file-type

agnostic_slugs:纯Ruby编写的灵活Slug生成器

ZIP文件

下载需积分: 5 | 7KB | 更新于2024-11-25 | 154 浏览量 | 0 下载量 举报 收藏
download 立即下载
Slug是一种用于URL中,将标题或名称转换为一个简洁且规范化的字符串的工具。它的主要功能是将输入的字符串转换为适用于URL的格式,同时它支持扩展外文字符,例如丹麦语。Agnostic Slugs的特点包括对ORM的非集成性,意味着它不会与Rails的ActiveRecord或Mongoid等ORM工具集成,也不会对Ruby的String类进行猴子补丁处理。" 知识点详细说明: 1. Slug和URL的规范化: 在Web开发中,slug是一种将文章标题、页面名称或其他标识符转换为URL可识别格式的技术。这种转换通常涉及移除标题中的非字母数字字符并将剩余字符转换为小写,同时可能添加连字符以增加可读性。例如,标题 "Look at my pretty new shoes!" 可能会被转换成 "look-at-my-pretty-new-shoes"。这样的URL通常更加友好且易于记忆。 2. 不可知论原则: "agnostic" 一词在软件开发中通常表示组件或工具不对特定技术栈做出假设或承诺,意即它不是为特定框架设计的。在这个上下文中,agnostic_slugs不依赖于任何特定的编程语言或框架,使得它可以在多种编程环境中使用,从而提高了代码的可移植性和可复用性。 3. 不猴子修补String类: 在Ruby编程中,猴子补丁是一种动态修改类或模块的行为的技术。虽然它提供了一种快速修复或增强现有类功能的方式,但可能造成维护困难和潜在的冲突。agnostic_slugs不通过这种方式工作,避免了可能的副作用,保持了代码的清晰和可维护性。 4. 集成限制: agnostic_slugs明确指出了它不集成ActiveRecord、Mongoid或任何其他ORM,也不与Rails或其他任何框架集成。这表明它主要是作为独立的库来使用的,开发者需要自行在现有的框架或应用中引入并整合此工具。 5. 安装和使用: 要安装agnostic_slugs,开发者需要将gem 'agnostic_slugs'添加到他们的Gemfile中并执行bundle install以安装该gem。使用时,创建一个AgnosticSlugs::Slug的实例,并传入希望转换成slug格式的字符串。通过调用to_s方法,可以获取转换后的slug字符串。 6. 外文字符的支持: agnostic_slugs能够扩展外国字符,这意味着它可以处理各种语言中的特殊字符,并将它们转换为适合URL的形式。这在多语言网站或国际化应用中是一个非常有用的特性。示例中提到的丹麦语中的 "Ræv"(意为狐狸)演示了其支持非英文字符的能力。 7. Ruby语言: agnostic_slugs是用Ruby编写的,Ruby是一种面向对象的编程语言,以简单和优雅著称。由于Ruby语言的简洁性和动态类型特性,Ruby常被用于Web开发,并与Ruby on Rails框架紧密相关。agnostic_slugs展示了Ruby在处理字符串和文本处理方面的灵活性。 8. 文件结构和版本控制: 压缩包子文件的文件名称列表中提到的 "agnostic_slugs-master" 可能指向一个Git仓库的主分支,表明可能有一个名为 "agnostic_slugs" 的项目,并且当前版本是其主要版本。文件结构可能包含了用于定义slug功能和管理gem依赖关系的Ruby文件。

相关推荐

filetype

我的是:task: detect mode: train model: model\train_output\myPCB_defect\weights\last.pt data: data/pcb_defects.yaml epochs: 80 time: null patience: 15 batch: 20 imgsz: 640 save: true save_period: -1 cache: false device: cpu workers: 0 project: model/train_output name: myPCB_defect exist_ok: true pretrained: true optimizer: Adam verbose: true seed: 0 deterministic: true single_cls: false rect: false cos_lr: false close_mosaic: 10 resume: model\train_output\myPCB_defect\weights\last.pt amp: true fraction: 1.0 profile: false freeze: null multi_scale: false overlap_mask: true mask_ratio: 4 dropout: 0.0 val: true split: val save_json: false save_hybrid: false conf: null iou: 0.7 max_det: 300 half: false dnn: false plots: true source: null vid_stride: 1 stream_buffer: false visualize: false augment: true agnostic_nms: false classes: null retina_masks: false embed: null show: false save_frames: false save_txt: false save_conf: false save_crop: false show_labels: true show_conf: true show_boxes: true line_width: null format: torchscript keras: false optimize: false int8: false dynamic: false simplify: false opset: null workspace: 4 nms: false lr0: 0.001 lrf: 0.01 momentum: 0.937 weight_decay: 0.0005 warmup_epochs: 3.0 warmup_momentum: 0.8 warmup_bias_lr: 0.1 box: 7.5 cls: 0.5 dfl: 1.5 pose: 12.0 kobj: 1.0 nbs: 64 hsv_h: 0.015 hsv_s: 0.7 hsv_v: 0.4 degrees: 45 translate: 0.1 scale: 0.5 shear: 10 perspective: 0.0005 flipud: 0.5 fliplr: 0.5 bgr: 0.0 mosaic: 0.0 mixup: 0.0 copy_paste: 0.0 copy_paste_mode: flip auto_augment: randaugment erasing: 0.4 crop_fraction: 1.0 cfg: null tracker: botsort.yaml label_smoothing: 0.0 save_dir: model\train_output\myPCB_defect 但是目前模型对PCB板缺陷检测的置信度0.7左右,我需要提高到0.9以上,应该改哪些参数?

