file-type

SpineNet-Pytorch在Pytorch中实现对象检测

下载需积分: 50 | 2.05MB | 更新于2025-09-14 | 13 浏览量 | 1 下载量 举报 收藏
download 立即下载
SpineNet-Pytorch是基于Google Brain团队在计算机视觉和模式识别会议(CVPR)2020上提出的SpineNet架构的一个实现版本,该项目使用了mmdetection框架。mmdetection是一个在PyTorch上开发的开源目标检测工具箱。SpineNet架构的特点是其高效的按比例排列结构,适用于提升目标检测任务中的性能。下面是对标题、描述和标签中所提及知识点的详细说明。 ### SpineNet 架构和背景 SpineNet是一类用于计算机视觉任务,特别是对象检测任务的卷积神经网络(CNN)主干网络。其设计旨在提供一种灵活且有效的特征提取方法,通过在不同尺度和分辨率下以一种有层次的方式捕获图像信息。 ### PyTorch 和 mmdetection - **PyTorch**:是一个开源的机器学习库,支持张量计算和动态神经网络。它广泛用于计算机视觉和自然语言处理领域。 - **mmdetection**:是基于PyTorch的开源目标检测框架,它包含了许多目标检测算法的实现,以及一系列的数据集和评估工具。mmdetection由OpenMMLab项目开发,旨在为研究人员和开发者提供一个模块化、高效和易于使用的平台。 ### SpineNet-Pytorch 的实现 SpineNet-Pytorch通过在mmdetection框架内实现SpineNet结构,为用户提供了使用这一先进网络架构进行目标检测的可能性。借助mmdetection的模块化设计,开发者可以在SpineNet-Pytorch的基础上进行研究和实验。 ### 关键指标与性能评估 - **COCO对象检测基准**:COCO(Common Objects in Context)数据集是用于对象检测、分割和关键点检测的一个标准测试平台。使用COCO基准作为评估模型性能的工具,可以准确地衡量模型在真实世界场景中的表现。 - **RetinaNet**:RetinaNet是一种流行的单阶段目标检测网络,它的Focal Loss解决了类别不平衡的问题,使网络在困难的负样本上更加敏感。SpineNet-Pytorch支持从零开始训练RetinaNet,以适应新的数据集或者改善检测性能。 - **骨干、解析度和盒式AP**:骨干网络指的是模型的基础架构;解析度指的是输入图像的分辨率;盒式AP(Average Precision)是目标检测中用于评估模型准确性的常用指标。 ### 模型细节 SpineNet模型的细节包括模型在不同解析度下训练时的性能指标,如模型的输入尺寸、模型的平均精度(盒式AP)、参数数量以及FLOPs(Floating Point Operations)计算量。这些指标帮助开发者了解模型的复杂度和在特定任务上的性能。 ### 实验结果和下载信息 文档中还提供了不同配置下的SpineNet模型在COCO数据集上的实验结果,例如不同输入尺寸(如640x640, 896x896, 1024x1024)下的box AP值、参数数量和FLOPs。这些数据对于比较不同模型配置的性能至关重要,也方便了对资源消耗和精度之间的权衡进行决策。 ### 标签 - **pytorch**:指代了PyTorch这一机器学习库。 - **mmdetection**:指代了目标检测框架。 - **cvpr2020**:指的是计算机视觉和模式识别会议(Conference on Computer Vision and Pattern Recognition)2020。 - **spinenet**:指的是提出的SpineNet网络架构。 - **spinenet-pytorch**:指的是在PyTorch上实现的SpineNet。 - **Python**:指的是编程语言,PyTorch和mmdetection都是用Python开发的。 ### 压缩包子文件的文件名称列表 - **SpineNet-Pytorch-master**:这指的是SpineNet-Pytorch项目的主文件夹的名称,通常用于版本控制系统(如Git)中表示该仓库的主要版本。 综上所述,SpineNet-Pytorch为研究者和开发者提供了一个强大的工具,以实现和评估SpineNet网络架构在目标检测任务上的表现,而mmdetection框架的使用则进一步增强了其在实际应用中的可用性和灵活性。通过这份文档提供的信息,相关人员可以深入理解和利用这一模型,进行高效的模型开发与性能评估。

