file-type

FP-MARKDOWN:探索编程语言存储库新范式

ZIP文件

下载需积分: 5 | 3KB | 更新于2025-09-04 | 83 浏览量 | 0 下载量 举报 收藏
download 立即下载
标题中提到的“FP-MARKDOWN:一个类的存储库”暗示了这个存储库主要围绕Markdown语言进行组织。Markdown是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的XHTML(或者HTML)文档。FP-MARKDOWN可能指的是一个特定的Markdown实现或框架,尽管在公开的信息中没有直接提到这个项目。这里的“一个类的存储库”可能意味着该存储库中包含了丰富的Markdown格式的类文档,或者这些文档被组织得井井有条,易于分类查询。 描述中的内容使用了多种语言,包括葡萄牙语和中文,且罗列了一系列编程语言,这表明该文档可能是一个多语言编程社区的知识库。其中提及的编程语言包括C、Java Script(应为JavaScript)、Python、C++和C#,这些是当今软件开发领域广泛使用的编程语言。此外,还提到了HTML,这是一种用于创建网页的标准标记语言。最后,提到了“方法论软件”,这可能指的是软件开发方法论,如敏捷开发、面向对象设计等,虽然这部分描述有些模糊,但它暗示了存储库可能包含与软件开发方法论相关的内容。 标签部分为空,这表示我们无法从这个字段获取更多信息。 压缩包子文件的文件名称列表中,唯一出现的是“FP-MARKDOWN-main”。由于通常在软件项目的版本控制系统中,以“main”命名的文件夹往往代表项目的主要分支或主干,因此我们可以推断出在FP-MARKDOWN存储库中,“main”文件夹可能包含了核心或核心的文档、代码或其他资源。这个命名习惯遵循了像Git这样的版本控制系统中的命名约定,其中“main”或“master”通常被视为项目的默认分支。 综合这些信息,我们可以提取以下知识点: 1. Markdown语言:是一种轻量级标记语言,用于编写可转换为XHTML(或HTML)的文本格式文档。 2. 软件开发语言:包括C、JavaScript、Python、C++、C#,这些都是广泛用于软件开发的编程语言。 3. HTML:一种用于创建网页的标记语言,与Markdown搭配使用可以快速构建出格式化的文档和网页。 4. 软件开发方法论:指在软件开发过程中所采用的原则、实践、过程、设计模式等,例如敏捷开发、面向对象设计等。 5. 版本控制:以“main”命名的文件夹可能遵循了版本控制系统中的命名约定,代表项目的主要分支或主干。 该存储库可能是一个资源丰富的软件开发知识库,涉及不同编程语言的文档、编码实践、软件设计原则等,以及可能包含Markdown格式的文档,便于开发者查找和使用。开发者或用户可能通过这个存储库来快速获取各类编程语言及软件开发相关的信息和资源。

