file-type

神经网络推理中量化方法的综述

版权申诉

ZIP文件

1.37MB | 更新于2024-10-16 | 39 浏览量 | 4 评论 | 0 下载量 举报 收藏
download 限时特惠:#14.90
在深度学习和人工智能领域,神经网络的训练和推理通常需要大量的计算资源和能源消耗。随着物联网(IoT)设备和移动计算平台的普及,对于更加高效且资源受限的环境中的神经网络部署需求日益增加。量化方法在这一领域应运而生,它通过对神经网络中的权重和激活进行低精度表示,以减少模型的大小和提高计算效率。量化不仅可以减少模型存储需求,还能加快推理速度,并且可能使模型更适用于特定硬件加速器,如专用神经网络处理器(NPU)。 ### 知识点梳理 1. **神经网络量化基础** - **量化概念**:量化是指将神经网络中的参数(权重和激活)从浮点数转换为整数表示的过程。这种转换可以是线性的,也可以是非线性的,目的在于减少对计算精度的需求,以节省资源。 - **量化级别**:量化可以是不同级别的,包括二值化(1位)、三值化或四值化(2-3位)、低比特量化(4-8位)、以及全精度量化(通常为32位浮点数)。 - **量化的影响**:量化会引入量化噪声,可能会对模型精度产生影响。因此,量化通常需要使用特定的技术来减少精度损失,如量化感知训练(Quantization Aware Training, QAT)和后训练量化(Post-Training Quantization, PTQ)。 2. **量化技术的分类** - **后训练量化(PTQ)**:在训练完成后,将模型的权重和激活转换为低精度表示。这种方法简单且容易实现,但可能对模型性能有较大影响。 - **量化感知训练(QAT)**:在训练过程中模拟量化效果,即在训练阶段就对网络进行低精度的前向传播和反向传播。这可以帮助网络适应量化带来的精度损失,通常能够达到更好的性能。 - **训练后量化(TPQ)**:在模型训练完成后,进行后训练量化,并进一步应用特定算法优化量化参数,以减少模型性能损失。 - **知识蒸馏(Knowledge Distillation)**:通过训练一个轻量级的小模型来模仿一个大型模型的行为,可以看作是一种间接的量化技术,有助于减少复杂模型的信息损失。 3. **量化在神经网络中的应用** - **推理加速**:量化可以提高模型在特定硬件上的运行速度,如FPGA、ASIC等专用加速器。 - **模型压缩**:量化可以显著减小模型的存储空间,有助于模型部署在存储受限的设备上。 - **减少内存带宽**:低比特表示的数据需要更少的内存带宽来读取和写入,这有助于降低能耗。 - **改善能效比**:量化可以使得模型在有限的能耗下完成更多的计算任务。 4. **面临的挑战** - **精度损失**:量化过程中最容易遇到的问题就是精度损失,如何保持量化后模型的性能是一个关键挑战。 - **硬件兼容性**:不同的硬件平台对于量化格式的支持不同,量化模型需要与硬件平台相兼容才能达到预期效果。 - **量化算法的复杂度**:虽然量化简化了计算过程,但实现高效且有效的量化算法本身可能需要复杂的数学和工程技巧。 ### 结论 随着对边缘计算和移动设备部署的需求增长,神经网络的量化技术变得越来越重要。通过精简模型大小和加速计算过程,量化方法可以有效降低能耗和提高能效比。尽管存在精度损失和硬件兼容性的问题,但通过持续的研究和创新,量化技术正逐渐成为神经网络实现高效推理的主流技术之一。 此文档提供了一个关于神经网络量化方法的全面概述,这对于机器视觉领域(cv)的从业人士尤为重要,因为这个领域对高效推理和实时处理的需求尤为突出。

相关推荐

filetype

To this end, we introduce OpenVLA, a 7B-parameter open-source VLA that establishes a new state of the art for generalist robot manipulation policies.1 OpenVLA consists of a pretrained visually-conditioned language model backbone that captures visual features at multiple granularities, fine-tuned on a large, diverse dataset of 970k robot manipulation trajectories from the Open-X Embodiment [1] dataset — a dataset that spans a wide range of robot embodiments, tasks, and scenes. As a product of increased data diversity and new model components, OpenVLA outperforms the 55B-parameter RT-2-X model [1, 7], the prior state-of-the-art VLA, by 16.5% absolute success rate across 29 evaluation tasks on the WidowX and Google Robot embodiments. We additionally investigate efficient fine-tuning strategies for VLAs, a new contribution not explored in prior work, across 7 diverse manipulation tasks spanning behaviors from object pick-and-place to cleaning a table. We find that fine-tuned OpenVLA policies clearly outperform fine-tuned pretrained policies such as Octo [5]. Compared to from-scratch imitation learning with diffusion policies [3], fine-tuned OpenVLA shows substantial improvement on tasks involving grounding language to behavior in multi-task settings with multiple objects. Following these results, we are the first to demonstrate the effectiveness of compute-efficient fine-tuning methods leveraging low-rank adaptation [LoRA; 26] and model quantization [27] to facilitate adapting OpenVLA models on consumer-grade GPUs instead of large server nodes without compromising performance. As a final contribution, we open-source all models, deployment and fine-tuning notebooks, and the OpenVLA codebase for training VLAs at scale, with the hope that these resources enable future work exploring and adapting VLAs for robotics.翻译并理解这段话

filetype

请帮我分析解释一下:Searching to scale. To consider both salient and non-salient weights, we choose to automatically search for an optimal (per input channel) scaling factor that minimizes the output difference after quantization for a certain layer. This scaling factor should minimize the difference in output that occurs when quantizing the weights for a given layer, helping to maintain accuracy after quantization. Since the quantization function is not differentiable, we are not able to directly optimize the problem with vanilla backpropagation. There are some techniques relying on approximated gradients, which we found still suffer from unstable convergence. To make the process more stable, we define a search space for the optimal scale by analyzing the factors that will affect the choice of scaling factor. As shown in the last section, the saliency of weight channels is actually determined by the activation scale. Therefore, we simply use a very simple search space: s = sα X, α* = argminα L(sα X ) sX is the average magnitude of activation (per-channel), and we use a single hyperparameter α to balance between the protection of salient and non-salient channels. We can find the best α by a fast grid search over the interval of [0, 1]. We further apply weight clipping to minimize the MSE error of quantization. One of the key advantages of AWQ is its simplicity and efficiency. Unlike methods that rely on back-propagation or complex reconstruction processes, AWQ does not require fine-tuning or extensive calibration data. This makes it particularly well-suited for quantizing large pre-trained models, including instruction-tuned LMs and multi-modal LMs.

资源评论
用户头像
鸣泣的海猫
2025.08.27
文档内容详实,为AI领域的量化技术研究提供了全面的视角和案例。
用户头像
小明斗
2025.06.13
该文档是对神经网络量化方法的全面梳理,非常适合CV领域的专业人士阅读。
用户头像
ShenPlanck
2025.05.18
对于追求网络效率的工程师和研究者来说,这是一份宝贵的资料。
用户头像
Jaihwoe
2025.03.09
这篇综述文章深入探讨了神经网络推理中的量化方法,对机器视觉领域有很好的指导作用。
易小侠
  • 粉丝: 6681
上传资源 快速赚钱