相关推荐

filetype

# CN-RMA: Combined Network with Ray Marching Aggregation for 3D Indoor Object Detection from Multi-view Images This repository is an official implementation of [CN-RMA](https://arxiv.org/abs/2403.04198). ## Results | dataset | [email protected] | [email protected] | config | | :-----: | :------: | :-----: | :------------------------------------------------------------: | | ScanNet | 58.6 | 36.8 | [config](./projects/configs/mvsdetection/ray_marching_scannet.py) | | ARKit | 67.6 | 56.5 | [config](./projects/configs/mvsdetection/ray_marching_arkit.py) | Configuration, data processing and running the entire project is complicated. We provide all the detection results, visualization results and checkpoints of the validation set of the two datasets at [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/d/90bd36fe6f024ad58497/). Since our preparing and training procedure is complicated, you can directly download our results for [ScanNet](https://cloud.tsinghua.edu.cn/f/c4cb78b7d935467c8855/?dl=1) and [ARKitScenes](https://cloud.tsinghua.edu.cn/f/4c77c67123ab46b58605/?dl=1), or directly use our pre-trained weights for [ScanNet](https://cloud.tsinghua.edu.cn/f/b518872d3f11483aa121/?dl=1) and [ARKitScenes](https://cloud.tsinghua.edu.cn/f/17df2aa67e50407bb555/?dl=1) to validate. ## Prepare * Environments Linux, Python==3.8, CUDA == 11.3, pytorch == 1.10.0, mmdet3d == 0.15.0, MinkowskiEngine == 0.5.4 This implementation is built based on the [mmdetection3d](https://github.com/open-mmlab/mmdetection3d) framework and can be constructed as the [install.md](./doc/install.md). * Data Follow the mmdet3d to process the ScanNet and ARKitScenes datasets. You can process those datasets following [scannet.md](./doc/scannet.md) and [arkit.md](./doc/arkit.md). * Pretrained weights The required pretrained weights are put at [here](https://cloud.tsinghua.edu.cn/d/0b3af9884b7841ae8398/). * After preparation, you will be able to see the following directory structure: ``` CN-RMA ├── mmdetection3d ├── projects │ ├── configs │ ├── mvsdetection ├── tools ├── data │ ├── scannet │ ├── arkit ├── doc │ ├── install.md │ ├── arkit.md │ ├── scannet.md │ ├── train_val.md ├── README.md ├── data_prepare ├── post_process ├── dist_test.sh ├── dist_train.sh ├── test.py ├── train.py ``` ## How to Run To evaluate our method on ScanNet, you can download the [final checkpoint](https://cloud.tsinghua.edu.cn/f/b518872d3f11483aa121/?dl=1), set the 'work_dir' of `projects/configs/mvsdetection/ray_marching_scannet.py` to your desired path, and run: ```shell bash dist_test.sh projects/configs/mvsdetection/ray_marching_scannet.py {scannet_best.pth} 4 ``` Similarly, to evaluate on ARKitScenes, you should download the [final checkpoint](https://cloud.tsinghua.edu.cn/f/17df2aa67e50407bb555/?dl=1), set the 'work_dir' of `projects/configs/mvsdetection/ray_marching_arkit.py` to your desired path, and run: ```shell bash dist_test.sh projects/configs/mvsdetection/ray_marching_arkit.py {arkit_best.pth} 4 ``` After this, you should do nms post-processing to the data by running: ```shell python ./post_process/nms_bbox.py --result_path {your_work_dir}/results ``` The pc_det_nms do not always work very well, if it fails, just run it again and again.... You can then evaluate the results by running ```shell ./post_process/evaluate_bbox.py --dataset {arkit/scannet} --data_path {your_arkit_or_scannet_source_path} --result_path {your_work_dir}/results ``` And you can visualize the results by running ```shell ./post_process/visualize_results.py --dataset {arkit/scannet} --data_path {your_arkit_or_scannet_source_path} --save_path {your_work_dir}/results ``` if the nms fails, you can discover many bounding boxes very close to each other on the visualized results, then you can run the nms again. Training the network from scratch is complicated. If you want to train the network from scratch, please follow [train_val.md](./doc/train_val.md) ## Citation If you find this project useful for your research, please consider citing: ```bibtex @InProceedings{Shen_2024_CVPR, author = {Shen, Guanlin and Huang, Jingwei and Hu, Zhihua and Wang, Bin}, title = {CN-RMA: Combined Network with Ray Marching Aggregation for 3D Indoor Object Detection from Multi-view Images}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {21326-21335} } ``` ## Contact If you have any questions, feel free to open an issue or contact us at [email protected]

weixin_42128015
  • 粉丝: 34
上传资源 快速赚钱