相关推荐

filetype

以下是针对地质找矿和水工环地质勘查行业的详细部署指南,所有组件均安装在D盘,充分利用GPU资源,实现本地化知识库管理和Word报告自动化生成: --- ### **一、系统准备与目录创建** #### **1. 创建主目录结构** ```powershell # 打开PowerShell(管理员权限) # 创建主目录 mkdir D:\personal ai # 创建子目录 mkdir D:\personal ai\docker-data mkdir D:\personal ai\ollama mkdir D:\personal ai\ragflow mkdir D:\personal ai\dify mkdir D:\personal ai\models mkdir D:\personal ai\templates mkdir D:\personal ai\output ``` #### **2. 更新显卡驱动** 1. 访问[NVIDIA驱动下载页](https://www.nvidia.cn/Download/index.aspx) 2. 选择匹配显卡的驱动程序 3. 安装时选择: - **自定义安装** - 勾选**清洁安装** - 安装位置选择:`D:\personal ai\NVIDIA` --- ### **二、Docker Desktop安装与汉化** #### **1. 安装Docker Desktop** 1. 下载安装程序:[Docker Desktop for Windows](https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe) 2. 运行安装程序: - 取消勾选"Use WSL 2 instead of Hyper-V" - 点击"Advanced": - 安装路径:`D:\personal ai\Docker` - 数据存储路径:`D:\personal ai\docker-data` - 勾选: - ☑ Add shortcut to desktop - ☑ Enable WSL 2 Features - ☑ Add Docker binaries to PATH #### **2. Docker汉化** ```powershell # 下载汉化包 Invoke-WebRequest -Uri "https://ghproxy.com/https://github.com/Docker-Hub-frproxy/docker-desktop-zh/releases/download/v4.30.0/zh-CN.zip" -OutFile "D:\personal ai\docker-zh.zip" # 解压并替换文件 Expand-Archive -Path "D:\personal ai\docker-zh.zip" -DestinationPath "D:\personal ai\Docker\resources" -Force # 重启Docker Restart-Service -Name "Docker Desktop Service" ``` #### **3. 配置GPU支持** 1. 创建配置文件: ```powershell notepad $env:USERPROFILE\.wslconfig ``` 2. 输入以下内容: ```ini [wsl2] memory=16GB # 根据实际内存调整,建议≥16GB processors=8 # 根据CPU核心数调整 swap=0 localhostForwarding=true [nvidia] enabled=true cudaVersion=12.2 # 与安装的CUDA版本一致 ``` --- ### **三、Ollama + DeepSeek部署** #### **1. 安装Ollama** ```powershell # 下载安装程序 Invoke-WebRequest -Uri "https://ollama.com/download/OllamaSetup.exe" -OutFile "D:\personal ai\OllamaSetup.exe" # 静默安装到指定目录 Start-Process "D:\personal ai\OllamaSetup.exe" -ArgumentList "/S /D=D:\personal ai\ollama" -Wait ``` #### **2. 配置模型存储路径** ```powershell # 设置环境变量 [Environment]::SetEnvironmentVariable("OLLAMA_MODELS", "D:\personal ai\models", "Machine") # 重启Ollama服务 Restart-Service -Name "Ollama" ``` #### **3. 下载DeepSeek模型** ```powershell # 拉取7B参数模型(适合44GB显存) ollama pull deepseek-llm:7b # 验证安装 ollama run deepseek-llm:7b "地质找矿的基本流程是什么?" ``` --- ### **四、RAGFlow本地部署** #### **1. 创建docker-compose.yml** ```powershell # 创建配置文件 @" version: '3.8' services: ragflow: image: infiniflow/ragflow:latest container_name: ragflow ports: - "9380:9380" volumes: - "D:/personal ai/ragflow/data:/opt/ragflow/data" - "D:/personal ai/models:/opt/ragflow/models" environment: - NVIDIA_VISIBLE_DEVICES=all - NVIDIA_DRIVER_CAPABILITIES=compute,utility deploy: resources: reservations: devices: - driver: nvidia count: 2 capabilities: [gpu] "@ | Out-File -FilePath "D:\personal ai\ragflow\docker-compose.yml" -Encoding utf8 ``` #### **2. 启动RAGFlow** ```powershell # 进入目录 cd D:\personal ai\ragflow # 启动容器 docker compose up -d # 查看日志(确保正常运行) docker logs ragflow ``` --- ### **五、Dify工作流部署** #### **1. 创建docker-compose.yml** ```powershell @" version: '3' services: dify: image: langgenius/dify:latest container_name: dify ports: - "80:3000" volumes: - "D:/personal ai/dify/data:/data" environment: - DB_ENGINE=sqlite - GPU_ENABLED=true depends_on: - ragflow "@ | Out-File -FilePath "D:\personal ai\dify\docker-compose.yml" -Encoding utf8 ``` #### **2. 启动Dify** ```powershell cd D:\personal ai\dify docker compose up -d ``` --- ### **六、地质行业知识库配置** #### **1. 上传地质资料** 1. 访问 `http://localhost:9380` 2. 创建知识库 → 命名"地质矿产知识库" 3. 上传文件类型: - 地质调查报告(PDF/DOCX) - 矿产储量估算表(XLSX) - 水文地质图件(JPG/PNG) - 工程地质剖面图(DWG) #### **2. 