filetype

这是我现在的参数配置文件,请你给出建议 # Ultralytics YOLO 🚀, AGPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark # Train settings ------------------------------------------------------------------------------------------------------- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml data: # (str, optional) path to data file, i.e. coco8.yaml epochs: 300 # (int) number of epochs to train for time: # (float, optional) number of hours to train for, overrides epochs if supplied patience: 15 # (int) epochs to wait for no observable improvement for early stopping of training batch: 8 # (int) number of images per batch (-1 for AutoBatch) imgsz: 640 # (int | list) input images size as int for train and val modes, or list[h,w] for predict and export modes save: True # (bool) save train checkpoints and predict results save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) cache: False # (bool) True/ram, disk or False. Use cache for data loading device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers: 4 # (int) number of worker threads for data loading (per RANK if DDP) project: # (str, optional) project name name: # (str, optional) experiment name, results saved to 'project/name' directory exist_ok: False # (bool) whether to overwrite existing experiment pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose: True # (bool) whether to print verbose output seed: 0 # (int) random seed for reproducibility deterministic: True # (bool) whether to enable deterministic mode single_cls: False # (bool) train multi-class data as single-class rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' cos_lr: True # (bool) use cosine learning rate scheduler close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) resume: False # (bool) resume training from last checkpoint amp: False # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training multi_scale: False # (bool) Whether to use multiscale during training # Segmentation overlap_mask: True # (bool) masks should overlap during training (segment train only) mask_ratio: 2 # (int) mask downsample ratio (segment train only) # Classification dropout: 0.0 # (float) use dropout regularization (classify train only) # Val/Test settings ---------------------------------------------------------------------------------------------------- val: True # (bool) validate/test during training split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' save_json: False # (bool) save results to JSON file save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) conf: 0.39 # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou: 0.65 # (float) intersection over union (IoU) threshold for NMS max_det: 300 # (int) maximum number of detections per image half: False # (bool) use half precision (FP16) dnn: False # (bool) use OpenCV DNN for ONNX inference plots: True # (bool) save plots and images during train/val # Predict settings ----------------------------------------------------------------------------------------------------- source: # (str, optional) source directory for images or videos vid_stride: 1 # (int) video frame-rate stride stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) visualize: False # (bool) visualize model features augment: False # (bool) apply image augmentation to prediction sources agnostic_nms: False # (bool) class-agnostic NMS classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] retina_masks: False # (bool) use high-resolution segmentation masks embed: # (list[int], optional) return feature vectors/embeddings from given layers # Visualize settings --------------------------------------------------------------------------------------------------- show: False # (bool) show predicted images and videos if environment allows save_frames: False # (bool) save predicted individual video frames save_txt: False # (bool) save results as .txt file save_conf: False # (bool) save results with confidence scores save_crop: False # (bool) save cropped images with results show_labels: True # (bool) show prediction labels, i.e. 'person' show_conf: True # (bool) show prediction confidence, i.e. '0.99' show_boxes: True # (bool) show prediction boxes line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None. # Export settings ------------------------------------------------------------------------------------------------------ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats keras: False # (bool) use Kera=s optimize: False # (bool) TorchScript: optimize for mobile int8: False # (bool) CoreML/TF INT8 quantization dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes simplify: True # (bool) ONNX: simplify model using `onnxslim` opset: # (int, optional) ONNX: opset version workspace: # (int) TensorRT: workspace size (GB) nms: False # (bool) CoreML: add NMS # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.005 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf: 0.00005 # (float) final learning rate (lr0 * lrf) momentum: 0.937 # (float) SGD momentum/Adam beta1 weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 warmup_epochs: 5.0 # (float) warmup epochs (fractions ok) warmup_momentum: 0.8 # (float) warmup initial momentum warmup_bias_lr: 0.1 # (float) warmup initial bias lr box: 7.5 # (float) box loss gain cls: 0.5 # (float) cls loss gain (scale with pixels) dfl: 1.5 # (float) dfl loss gain pose: 12.0 # (float) pose loss gain kobj: 1.0 # (float) keypoint obj loss gain label_smoothing: 0.05 # (float) label smoothing (fraction) nbs: 64 # (int) nominal batch size hsv_h: 0.01 # (float) image HSV-Hue augmentation (fraction) hsv_s: 0.4 # (float) image HSV-Saturation augmentation (fraction) hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) degrees: 0.0 # (float) image rotation (+/- deg) translate: 0.0 # (float) image translation (+/- fraction) scale: 0.25 # (float) image scale (+/- gain) shear: 0.0 # (float) image shear (+/- deg) perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # (float) image flip up-down (probability) fliplr: 0.5 # (float) image flip left-right (probability) bgr: 0.0 # (float) image channel BGR (probability) mosaic: 0.3 # (float) image mosaic (probability) mixup: 0.1 # (float) image mixup (probability) copy_paste: 0.0 # (float) segment copy-paste (probability) copy_paste_mode: "flip" # (str) the method to do copy_paste augmentation (flip, mixup) auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix) erasing: 0.4 # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0. crop_fraction: 1.0 # (float) image crop fraction for classification (0.1-1), 1.0 means no crop, must be greater than 0. # Custom config.yaml --------------------------------------------------------------------------------------------------- cfg: # (str, optional) for overriding defaults.yaml # Tracker settings ------------------------------------------------------------------------------------------------------ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]

Compass宁
  • 粉丝: 7285
上传资源 快速赚钱