4-2 朴素贝叶斯 策略公式的推导

本文介绍了朴素贝叶斯模型如何利用0-1损失函数选择最优模型。通过0-1损失函数的定义,探讨了期望损失,并指出最小化损失意味着最大化后验概率P(f(x)=Ck∣X),从而实现分类的最优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

朴素贝叶斯模型使用0-1损失函数来选择最优模型
0-1损失函数定义如下:
L(Y,f(X))={1,Y=f(X)0,Y≠f(X) L(Y, f(X)) = \begin{cases} 1, && Y = f(X) \\ 0, && Y \neq f(X) \end{cases} L(Y,f(X))={1,0,Y=f(X)Y=f(X)

L(Y, f(X))的期望为:
E[L(Y,f(X))]=∑kL(ck,f(x))P(Ck∣X)=∑kL(ck,f(x))P(Ck≠f(x)∣X)=1−P(f(x)=Ck∣X) E[L(Y, f(X))] = \sum_kL(c_k, f(x))P(C_k|X) \\ = \sum_kL(c_k, f(x))P(C_k \neq f(x)|X) \\ = 1 - P(f(x)=C_k|X) E[L(Y,f(X))]=kL(ck,f(x))P(CkX)=kL(ck,f(x))P(Ck=f(x)X)=1P(f(x)=CkX)
L(Y, f(X))代表f(x)的损失函数,因此要让它和标记尽量小,也普是在让P(f(x)=Ck∣X)P(f(x)=C_k|X)P(f(x)=CkX)尽量大,也就是后验概率最大化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值