Java 8 简明教程
译者:ImportNew.com - 黄小非
来源:Java 8简明教程
“Java并没有没落,人们很快就会发现这一点”
欢迎阅读我编写的Java 8介绍。本教程将带领你一步一步地认识这门语言的新特性。通过简单明了的代码示例,你将会学习到如何使用默认接口方法,Lambda表达式,方法引用和重复注解。看完这篇教程后,你还将对最新推出的API有一定的了解,例如:流控制,函数式接口,map扩展和新的时间日期API等等。
允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添加非抽象的方法实现。这个特性又被称为扩展方法。下面是我们的第一个例子:
interface Formula {
double calculate(int a);
default double sqrt(int a) {
return Math.sqrt(a);
}
}
在接口Formula中,除了抽象方法caculate以外,还定义了一个默认方法sqrt。Formula的实现类只需要实现抽象方法caculate就可以了。默认方法sqrt可以直接使用。
Formula formula = new Formula() {
@Override
public double calculate(int a) {
return sqrt(a * 100);
}
};
formula.calculate(100); // 100.0
formula.sqrt(16); // 4.0
formula对象以匿名对象的形式实现了Formula接口。代码很啰嗦:用了6行代码才实现了一个简单的计算功能:a*100开平方根。我们在下一节会看到,Java 8 还有一种更加优美的方法,能够实现包含单个函数的对象。
Lambda表达式
让我们从最简单的例子开始,来学习如何对一个string列表进行排序。我们首先使用Java 8之前的方法来实现:
List<String> names = Arrays.asList("peter", "anna", "mike", "xenia");
Collections.sort(names, new Comparator<String>() {
@Override
public int compare(String a, String b) {
return b.compareTo(a);
}
});
静态工具方法Collections.sort接受一个list,和一个Comparator接口作为输入参数,Comparator的实现类可以对输入的list中的元素进行比较。通常情况下,你可以直接用创建匿名Comparator对象,并把它作为参数传递给sort方法。
除了创建匿名对象以外,Java 8 还提供了一种更简洁的方式,Lambda表达式。
Collections.sort(names, (String a, String b) -> {
return b.compareTo(a);
});
你可以看到,这段代码就比之前的更加简短和易读。但是,它还可以更加简短:
Collections.sort(names, (String a, String b) -> b.compareTo(a));
只要一行代码,包含了方法体。你甚至可以连大括号对{}和return关键字都省略不要。不过这还不是最短的写法:
Collections.sort(names, (a, b) -> b.compareTo(a));
Java编译器能够自动识别参数的类型,所以你就可以省略掉类型不写。让我们再深入地研究一下lambda表达式的威力吧。
函数式接口
Lambda表达式如何匹配Java的类型系统?每一个lambda都能够通过一个特定的接口,与一个给定的类型进行匹配。一个所谓的函数式接口必须要有且仅有一个抽象方法声明。每个与之对应的lambda表达式必须要与抽象方法的声明相匹配。由于默认方法不是抽象的,因此你可以在你的函数式接口里任意添加默认方法。
任意只包含一个抽象方法的接口,我们都可以用来做成lambda表达式。为了让你定义的接口满足要求,你应当在接口前加上@FunctionalInterface 标注。编译器会注意到这个标注,如果你的接口中定义了第二个抽象方法的话,编译器会抛出异常。
举例:
@FunctionalInterface
interface Converter<F, T> {
T convert(F from);
}
Converter<String, Integer> converter = (from) -> Integer.valueOf(from);
Integer converted = converter.convert("123");
System.out.println(converted); // 123
注意,如果你不写@FunctionalInterface 标注,程序也是正确的。
方法和构造函数引用
上面的代码实例可以通过静态方法引用,使之更加简洁:
Converter<String, Integer> converter = Integer::valueOf;
Integer converted = converter.convert("123");
System.out.println(converted); // 123
Java 8 允许你通过::关键字获取方法或者构造函数的的引用。上面的例子就演示了如何引用一个静态方法。而且,我们还可以对一个对象的方法进行引用:
class Something {
String startsWith(String s) {
return String.valueOf(s.charAt(0));
}
}
Something something = new Something();
Converter<String, String> converter = something::startsWith;
String converted = converter.convert("Java");
System.out.println(converted); // "J"
让我们看看如何使用::关键字引用构造函数。首先我们定义一个示例bean,包含不同的构造方法:
class Person {
String firstName;
String lastName;
Person() {}
Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
}
接下来,我们定义一个person工厂接口,用来创建新的person对象:
interface PersonFactory<P extends Person> {
P create(String firstName, String lastName);
}
然后我们通过构造函数引用来把所有东西拼到一起,而不是像以前一样,通过手动实现一个工厂来这么做。
PersonFactory<Person> personFactory = Person::new;
Person person = personFactory.create("Peter", "Parker");
我们通过Person::new来创建一个Person类构造函数的引用。Java编译器会自动地选择合适的构造函数来匹配PersonFactory.create函数的签名,并选择正确的构造函数形式。
Lambda的范围
对于lambdab表达式外部的变量,其访问权限的粒度与匿名对象的方式非常类似。你能够访问局部对应的外部区域的局部final变量,以及成员变量和静态变量。
访问局部变量
我们可以访问lambda表达式外部的final局部变量:
final int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);
stringConverter.convert(2); // 3
但是与匿名对象不同的是,变量num并不需要一定是final。下面的代码依然是合法的:
int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);
stringConverter.convert(2); // 3
然而,num在编译的时候被隐式地当做final变量来处理。下面的代码就不合法:
int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);
num = 3;
在lambda表达式内部企图改变num的值也是不允许的。
访问成员变量和静态变量
与局部变量不同,我们在lambda表达式的内部能获取到对成员变量或静态变量的读写权。这种访问行为在匿名对象里是非常典型的。
class Lambda4 {
static int outerStaticNum;
int outerNum;
void testScopes() {
Converter<Integer, String> stringConverter1 = (from) -> {
