这是我的第410篇原创文章。
一、引言
如果你的音频文件采样率是48kHz,而很多语音模型比如speech_fsmn_vad_zh-cn-16k-common-pytorch
模型仅支持16kHz采样率的音频,那么你需要在将音频输入模型之前,将音频文件的采样率从48kHz转换为16kHz。
以下是一个使用Python进行采样率转换的简单方法。
二、实现过程
2.1 使用scipy
库进行采样率转换
代码:
import numpy as np
from scipy.io import wavfile
from scipy.signal import resample
# 读取48kHz的音频文件
input_file = '录音.wav'
output_file = '录音-16k.wav'
sample_rate_48k, data = wavfile.read(input_file)
# 确保音频是单声道
if data.ndim > 1:
data = data[:, 0]
# 计算重采样后的样本数量
num_samples_16k = int(len(data) * 16000 / sample_rate_48k)
# 使用scipy的resample函数进行重采样
data_16k = resample(data, num_samples_16k)
# 保存为16kHz的音频文件
wavfile.write(output_file, 16000, data_16k.astype(np.int16))
结果:
2.2 使用pydub
库进行采样率转换
代码:
from pydub import AudioSegment
# 加载48kHz的音频文件
audio = AudioSegment.from_wav('录音.wav')
# 转换采样率为16kHz
audio_16k = audio.set_frame_rate(16000)
# 导出转换后的音频文件
audio_16k.export('录音-16k-2.wav', format='wav')
结果:
转换完成后,你就可以将16kHz的音频文件输入到speech_fsmn_vad_zh-cn-16k-common-pytorch
模型中进行处理。
作者简介:
读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。