基于deepseek的智能语音客服【第一讲】整体技术架构

全程无尿点,只讲重点,代码实现。不讲ollama、anythingllm、dify、coze

【完整代码实战教程】通过 Java,Python,HTML 实现文本向量化、向量数据库操作、知识库建立、DeepSeek 模型调用及前端展示-最终实现智能问答

依赖环境:

ubuntu+docker+docker-Compose +milvus+jdk+tomcat+python

主要架构:

deepseek-R1/deepseek-chat(公版)+milvus(向量库阿里云私有部署)+embedding(向量分词模型私有部署)+讯飞智能语音识别

主要流程:

政策材料解析,向量化,写入向量库,调用deepseek模型

主要功能:

智能语音问答,通过对话框实现智能问答,通过向量库进行智能语义识别和RAG增强,通过deepseek实现答案整理,输出结果给用户。

技术栈:

文本向量化: 使用 all-MiniLM-L6-v2 模型将文本转换为向量。
向量数据库操作: 使用 Milvus 进行向量数据的存储和检索。
DeepSeek 模型调用: 调用 DeepSeek API 进行文本生成。
接口封装: Java 封装 RESTful API。
模型调用:使用python
前端展示: 使用 HTML 和 JavaScript 实现交互式前端界面、tailwind样式、markdown处理。

技术亮点:

完整代码实现: 从文本向量化到前端展示的完整代码实战。
技术深度解析: 详细讲解每个技术点的原理和实现细节。
实战应用: 展示如何将这些技术应用到实际项目中。

移动端效果

在这里插入图片描述

电脑端效果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无极低码智能问数

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值