outerNum = 23;
return String.valueOf(from);
};
Converter<Integer, String> stringConverter2 = (from) -> {
outerStaticNum = 72;
return String.valueOf(from);
};
}
}
访问默认接口方法
还记得第一节里面formula的那个例子么? 接口Formula定义了一个默认的方法sqrt,该方法能够访问formula所有的对象实例,包括匿名对象。这个对lambda表达式来讲则无效。
默认方法无法在lambda表达式内部被访问。因此下面的代码是无法通过编译的:
Formula formula = (a) -> sqrt( a * 100);
内置函数式接口
JDK 1.8 API中包含了很多内置的函数式接口。有些是在以前版本的Java中大家耳熟能详的,例如Comparator接口,或者Runnable接口。对这些现成的接口进行实现,可以通过@FunctionalInterface 标注来启用Lambda功能支持。
此外,Java 8 API 还提供了很多新的函数式接口,来降低程序员的工作负担。有些新的接口已经在Google Guava库中很有名了。如果你对这些库很熟的话,你甚至闭上眼睛都能够想到,这些接口在类库的实现过程中起了多么大的作用。
Predicates
Predicate是一个布尔类型的函数,该函数只有一个输入参数。Predicate接口包含了多种默认方法,用于处理复杂的逻辑动词(and, or,negate)
Predicate<String> predicate = (s) -> s.length() > 0;
predicate.test("foo"); // true
predicate.negate().test("foo"); // false
Predicate<Boolean> nonNull = Objects::nonNull;
Predicate<Boolean> isNull = Objects::isNull;
Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNotEmpty = isEmpty.negate();
Functions
Function接口接收一个参数,并返回单一的结果。默认方法可以将多个函数串在一起(compse, andThen)
Function<String, Integer> toInteger = Integer::valueOf;
Function<String, String> backToString = toInteger.andThen(String::valueOf);
backToString.apply("123"); // "123"
Suppliers
Supplier接口产生一个给定类型的结果。与Function不同的是,Supplier没有输入参数。
Supplier<Person> personSupplier = Person::new;
personSupplier.get(); // new Person
Consumers
Consumer代表了在一个输入参数上需要进行的操作。
Consumer<Person> greeter = (p) -> System.out.println("Hello, " + p.firstName);
greeter.accept(new Person("Luke", "Skywalker"));
Comparators
Comparator接口在早期的Java版本中非常著名。Java 8 为这个接口添加了不同的默认方法。
Comparator<Person> comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName);
Person p1 = new Person("John", "Doe");
Person p2 = new Person("Alice", "Wonderland");
comparator.compare(p1, p2); // > 0
comparator.reversed().compare(p1, p2); // < 0
Optionals
Optional不是一个函数式接口,而是一个精巧的工具接口,用来防止NullPointerException产生。这个概念在下一节会显得很重要,所以我们在这里快速地浏览一下Optional的工作原理。
Optional是一个简单的值容器,这个值可以是null,也可以是non-null。考虑到一个方法可能会返回一个non-null的值,也可能返回一个空值。为了不直接返回null,我们在Java 8中就返回一个Optional.
Optional<String> optional = Optional.of("bam");
optional.isPresent(); // true
optional.get(); // "bam"
optional.orElse("fallback"); // "bam"
optional.ifPresent((s) -> System.out.println(s.charAt(0))); // "b"
Streams
java.util.Stream表示了某一种元素的序列,在这些元素上可以进行各种操作。Stream操作可以是中间操作,也可以是完结操作。完结操作会返回一个某种类型的值,而中间操作会返回流对象本身,并且你可以通过多次调用同一个流操作方法来将操作结果串起来(就像StringBuffer的append方法一样————译者注)。Stream是在一个源的基础上创建出来的,例如java.util.Collection中的list或者set(map不能作为Stream的源)。Stream操作往往可以通过顺序或者并行两种方式来执行。
我们先了解一下序列流。首先,我们通过string类型的list的形式创建示例数据:
List<String> stringCollection = new ArrayList<>();
stringCollection.add("ddd2");
stringCollection.add("aaa2");
stringCollection.add("bbb1");
stringCollection.add("aaa1");
stringCollection.add("bbb3");
stringCollection.add("ccc");
stringCollection.add("bbb2");
stringCollection.add("ddd1");
Java 8中的Collections类的功能已经有所增强,你可以之直接通过调用Collections.stream()或者Collection.parallelStream()方法来创建一个流对象。下面的章节会解释这个最常用的操作。
Filter
Filter接受一个predicate接口类型的变量,并将所有流对象中的元素进行过滤。该操作是一个中间操作,因此它允许我们在返回结果的基础上再进行其他的流操作(forEach)。ForEach接受一个function接口类型的变量,用来执行对每一个元素的操作。ForEach是一个中止操作。它不返回流,所以我们不能再调用其他的流操作。
stringCollection
.stream()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);
// "aaa2", "aaa1"
Sorted
Sorted是一个中间操作,能够返回一个排过序的流对象的视图。流对象中的元素会默认按照自然顺序进行排序,除非你自己指定一个Comparator接口来改变排序规则。
stringCollection
.stream()
.sorted()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);
// "aaa1", "aaa2"
一定要记住,sorted只是创建一个流对象排序的视图,而不会改变原来集合中元素的顺序。原来string集合中的元素顺序是没有改变的。
System.out.println(stringCollection);
// ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1
Map
map是一个对于流对象的中间操作,通过给定的方法,它能够把流对象中的每一个元素对应到另外一个对象上。下面的例子就演示了如何把每个string都转换成大写的string. 不但如此,你还可以把每一种对象映射成为其他类型。对于带泛型结果的流对象,具体的类型还要由传递给map的泛型方法来决定。
stringCollection
.stream()
.map(String::toUpperCase)
