全程无尿点,只讲重点,代码实现。不讲ollama、anythingllm、dify、coze
【完整代码实战教程】通过 Java,Python,HTML 实现文本向量化、向量数据库操作、知识库建立、DeepSeek 模型调用及前端展示-最终实现智能问答
依赖环境:
ubuntu+docker+docker-Compose +milvus+jdk+tomcat+python
主要架构:
deepseek-R1/deepseek-chat(公版)+milvus(向量库阿里云私有部署)+embedding(向量分词模型私有部署)+讯飞智能语音识别
主要流程:
政策材料解析,向量化,写入向量库,调用deepseek模型
主要功能:
智能语音问答,通过对话框实现智能问答,通过向量库进行智能语义识别和RAG增强,通过deepseek实现答案整理,输出结果给用户。
技术栈:
文本向量化: 使用 all-MiniLM-L6-v2 模型将文本转换为向量。
向量数据库操作: 使用 Milvus 进行向量数据的存储和检索。
DeepSeek 模型调用: 调用 DeepSeek API 进行文本生成。
接口封装: Java 封装 RESTful API。
模型调用:使用python
前端展示: 使用 HTML 和 JavaScript 实现交互式前端界面、tailwind样式、markdown处理。
技术亮点:
完整代码实现: 从文本向量化到前端展示的完整代码实战。
技术深度解析: 详细讲解每个技术点的原理和实现细节。
实战应用: 展示如何将这些技术应用到实际项目中。