2-3 感知机梯度下降法的推导过程

本文详细介绍了感知机的损失函数L(w,b),并利用梯度下降法求解损失函数的最小值。通过求导得到w和b的偏导数,明确了在随机梯度下降法中,当误分类点为(xi,yi)时,权重w和偏置b的更新规则,以学习率η进行调整。" 94149343,8609429,精通PythonBeautifulSoup库指南,"['Python库', '前端开发', '数据抓取']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感知机的损失函数:
L(w,b)=−∑xi∈Myi(w⋅xi+b)(1) L(w, b) = - \sum_{x_i \in M}y_i (w \cdot x_i + b) \tag {1} L(w,b)=xiMyi(wxi+b)(1)
目标是最小化这个损失函数。

使用梯度下降法求出L(w,b)L(w,b)L(w,b)$的偏导,使w,b向导数的负方向移动。
{ ∇wL(w,b)=−∑xi∈Myixi∇bL(w,b)=−∑xi∈Myi(2) \begin{cases} \nabla_wL(w,b) = - \sum_{x_i \in M}y_ix_i \\ \nabla_bL(w,b) = - \sum_{x_i \in M}y_i \end{cases} \tag {2} {

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值