.sorted((a, b) -> b.compareTo(a))
.forEach(System.out::println);
// "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1"
Match
匹配操作有多种不同的类型,都是用来判断某一种规则是否与流对象相互吻合的。所有的匹配操作都是终结操作,只返回一个boolean类型的结果。
boolean anyStartsWithA =
stringCollection
.stream()
.anyMatch((s) -> s.startsWith("a"));
System.out.println(anyStartsWithA); // true
boolean allStartsWithA =
stringCollection
.stream()
.allMatch((s) -> s.startsWith("a"));
System.out.println(allStartsWithA); // false
boolean noneStartsWithZ =
stringCollection
.stream()
.noneMatch((s) -> s.startsWith("z"));
System.out.println(noneStartsWithZ); // true
Count
Count是一个终结操作,它的作用是返回一个数值,用来标识当前流对象中包含的元素数量。
long startsWithB =
stringCollection
.stream()
.filter((s) -> s.startsWith("b"))
.count();
System.out.println(startsWithB); // 3
Reduce
该操作是一个终结操作,它能够通过某一个方法,对元素进行削减操作。该操作的结果会放在一个Optional变量里返回。
Optional<String> reduced =
stringCollection
.stream()
.sorted()
.reduce((s1, s2) -> s1 + "#" + s2);
reduced.ifPresent(System.out::println);
// "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2"
Parallel Streams
像上面所说的,流操作可以是顺序的,也可以是并行的。顺序操作通过单线程执行,而并行操作则通过多线程执行。
下面的例子就演示了如何使用并行流进行操作来提高运行效率,代码非常简单。
首先我们创建一个大的list,里面的元素都是唯一的:
int max = 1000000;
List<String> values = new ArrayList<>(max);
for (int i = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());
}
现在,我们测量一下对这个集合进行排序所使用的时间。
顺序排序
long t0 = System.nanoTime();
long count = values.stream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("sequential sort took: %d ms", millis));
// sequential sort took: 899 ms
并行排序
long t0 = System.nanoTime();
long count = values.parallelStream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("parallel sort took: %d ms", millis));
// parallel sort took: 472 ms
如你所见,所有的代码段几乎都相同,唯一的不同就是把stream()改成了parallelStream(), 结果并行排序快了50%。
Map
正如前面已经提到的那样,map是不支持流操作的。而更新后的map现在则支持多种实用的新方法,来完成常规的任务。
Map<Integer, String> map = new HashMap<>();
for (int i = 0; i < 10; i++) {
map.putIfAbsent(i, "val" + i);
}
map.forEach((id, val) -> System.out.println(val));
上面的代码风格是完全自解释的:putIfAbsent避免我们将null写入;forEach接受一个消费者对象,从而将操作实施到每一个map中的值上。
下面的这个例子展示了如何使用函数来计算map的编码
map.computeIfPresent(3, (num, val) -> val + num);
map.get(3); // val33
map.computeIfPresent(9, (num, val) -> null);
map.containsKey(9); // false
map.computeIfAbsent(23, num -> "val" + num);
map.containsKey(23); // true
map.computeIfAbsent(3, num -> "bam");
map.get(3); // val33
接下来,我们将学习,当给定一个key值时,如何把一个实例从对应的key中移除:
map.remove(3, "val3");
map.get(3); // val33
map.remove(3, "val33");
map.get(3); // null
另一个有用的方法:
map.getOrDefault(42, "not found"); // not found
将map中的实例合并也是非常容易的:
map.merge(9, "val9", (value, newValue) -> value.concat(newValue));
map.get(9); // val9
map.merge(9, "concat", (value, newValue) -> value.concat(newValue));
map.get(9); // val9concat
合并操作先看map中是否没有特定的key/value存在,如果是,则把key/value存入map,否则merging函数就会被调用,对现有的数值进行修改。
时间日期API
Java 8 包含了全新的时间日期API,这些功能都放在了java.time包下。新的时间日期API是基于Joda-Time库开发的,但是也不尽相同。下面的例子就涵盖了大多数新的API的重要部分。
Clock
Clock提供了对当前时间和日期的访问功能。Clock是对当前时区敏感的,并可用于替代System.currentTimeMillis()方法来获取当前的毫秒时间。当前时间线上的时刻可以用Instance类来表示。Instance也能够用于创建原先的java.util.Date对象。
Clock clock = Clock.systemDefaultZone();
long millis = clock.millis();
Instant instant = clock.instant();
Date legacyDate = Date.from(instant); // legacy java.util.Date
Timezones
时区类可以用一个ZoneId来表示。时区类的对象可以通过静态工厂方法方便地获取。时区类还定义了一个偏移量,用来在当前时刻或某时间与目标时区时间之间进行转换。
System.out.println(ZoneId.getAvailableZoneIds());
// prints all available timezone ids
ZoneId zone1 = ZoneId.of("Europe/Berlin");
ZoneId zone2 = ZoneId.of("Brazil/East");
System.out.println(zone1.getRules());
System.out.println(zone2.getRules());
// ZoneRules[currentStandardOffset=+01:00]
// ZoneRules[currentStandardOffset=-03:00]
LocalTime
本地时间类表示一个没有指定时区的时间,例如,10 p.m.或者17:30:15,下面的例子会用上面的例子定义的时区创建两个本地时间对象。然后我们会比较两个时间,并计算它们之间的小时和分钟的不同。
LocalTime now1 = LocalTime.now(zone1);
LocalTime now2 = LocalTime.now(zone2);
