归一化处理(2023寒假每日一题 14)

文章介绍了在机器学习中对数据进行归一化处理的方法,即将数据转换为平均值为0、方差为1的标准分布,以加速模型训练。给出了处理数据的数学公式,并提供了一个输入输出示例,展示了如何计算和输出归一化后的数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习中,对数据进行归一化处理是一种常用的技术。

将数据从各种各样分布调整为平均值为 000、方差为 111 的标准分布,在很多情况下都可以有效地加速模型的训练。

这里假定需要处理的数据为 nnn 个整数 a1,a2,⋯,ana_1,a_2,⋯,a_na1,a2,,an

这组数据的平均值:

在这里插入图片描述

方差:

在这里插入图片描述

使用如下函数处理所有数据,得到的 nnn 个浮点数 f(a1),f(a2),⋯,f(an)f(a_1),f(a_2),⋯,f(a_n)f(a1),f(a2),,f(an) 即满足平均值为 000 且方差为 111

在这里插入图片描述

输入格式
第一行包含一个整数 nnn,表示待处理的整数个数。

第二行包含空格分隔的 nnn 个整数,依次表示 a1,a2,⋯,ana_1,a_2,⋯,a_na1,a2,,an

输出格式
输出共 nnn 行,每行一个浮点数,依次表示按上述方法归一化处理后的数据 f(a1),f(a2),⋯,f(an)f(a_1),f(a_2),⋯,f(a_n)f(a1),f(a2),,f(an)

如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于 10−410^{−4}104,则该测试点满分,否则不得分。

数据范围
全部的测试数据保证 n,∣ai∣≤1000n,|a_i|≤1000n,ai1000,其中 ∣ai∣|a_i|ai 表示 aia_iai 的绝对值。且输入的 nnn 个整数 a1,a2,⋯,ana_1,a_2,⋯,a_na1,a2,,an 满足:方差 D(a)≥1D(a)≥1D(a)1

输入样例:

7
-4 293 0 -22 12 654 1000
输出样例:
-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082

样例解释

平均值:aˉ≈276.14285714285717\bar a ≈ 276.14285714285717aˉ276.14285714285717

方差:D(a)≈140060.69387755104D(a)≈140060.69387755104D(a)140060.69387755104

标准差:D(a)≈374.24683549437134\sqrt{D(a)}≈374.24683549437134D(a)374.24683549437134


#include<iostream>
#include<cmath>

using namespace std;

const int N = 1010;

int n;
int a[N];

int main(){
    
    scanf("%d", &n);
    
    int sum = 0;
    for(int i = 0; i < n; i++) scanf("%d", &a[i]), sum += a[i];
    double avg = sum * 1.0 / n;
    double sdiff = 0;
    for(int i = 0; i < n; i++) sdiff += (a[i] - avg) * (a[i] - avg);
    sdiff = sqrt(sdiff / n);
    for(int i = 0; i < n; i++) printf("%.16f\n", (a[i] - avg) / sdiff);
    
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值