camera_fb_get(); if (!fb) { ei_printf("Camera capture failed\n"); return false; } bool converted = fmt2rgb888(fb->buf, fb->len, PIXFORMAT_JPEG, snapshot_buf); esp_camera_fb_return(fb); if(!converted){ ei_printf("Conversion failed\n"); return false; } if ((img_width != EI_CAMERA_RAW_FRAME_BUFFER_COLS) || (img_height != EI_CAMERA_RAW_FRAME_BUFFER_ROWS)) { do_resize = true; } if (do_resize) { ei::image::processing::crop_and_interpolate_rgb888( out_buf, EI_CAMERA_RAW_FRAME_BUFFER_COLS, EI_CAMERA_RAW_FRAME_BUFFER_ROWS, out_buf, img_width, img_height); } return true; } static int ei_camera_get_data(size_t offset, size_t length, float *out_ptr) { // we already have a RGB888 buffer, so recalculate offset into pixel index size_t pixel_ix = offset * 3; size_t pixels_left = length; size_t out_ptr_ix = 0; while (pixels_left != 0) { // Swap BGR to RGB here // due to https://github.com/espressif/esp32-camera/issues/379 out_ptr[out_ptr_ix] = (snapshot_buf[pixel_ix + 2] << 16) + (snapshot_buf[pixel_ix + 1] << 8) + snapshot_buf[pixel_ix]; // go to the next pixel out_ptr_ix++; pixel_ix+=3; pixels_left--; } // and done! return 0; } #if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_CAMERA使用下面的头文件#include <WiFi.h> #include "esp_camera.h" #include <shibie_inferencing.h> #include "edge-impulse-sdk/dsp/image/image.hpp" #include "freertos/semphr.h" // 互斥锁头文件 #include "esp_task_wdt.h" #include "freertos/task.h" #include "esp_http_server.h" #error "Invalid model for current sensor" #endif

林当时
  • 粉丝: 127
上传资源 快速赚钱