System.out.println(now1.isBefore(now2)); // false
long hoursBetween = ChronoUnit.HOURS.between(now1, now2);
long minutesBetween = ChronoUnit.MINUTES.between(now1, now2);
System.out.println(hoursBetween); // -3
System.out.println(minutesBetween); // -239
LocalTime是由多个工厂方法组成,其目的是为了简化对时间对象实例的创建和操作,包括对时间字符串进行解析的操作。
LocalTime late = LocalTime.of(23, 59, 59);
System.out.println(late); // 23:59:59
DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedTime(FormatStyle.SHORT)
.withLocale(Locale.GERMAN);
LocalTime leetTime = LocalTime.parse("13:37", germanFormatter);
System.out.println(leetTime); // 13:37
LocalDate
本地时间表示了一个独一无二的时间,例如:2014-03-11。这个时间是不可变的,与LocalTime是同源的。下面的例子演示了如何通过加减日,月,年等指标来计算新的日期。记住,每一次操作都会返回一个新的时间对象。
LocalDate today = LocalDate.now();
LocalDate tomorrow = today.plus(1, ChronoUnit.DAYS);
LocalDate yesterday = tomorrow.minusDays(2);
LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4);
DayOfWeek dayOfWeek = independenceDay.getDayOfWeek();
System.out.println(dayOfWeek); // FRIDAY<span style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; font-size: 13px; line-height: 19px;">Parsing a LocalDate from a string is just as simple as parsing a LocalTime:</span>
解析字符串并形成LocalDate对象,这个操作和解析LocalTime一样简单。
DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedDate(FormatStyle.MEDIUM)
.withLocale(Locale.GERMAN);
LocalDate xmas = LocalDate.parse("24.12.2014", germanFormatter);
System.out.println(xmas); // 2014-12-24
LocalDateTime
LocalDateTime表示的是日期-时间。它将刚才介绍的日期对象和时间对象结合起来,形成了一个对象实例。LocalDateTime是不可变的,与LocalTime和LocalDate的工作原理相同。我们可以通过调用方法来获取日期时间对象中特定的数据域。
LocalDateTime sylvester = LocalDateTime.of(2014, Month.DECEMBER, 31, 23, 59, 59);
DayOfWeek dayOfWeek = sylvester.getDayOfWeek();
System.out.println(dayOfWeek); // WEDNESDAY
Month month = sylvester.getMonth();
System.out.println(month); // DECEMBER
long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY);
System.out.println(minuteOfDay); // 1439
如果再加上的时区信息,LocalDateTime能够被转换成Instance实例。Instance能够被转换成以前的java.util.Date对象。
Instant instant = sylvester
.atZone(ZoneId.systemDefault())
.toInstant();
Date legacyDate = Date.from(instant);
System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014
格式化日期-时间对象就和格式化日期对象或者时间对象一样。除了使用预定义的格式以外,我们还可以创建自定义的格式化对象,然后匹配我们自定义的格式。
DateTimeFormatter formatter =
DateTimeFormatter
.ofPattern("MMM dd, yyyy - HH:mm");
LocalDateTime parsed = LocalDateTime.parse("Nov 03, 2014 - 07:13", formatter);
String string = formatter.format(parsed);
System.out.println(string); // Nov 03, 2014 - 07:13
不同于java.text.NumberFormat,新的DateTimeFormatter类是不可变的,也是线程安全的。
更多的细节,请看这里
Annotations
Java 8中的注解是可重复的。让我们直接深入看看例子,弄明白它是什么意思。
首先,我们定义一个包装注解,它包括了一个实际注解的数组
@interface Hints {
Hint[] value();
}
@Repeatable(Hints.class)
@interface Hint {
String value();
}
只要在前面加上注解名:@Repeatable,Java 8 允许我们对同一类型使用多重注解,
变体1:使用注解容器(老方法)
@Hints({@Hint("hint1"), @Hint("hint2")})
class Person {}
变体2:使用可重复注解(新方法)
@Hint("hint1")
@Hint("hint2")
class Person {}
使用变体2,Java编译器能够在内部自动对@Hint进行设置。这对于通过反射来读取注解信息来说,是非常重要的。
Hint hint = Person.class.getAnnotation(Hint.class);
System.out.println(hint); // null
Hints hints1 = Person.class.getAnnotation(Hints.class);
System.out.println(hints1.value().length); // 2
Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class);
System.out.println(hints2.length); // 2
尽管我们绝对不会在Person类上声明@Hints注解,但是它的信息仍然可以通过getAnnotation(Hints.class)来读取。并且,getAnnotationsByType方法会更方便,因为它赋予了所有@Hints注解标注的方法直接的访问权限。
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
@interface MyAnnotation {}
先到这里
我的Java 8编程指南就到此告一段落。当然,还有很多内容需要进一步研究和说明。这就需要靠读者您来对JDK 8进行探究了,例如:Arrays.parallelSort, StampedLock和CompletableFuture等等 ———— 我这里只是举几个例子而已。
我希望这个博文能够对您有所帮助,也希望您阅读愉快。完整的教程源代码放在了GitHub上。您可以尽情地fork,并请通过Twitter告诉我您的反馈。
在 Nashron 中使用 Backbone.js
译者:飞龙
这个例子展示了如何在Java8的Nashron JavaScript引擎中使用Backbone.js模型。Nashron在2014年三月首次作为Java SE 8 的一部分发布,并通过以原生方式在JVM上运行脚本扩展了Java的功能。对于Java Web开发者,Nashron尤其实用,因为它可以在Java服务器上复用现有的客户端代码。传统的Node.js具有明显优势,但是Nashorn也能够缩短JVM的差距。