配置检索策略** ```yaml # 在RAGFlow高级设置中 chunk_size: 1024 # 适合技术文档 chunk_overlap: 200 metadata_fields: # 地质专用元数据 - project_name - geological_period - mineral_type - gis_coordinates ``` --- ### **七、报告生成工作流配置** #### **1. 在Dify中创建工作流** 1. 访问 `http://localhost` 2. 创建应用 → 选择"工作流" 3. 节点配置: ``` [输入] → [RAGFlow检索] → [Ollama处理] → [Word生成] ``` #### **2. 配置Ollama节点** ```json { "model": "deepseek-llm:7b", "parameters": { "temperature": 0.3, "max_tokens": 4096, "system_prompt": "你是一位资深地质工程师,负责编写专业地质报告。使用规范的地质术语,遵循GB/T 9649地质矿产术语标准。" } } ``` #### **3. 创建Word模板** 1. 在 `D:\personal ai\templates` 创建 `地质报告模板.docx` 2. 包含字段: ```markdown ## {{project_name}}地质调查报告 ### 一、区域地质背景 {{regional_geology}} ### 二、矿产特征 {{mineral_characteristics}} ### 三、水文地质条件 {{hydrogeological_conditions}} [附图:{{figure_number}}] ### 四、资源量估算(单位:万吨) | 矿种 | 332 | 333 | 334 | |---|---|---|---| {{resource_table}} ``` #### **4. Python报告生成脚本** 在Dify中创建 `report_generator.py`: ```python from docx import Document from docx.shared import Pt import pandas as pd import json def generate_geological_report(data): # 加载模板 doc = Document(r'D:\personal ai\templates\地质报告模板.docx') # 填充文本内容 for p in doc.paragraphs: p.text = p.text.replace('{{project_name}}', data['project_name']) p.text = p.text.replace('{{regional_geology}}', data['regional_geology']) p.text = p.text.replace('{{hydrogeological_conditions}}', data['hydro_conditions']) # 填充资源表格 table = doc.tables[0] resources = json.loads(data['resource_table']) for i, mineral in enumerate(resources): row = table.add_row() row.cells[0].text = mineral['type'] row.cells[1].text = str(mineral['332']) row.cells[2].text = str(mineral['333']) row.cells[3].text = str(mineral['334']) # 保存报告 output_path = fr"D:\personal ai\output\{data['project_name']}_地质调查报告.docx" doc.save(output_path) return {"status": "success", "path": output_path} ``` --- ### **八、工作流测试与使用** #### **1. 触发报告生成** ```powershell curl -X POST http://localhost/v1/workflows/run \ -H "Content-Type: application/json" \ -d '{ "inputs": { "project_name": "云南某铜矿勘探", "requirements": "需要包含:\n1. 矿区水文地质分析\n2. 铜矿体三维模型描述\n3. JORC标准资源量估算" } }' ``` #### **2. 输出结果** - 生成文件:`D:\personal ai\output\云南某铜矿勘探_地质调查报告.docx` - 日志位置:`D:\personal ai\dify\data\logs\workflow.log` #### **3. 典型报告结构** ```markdown ## 云南某铜矿勘探地质调查报告 ### 一、区域地质背景 位于扬子地块西缘,出露地层主要为二叠系阳新组灰岩... ### 二、矿产特征 发现3条铜矿体,呈层状产出,平均品位Cu 1.2%... ### 三、水文地质条件 矿区内发育两条季节性河流,地下水类型主要为基岩裂隙水...[附图:图3] ### 四、资源量估算(单位:万吨) | 矿种 | 332 | 333 | 334 | |------|-----|-----|-----| | 铜矿 | 120 | 280 | 150 | ``` --- ### **九、维护与优化** #### **1. GPU监控** ```powershell # 查看GPU利用率 nvidia-smi --query-gpu=utilization.gpu --format=csv -l 5 # Ollama GPU加速验证 ollama run deepseek-llm:7b --verbose ``` #### **2. 地质专业词库增强** 1. 在 `D:\personal ai\models` 创建 `geology_terms.txt` 2. 添加专业术语: ```text 水工环地质 矿产普查 资源量估算 地层划分 构造解析 ``` 3. 在RAGFlow配置中加载术语库 #### **3. 常见问题解决** **问题1:Docker容器无法访问GPU** ```powershell # 验证NVIDIA容器工具包 docker run --rm --gpus all nvidia/cuda:12.2.0-base nvidia-smi # 解决方案 nvidia-smi --gpu-reset ``` **问题2:中文PDF解析乱码** ```yaml # 在RAGFlow配置中添加 parser_config: pdf: text_extraction: lang: chi_sim # 使用中文OCR ``` **问题3:报告生成格式错误** ```python # 在Python脚本中添加格式修复 def fix_table_format(table): for row in table.rows: for cell in row.cells: for paragraph in cell.paragraphs: paragraph.paragraph_format.space_before = Pt(0) paragraph.paragraph_format.space_after = Pt(0) ``` --- ### **十、地质行业应用场景** #### **1. 自动化报告类型** 1. 矿产勘探阶段性报告 2. 水文地质调查评价 3. 矿山环境影响评估 4. 地质灾害风险分析 5. 资源储量动态报表 #### **2. 效率提升对比** | 任务类型 | 传统耗时 | 系统耗时 | |---------|---------|---------| | 矿产调查报告 | 40小时 | 2小时 | | 水文地质图件说明 | 16小时 | 45分钟 | | 资源量估算表 | 8小时 | 实时生成 | 分析优化以上部署方案

优创品牌营销
  • 粉丝: 25
上传资源 快速赚钱