5-3 决策树 ID3决策树的生成算法

本文介绍了ID3决策树的生成算法,从输入、输出到详细过程,强调信息增益准则在特征选择中的作用。在算法过程中,当特征集为空或者信息增益低于阈值时,会采取特定策略防止过拟合。同时,文章还提及了代码实现的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ID3算法

在决策树各个结点上应该信息增益准则选择特征,递归地构建决策树

输入

训练数据集D
特征集A
阈值 ϵ \epsilon ϵ

输出

决策树T

过程

  1. 若D中所有实例属于同一类 C k C_k Ck , 则 T 为 单 结 点 树 , 并 将 类 ,则T为单结点树,并将类 T C k C_k C
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值