当你在HTML5前端使用现代的JavaScript MVC框架,例如Backbone.js时,越来越多的代码从服务器后端移动到Web前端。这个方法可以极大提升用户体验,因为在使用视图的业务逻辑时节省了服务器的很多往返通信。
Backbone允许你定义模型类,它们可以用于绑定视图(例如HTML表单)。当用户和UI交互时Backbone会跟踪模型的升级,反之亦然。它也能通过和服务器同步模型来帮助你,例如调用服务端REST处理器的适当方法。所以你最终会在前端实现业务逻辑,将你的服务器模型用于处理持久化数据。
在服务端复用Backbone模型十分易于用Nashron完成,就像下面的例子所展示的那样。在我们开始之前,确保你通过阅读我的Nashorn教程熟悉了在Nashron引擎中编写JavaScript。
Java 模型
首先,我们在Java中定义实体类Product
。这个类可用于数据库的CURD操作(增删改查)。要记住这个类是个纯粹的Java Bean,不实现任何业务逻辑,因为我们想让前端正确执行UI的业务逻辑。
class Product {
String name;
double price;
int stock;
double valueOfGoods;
}
Backbone 模型
现在我们定义Backbone模型,作为Java Bean的对应。Backbone模型Product
使用和Java Bean相同的数据结构,因为它是我们希望在Java服务器上持久存储的数据。
Backbone模型也实现了业务逻辑:getValueOfGoods
方法通过将stock
与price
相乘计算所有产品的总值。每次stock
或price
的变动都会使valueOfGoods
重新计算。
var Product = Backbone.Model.extend({
defaults: {
name: '',
stock: 0,
price: 0.0,
valueOfGoods: 0.0
},
initialize: function() {
this.on('change:stock change:price', function() {
var stock = this.get('stock');
var price = this.get('price');
var valueOfGoods = this.getValueOfGoods(stock, price);
this.set('valueOfGoods', valueOfGoods);
});
},
getValueOfGoods: function(stock, price) {
return stock * price;
}
});
由于Backbone模型不使用任何Nashron语言扩展,我们可以在客户端(浏览器)和服务端(Java)安全地使用同一份代码。
要记住我特意选择了十分简单的函数来演示我的意图。真实的业务逻辑应该会更复杂。
将二者放在一起
下一个目标是在Nashron中,例如在Java服务器上复用Backbone模型。我们希望完成下面的行为:把所有属性从Java Bean上绑定到Backbone模型上,计算valueOfGoods
属性,最后将结果传回Java。
首先,我们创建一个新的脚本,它仅仅由Nashron执行,所以我们这里可以安全地使用Nashron的扩展。
load('http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/underscore-min.js');
load('http://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2/backbone-min.js');
load('product-backbone-model.js');
var calculate = function(javaProduct) {
var model = new Product();
model.set('name', javaProduct.name);
model.set('price', javaProduct.price);
model.set('stock', javaProduct.stock);
return model.attributes;
};
这个脚本首先加载了相关的外部脚本Underscore 和 Backbone(Underscore是Backbone的必备条件),以及我们前面的Product
Backbone模型。
函数calcute
接受Product
Java Bean,将其所有属性绑定到新创建的BackboneProduct
上,之后返回模型的所有属性给调用者。通过在Backbone模型上设置stock
和price
属性,ValueOfGoods
属性由于注册在模型initialize
构造函数中的事件处理器,会自动计算出来。
最后,我们在Java中调用calculate
函数。
Product product = new Product();
product.setName("Rubber");
product.setPrice(1.99);
product.setStock(1337);
ScriptObjectMirror result = (ScriptObjectMirror)
invocable.invokeFunction("calculate", product);
System.out.println(result.get("name") + ": " + result.get("valueOfGoods"));
// Rubber: 2660.63
我们创建了新的Product
Java Bean,并且将它传递到JavaScript函数中。结果触发了getValueOfGoods
方法,所以我们可以从返回的对象中读取valueOfGoods
属性的值。
总结
在Nashron中复用现存的JavaScript库十分简单。Backbone适用于构建复杂的HTML5前端。在我看来,Nashron和JVM现在是Node.js的优秀备选方案,因为你可以在Nashron的代码库中充分利用Java的整个生态系统,例如JDK的全部API,以及所有可用的库和工具。要记住你在使用Nashron时并不限制于Java – 想想 Scala、Groovy、Clojure和jjs
上的纯JavaScript。
这篇文章中可运行的代码托管在Github上(请见这个文件)。请随意fork我的仓库,或者在Twitter上向我反馈。
Java 8 数据流教程
译者:飞龙
这个示例驱动的教程是Java8数据流(Stream)的深入总结。当我第一次看到Stream
API时,我非常疑惑,因为它听起来和Java IO的InputStream
和 OutputStream
一样。但是Java8的数据流是完全不同的东西。数据流是单体(Monad),并且在Java8函数式编程中起到重要作用。
在函数式编程中,单体是一个结构,表示定义为步骤序列的计算。单体结构的类型定义了它对链式操作,或具有相同类型的嵌套函数的含义。
这个教程教给你如何使用Java8数据流,以及如何使用不同种类的可用的数据流操作。你将会学到处理次序以及流操作的次序如何影响运行时效率。这个教程也会详细讲解更加强大的流操作,reduce
、collect
和flatMap
。最后,这个教程会深入探讨并行流。
如果你还不熟悉Java8的lambda表达式,函数式接口和方法引用,你可能需要在开始这一章之前,首先阅读我的Java8教程。
更新 - 我现在正在编写用于浏览器的Java8数据流API的JavaScript实现。如果你对此感兴趣,请在Github上访问Stream.js。非常期待你的反馈。
数据流如何工作
数据流表示元素的序列,并支持不同种类的操作来执行元素上的计算:
List<String> myList =
Arrays.asList("a1", "a2", "b1", "c2", "c1");
myList
.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println);
// C1
// C2
数据流操作要么是衔接操作,要么是终止操作。衔接操作返回数据流,所以我们可以把多个衔接操作不使用分号来链接到一起。终止操作无返回值,或者返回一个不是流的结果。在上面的例子中,filter
、map
和sorted
都是衔接操作,而forEach
是终止操作。列表上的所有流式操作请见数据流的Javadoc。你在上面例子中看到的这种数据流的链式操作也叫作操作流水线。
多数数据流操作都接受一些lambda表达式参数,函数式接口用来指定操作的具体行为。这些操作的大多数必须是无干扰而且是无状态的。它们是什么意思呢?
