2-5 感知机 - 对偶形式 - 学习模型的推导

本文详细探讨了感知机模型从原始形式转换到对偶形式的过程。通过对误分类样本应用梯度下降法,推导出权重w和偏置b的更新规则。在初始值为0的情况下,通过迭代学习,最终的权重和偏置可以表示为所有误分类样本的累加结果。这为理解感知机的学习模型提供了深入的见解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感知机对偶形式由感知机原始形式变化而来。

在原始形式中,感知机的模型为:
f ( x ) = s i g n ( w ⋅ x + b ) s i g n ( x ) = { + 1 , x ≥ 0 − 1 , x < 0 (1) f(x) = sign(w \cdot x + b) \\ sign(x) = \begin{cases} +1, && x \ge 0 \\ -1, && x \lt 0 \end{cases} \tag {1} f(x)=sign(wx+b)sign(x)={ +1,1,x0x<0(1)

根据梯度下降法的推导过程可知,当基于一个误分类样本 ( x i , y i ) (x_i, y_i) (x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值