第4章 朴素贝叶斯

本文深入探讨了朴素贝叶斯这一经典的机器学习算法,详细解释了其背后的数学原理,包括如何通过假设特征条件独立来简化概率计算,以及如何利用最大似然估计和贝叶斯估计进行模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

朴素贝叶斯

分类算法、生成算法
假设用于分类的特征在类确定的条件都是条件独立的。

模型

P(Y=Ck∣X=x)=P(Y=Ck)∏jP(X(j)=x(j)∣y=Ck)∑kP(Y=Ck)∏jP(X(j)=x(j)∣y=Ck),k=1,2,⋯ ,K P(Y=C_k|X=x) = \frac {P(Y=C_k)\prod_jP(X^{(j)}=x^{(j)}|y=C_k)}{\sum_k P(Y=C_k)\prod_jP(X^{(j)}=x^{(j)}|y=C_k)}, k=1,2,\cdots,K P(Y=CkX=x)=kP(Y=Ck)jP(X(j)=x(j)y=Ck)P(Y=Ck)jP(X(j)=x(j)y=Ck),k=1,2,,K

策略

使后验概率最大化

算法

最大似然估计
贝叶斯估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值