当一个函数不修改数据流的底层数据源,它就是无干扰的。例如,在上面的例子中,没有任何lambda表达式通过添加或删除集合元素修改myList
。
当一个函数的操作的执行是确定性的,它就是无状态的。例如,在上面的例子中,没有任何lambda表达式依赖于外部作用域中任何在操作过程中可变的变量或状态。
数据流的不同类型
数据流可以从多种数据源创建,尤其是集合。List
和Set
支持新方法stream()
和 parallelStream()
,来创建串行流或并行流。并行流能够在多个线程上执行操作,它们会在之后的章节中讲到。我们现在来看看串行流:
Arrays.asList("a1", "a2", "a3")
.stream()
.findFirst()
.ifPresent(System.out::println); // a1
在对象列表上调用stream()
方法会返回一个通常的对象流。但是我们不需要创建一个集合来创建数据流,就像下面那样:
Stream.of("a1", "a2", "a3")
.findFirst()
.ifPresent(System.out::println); // a1
只要使用Stream.of()
,就可以从一系列对象引用中创建数据流。
除了普通的对象数据流,Java8还自带了特殊种类的流,用于处理基本数据类型int
、long
和 double
。你可能已经猜到了它是IntStream
、LongStream
和 DoubleStream
。
IntStream
可以使用IntStream.range()
替换通常的for
循环:
IntStream.range(1, 4)
.forEach(System.out::println);
// 1
// 2
// 3
所有这些基本数据流都像通常的对象数据流一样,但有一些不同。基本的数据流使用特殊的lambda表达式,例如,IntFunction
而不是Function
,IntPredicate
而不是Predicate
。而且基本数据流支持额外的聚合终止操作sum()
和average()
:
Arrays.stream(new int[] {1, 2, 3})
.map(n -> 2 * n + 1)
.average()
.ifPresent(System.out::println); // 5.0
有时需要将通常的对象数据流转换为基本数据流,或者相反。出于这种目的,对象数据流支持特殊的映射操作mapToInt()
、mapToLong()
和 mapToDouble()
:
Stream.of("a1", "a2", "a3")
.map(s -> s.substring(1))
.mapToInt(Integer::parseInt)
.max()
.ifPresent(System.out::println); // 3
基本数据流可以通过mapToObj()
转换为对象数据流:
IntStream.range(1, 4)
.mapToObj(i -> "a" + i)
.forEach(System.out::println);
// a1
// a2
// a3
下面是组合示例:浮点数据流首先映射为整数数据流,之后映射为字符串的对象数据流:
Stream.of(1.0, 2.0, 3.0)
.mapToInt(Double::intValue)
.mapToObj(i -> "a" + i)
.forEach(System.out::println);
// a1
// a2
// a3
处理顺序
既然我们已经了解了如何创建并使用不同种类的数据流,让我们深入了解数据流操作在背后如何执行吧。
衔接操作的一个重要特性就是延迟性。观察下面没有终止操作的例子:
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return true;
});
执行这段代码时,不向控制台打印任何东西。这是因为衔接操作只在终止操作调用时被执行。
让我们通过添加终止操作forEach
来扩展这个例子:
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return true;
})
.forEach(s -> System.out.println("forEach: " + s));
执行这段代码会得到如下输出:
filter: d2
forEach: d2
filter: a2
forEach: a2
filter: b1
forEach: b1
filter: b3
forEach: b3
filter: c
forEach: c
结果的顺序可能出人意料。原始的方法会在数据流的所有元素上,一个接一个地水平执行所有操作。但是每个元素在调用链上垂直移动。第一个字符串"d2"
首先经过filter
然后是forEach
,执行完后才开始处理第二个字符串"a2"
。
这种行为可以减少每个元素上所执行的实际操作数量,就像我们在下个例子中看到的那样:
Stream.of("d2", "a2", "b1", "b3", "c")
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.anyMatch(s -> {
System.out.println("anyMatch: " + s);
return s.startsWith("A");
});
// map: d2
// anyMatch: D2
// map: a2
// anyMatch: A2
只要提供的数据元素满足了谓词,anyMatch
操作就会返回true
。对于第二个传递"A2"
的元素,它的结果为真。由于数据流的链式调用是垂直执行的,map
这里只需要执行两次。所以map
会执行尽可能少的次数,而不是把所有元素都映射一遍。
为什么顺序如此重要
下面的例子由两个衔接操作map
和filter
,以及一个终止操作forEach
组成。让我们再来看看这些操作如何执行:
Stream.of("d2", "a2", "b1", "b3", "c")
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("A");
})
.forEach(s -> System.out.println("forEach: " + s));
// map: d2
// filter: D2
// map: a2
// filter: A2
// forEach: A2
// map: b1
// filter: B1
// map: b3
// filter: B3
// map: c
// filter: C
就像你可能猜到的那样,map
和filter
会对底层集合的每个字符串调用五次,而forEach
只会调用一次。
如果我们调整操作顺序,将filter
移动到调用链的顶端,就可以极大减少操作的执行次数:
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s));
// filter: d2
// filter: a2
// map: a2
// forEach: A2
// filter: b1
// filter: b3
// filter: c
现在,map
只会调用一次,所以操作流水线对于更多的输入元素会执行更快。在整合复杂的方法链时,要记住这一点。
让我们通过添加额外的方法sorted
来扩展上面的例子:
Stream.of("d2", "a2", "b1", "b3", "c")
.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", s1, s2);
