朴素贝叶斯
分类算法、生成算法
假设用于分类的特征在类确定的条件都是条件独立的。
模型
P(Y=Ck∣X=x)=P(Y=Ck)∏jP(X(j)=x(j)∣y=Ck)∑kP(Y=Ck)∏jP(X(j)=x(j)∣y=Ck),k=1,2,⋯ ,K P(Y=C_k|X=x) = \frac {P(Y=C_k)\prod_jP(X^{(j)}=x^{(j)}|y=C_k)}{\sum_k P(Y=C_k)\prod_jP(X^{(j)}=x^{(j)}|y=C_k)}, k=1,2,\cdots,K P(Y=Ck∣X=x)=∑kP(Y=Ck)∏jP(X(j)=x(j)∣y=Ck)P(Y=Ck)∏jP(X(j)=x(j)∣y=Ck),k=1,2,⋯,K
策略
使后验概率最大化
算法
最大似然估计
贝叶斯估计