Time-LLM

最近,来自澳大利亚蒙纳士大学、蚂蚁集团、IBM 研究院等机构的研究人员探索了模型重编程 (model reprogramming) 在大语言模型 (LLMs) 上应用,并提出了一个全新的视角:高效重编程大语言模型进行通用时序预测 –- 其提出的 Time-LLM 框架无需修改语言模型即可实现高精度时序预测,在多个数据集和预测任务中超越了传统的时序模型,让 LLMs 在处理跨模态的时间序列数据时展现出色,就像大象起舞一般!

近期,受到大语言模型在通用智能领域的启发,「大模型 + 时序 / 时空数据」这个新方向迸发出了许多相关进展。当前的 LLMs 有潜力彻底改变时序 / 时空数据挖掘方式,从而促进城市、能源、交通、遥感等典型复杂系统的决策高效制定,并朝着更普遍的时序 / 时空分析智能形式迈进。

大模型,例如语言和其他相关的基础模型,既可以训练,也可以巧妙地重新调整其用途,以处理一系列通用任务和专用领域应用中的时间序列和时空数据。来源:https://arxiv.org/pdf/2310.10196.pdf

最近的研究将大型语言模型从处理自然语言拓展到时间序列和时空任务领域。这种新的研究方向,即「大模型 + 时序 / 时空数据」,催生了许多相关进展,例如 LLMTime 直接利用 LLMs 进行零样本时序预测推理。尽管 LLMs 具备强大的学习和表示能力,能够有效地捕捉文本序列数据中的复杂模式和长期依赖关系,但作为专注于处理自然语言的「黑匣子」,LLMs 在时间序列与时空任务中的应用仍面临挑战。相较于传统的时间序列模型如 TimesNet,TimeMixer 等,LLMs 以其庞大的参数和规模可与「大象」相提并论。

因此,如何「驯服」这种在自然语言领域训练的 LLMs,使其能够处理跨越文本模态的数值型序列数据,在时间序列和时空任务中发挥出强大的推理预测能力,已成为当前研究的关键焦点。为此,需要进行更深入的理论分析,以探索语言和时序

### Time-LLM 的背景与意义 Time-LLM 是一种旨在通过重新编程现有大规模语言模型 (LLMs),使其适用于时间序列预测任务的框架[^1]。这一方法的核心在于无需修改原生 LLM 架构,而是设计特定机制让其适应时序数据的特点[^3]。 然而,由于时间和空间数据与时序数据之间的本质区别,以及它们无法直接映射至自然语言表达形式的问题,使得该类研究具有一定的技术难度[^4]。尽管如此,Time-LLM 及其他类似工作(如 LLMTime),已经展示了如何利用 LLMs 处理复杂的时序模式,并在零样本推理场景下取得一定成果[^2]。 #### 如何获取 Time-LLM 论文? 目前关于 Time-LLM 的具体实现细节主要来源于学术界公开发布的资料。以下是几种可能的方式: 1. **访问知名预印本平台** 像 arXiv.org 这样的开放存取资源库通常会发布最新的研究成果。可以尝试搜索关键词 “TIME-LLM” 或者查看相关作者发表的文章列表。 2. **查阅顶级会议论文集** 如果此项目已被正式收录,则可以在 NeurIPS、ICML、AAAI 等国际会议上找到对应版本。这些会议网站提供下载链接供读者免费阅读 PDF 文件。 3. **联系作者团队索取副本** 当前很多科研人员愿意分享自己的劳动结晶给感兴趣的人士。可以通过邮件等方式向他们请求一份完整的文档。 4. **图书馆或数据库订阅服务** 对于某些受版权保护的内容,大学或其他机构可能会拥有合法途径去获取全文档。建议借助此类渠道完成进一步探索。 ```python import requests from bs4 import BeautifulSoup def search_paper(keyword): base_url = f"https://arxiv.org/search/?query={keyword}&searchtype=all" response = requests.get(base_url) soup = BeautifulSoup(response.text, 'html.parser') results = [] for result in soup.find_all('li', class_='arxiv-result'): title = result.h2.a.string.strip() url = result.h2.a['href'] abstract = result.p.string results.append({ "title": title, "url": url, "abstract": abstract }) return results papers = search_paper("TIME-LLM") for paper in papers[:5]: print(f"{paper['title']} - {paper['url']}") ``` 上述脚本可用于自动化检索 Arxiv 上的相关条目信息。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值