return s1.compareTo(s2);
})
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s));
排序是一类特殊的衔接操作。它是有状态的操作,因为你需要在处理中保存状态来对集合中的元素排序。
执行这个例子会得到如下输入:
sort: a2; d2
sort: b1; a2
sort: b1; d2
sort: b1; a2
sort: b3; b1
sort: b3; d2
sort: c; b3
sort: c; d2
filter: a2
map: a2
forEach: A2
filter: b1
filter: b3
filter: c
filter: d2
首先,排序操作在整个输入集合上执行。也就是说,sorted
以水平方式执行。所以这里sorted
对输入集合中每个元素的多种组合调用了八次。
我们同样可以通过重排调用链来优化性能:
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", s1, s2);
return s1.compareTo(s2);
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s));
// filter: d2
// filter: a2
// filter: b1
// filter: b3
// filter: c
// map: a2
// forEach: A2
这个例子中sorted
永远不会调用,因为filter
把输入集合减少至只有一个元素。所以对于更大的输入集合会极大提升性能。
复用数据流
Java8的数据流不能被复用。一旦你调用了任何终止操作,数据流就关闭了:
Stream<String> stream =
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a"));
stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception
在相同数据流上,在anyMatch
之后调用noneMatch
会产生下面的异常:
java.lang.IllegalStateException: stream has already been operated upon or closed
at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:229)
at java.util.stream.ReferencePipeline.noneMatch(ReferencePipeline.java:459)
at com.winterbe.java8.Streams5.test7(Streams5.java:38)
at com.winterbe.java8.Streams5.main(Streams5.java:28)
要克服这个限制,我们需要为每个我们想要执行的终止操作创建新的数据流调用链。例如,我们创建一个数据流供应器,来构建新的数据流,并且设置好所有衔接操作:
Supplier<Stream<String>> streamSupplier =
() -> Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a"));
streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok
每次对get()
的调用都构造了一个新的数据流,我们将其保存来调用终止操作。
高级操作
数据流执行大量的不同操作。我们已经了解了一些最重要的操作,例如filter
和map
。我将它们留给你来探索所有其他的可用操作(请见数据流的Javadoc)。下面让我们深入了解一些更复杂的操作:collect
、flatMap
和reduce
。
这一节的大部分代码示例使用下面的Person
列表来演示:
class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return name;
}
}
List<Person> persons =
Arrays.asList(
new Person("Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12));
collect
collect
是非常有用的终止操作,将流中的元素存放在不同类型的结果中,例如List
、Set
或者Map
。collect
接受收集器(Collector),它由四个不同的操作组成:供应器(supplier)、累加器(accumulator)、组合器(combiner)和终止器(finisher)。这在开始听起来十分复杂,但是Java8通过内置的Collectors
类支持多种内置的收集器。所以对于大部分常见操作,你并不需要自己实现收集器。
让我们以一个非常常见的用例来开始:
List<Person> filtered =
persons
.stream()
.filter(p -> p.name.startsWith("P"))
.collect(Collectors.toList());
System.out.println(filtered); // [Peter, Pamela]
就像你看到的那样,它非常简单,只是从流的元素中构造了一个列表。如果需要以Set
来替代List
,只需要使用Collectors.toSet()
就好了。
下面的例子按照年龄对所有人进行分组:
Map<Integer, List<Person>> personsByAge = persons
.stream()
.collect(Collectors.groupingBy(p -> p.age));
personsByAge
.forEach((age, p) -> System.out.format("age %s: %s\n", age, p));
// age 18: [Max]
// age 23: [Peter, Pamela]
// age 12: [David]
收集器十分灵活。你也可以在流的元素上执行聚合,例如,计算所有人的平均年龄:
Double averageAge = persons
.stream()
.collect(Collectors.averagingInt(p -> p.age));
System.out.println(averageAge); // 19.0
如果你对更多统计学方法感兴趣,概要收集器返回一个特殊的内置概要统计对象,所以我们可以简单计算最小年龄、最大年龄、算术平均年龄、总和和数量。
IntSummaryStatistics ageSummary =
persons
.stream()
.collect(Collectors.summarizingInt(p -> p.age));
System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}
下面的例子将所有人连接为一个字符串:
String phrase = persons
.stream()
.filter(p -> p.age >= 18)
.map(p -> p.name)
.collect(Collectors.joining(" and ", "In Germany ", " are of legal age."));
System.out.println(phrase);
// In Germany Max and Peter and Pamela are of legal age.
连接收集器接受分隔符,以及可选的前缀和后缀。
为了将数据流中的元素转换为映射,我们需要指定键和值如何被映射。要记住键必须是唯一的,否则会抛出IllegalStateException
异常。你可以选择传递一个合并函数作为额外的参数来避免这个异常。
既然我们知道了一些最强大的内置收集器,让我们来尝试构建自己的特殊收集器吧。我们希望将流中的所有人转换为一个字符串,包含所有大写的名称,并以|
分割。为了完成它,我们通过Collector.of()
创建了一个新的收集器。我们需要传递一个收集器的四个组成部分:供应器、累加器、组合器和终止器。
Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(
() -> new StringJoiner(" | "), // supplier
(j, p) -> j.add(p.name.toUpperCase()), // accumulator
(j1, j2) -> j1.merge(j2), // combiner
StringJoiner::toString); // finisher
String names = persons
.stream()
.collect(personNameCollector);
System.out.println(names); // MAX | PETER | PAMELA | DAVID
由于Java中的字符串是不可变的,我们需要一个助手类StringJointer
。让收集器构造我们的字符串。供应器最开始使用相应的分隔符构造了这样一个StringJointer
。累加器用于将每个人的大写名称加到StringJointer
中。组合器知道如何把两个StringJointer
合并为一个。最后一步,终结器从StringJointer
构造出预期的字符串。
flatMap
我们已经了解了如何通过使用map
操作,将流中的对象转换为另一种类型。map
有时十分受限,因为每个对象只能映射为一个其它对象。但如何我希望将一个对象转换为多个或零个其他对象呢?flatMap
这时就会派上用场。
flatMap
将流中的每个元素,转换为其它对象的流。所以每个对象会被转换为零个、一个或多个其它对象,以流的形式返回。这些流的内容之后会放进flatMap
所返回的流中。
在我们了解flatMap
如何使用之前,我们需要相应的类型体系:
class Foo {
String name;
List<Bar> bars = new ArrayList<>();
Foo(String name) {
this.name = name;
}
}
class Bar {
String name;
Bar(String name) {
this.name = name;
}
}
下面,我们使用我们自己的关于流的知识来实例化一些对象:
List<Foo> foos = new ArrayList<>();
// create foos
IntStream
.range(1, 4)
.forEach(i -> foos.add(new Foo("Foo" + i)));
// create bars
foos.forEach(f ->
IntStream
.range(1, 4)
.forEach(i -> f.bars.add(new Bar("Bar" + i + " <- " + f.name))));
现在我们拥有了含有三个foo
的列表,每个都含有三个bar
。
flatMap
接受返回对象流的函数。所以为了处理每个foo
上的bar
对象,我们需要传递相应的函数:
foos.stream()
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));
// Bar1 <- Foo1
// Bar2 <- Foo1
// Bar3 <- Foo1
// Bar1 <- Foo2
// Bar2 <- Foo2
// Bar3 <- Foo2
// Bar1 <- Foo3
// Bar2 <- Foo3
// Bar3 <- Foo3
像你看到的那样,我们成功地将含有三个foo
对象中的流转换为含有九个bar
对象的流。
最后,上面的代码示例可以简化为流式操作的单一流水线:
IntStream.range(1, 4)
.mapToObj(i -> new Foo("Foo" + i))
.peek(f -> IntStream.range(1, 4)
.mapToObj(i -> new Bar("Bar" + i + " <- " + f.name))
.forEach(f.bars::add))
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));
flatMap
也可用于Java8引入的Optional
类。Optional
的flatMap
操作返回一个Optional
或其他类型的对象。所以它可以用于避免烦人的null
检查。
考虑像这样更复杂的层次结构:
class Outer {
Nested nested;
}
class Nested {
Inner inner;
}
class Inner {
String foo;
}
为了处理外层示例上的内层字符串foo
,你需要添加多个null
检查来避免潜在的NullPointerException
:
Outer outer = new Outer();
if (outer != null && outer.nested != null && outer.nested.inner != null) {
System.out.println(outer.nested.inner.foo);
}
可以使用Optional
的flatMap
操作来完成相同的行为:
Optional.of(new Outer())
.flatMap(o -> Optional.ofNullable(o.nested))
.flatMap(n -> Optional.ofNullable(n.inner))
.flatMap(i -> Optional.ofNullable(i.foo))
.ifPresent(System.out::println);
如果存在的话,每个flatMap
的调用都会返回预期对象的Optional
包装,否则为null
的Optional
包装。
reduce
归约操作将所有流中的元素组合为单一结果。Java8支持三种不同类型的reduce
方法。第一种将流中的元素归约为流中的一个元素。让我们看看我们如何使用这个方法来计算出最老的人:
persons
.stream()
.reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)
.ifPresent(System.out::println); // Pamela
reduce
方法接受BinaryOperator
积累函数。它实际上是两个操作数类型相同的BiFunction
。BiFunction
就像是Function
,但是接受两个参数。示例中的函数比较两个人的年龄,来返回年龄较大的人。
第二个reduce
方法接受一个初始值,和一个BinaryOperator
累加器。这个方法可以用于从流中的其它Person
对象中构造带有聚合后名称和年龄的新Person
对象。
Person result =
persons
.stream()
.reduce(new Person("", 0), (p1, p2) -> {
p1.age += p2.age;
p1.name += p2.name;
return p1;
});
System.out.format("name=%s; age=%s", result.name, result.age);
// name=MaxPeterPamelaDavid; age=76
第三个reduce
对象接受三个参数:初始值,BiFunction
累加器和BinaryOperator
类型的组合器函数。由于初始值的类型不一定为Person
,我们可以使用这个归约函数来计算所有人的年龄总和。:
Integer ageSum = persons
.stream()
.reduce(0, (sum, p) -> sum += p.age, (sum1, sum2) -> sum1 + sum2);
System.out.println(ageSum); // 76
你可以看到结果是76。但是背后发生了什么?让我们通过添加一些调试输出来扩展上面的代码:
Integer ageSum = persons
.stream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s\n", sum, p);
return sum += p.age;
},
(sum1, sum2) -> {
System.out.format("combiner: sum1=%s; sum2=%s\n", sum1, sum2);
return sum1 + sum2;
});
// accumulator: sum=0; person=Max
// accumulator: sum=18; person=Peter
// accumulator: sum=41; person=Pamela
// accumulator: sum=64; person=David
你可以看到,累加器函数做了所有工作。它首先使用初始值0
和第一个人Max来调用累加器。接下来的三步中sum
会持续增加,直到76。
等一下。好像组合器从来没有调用过?以并行方式执行相同的流会揭开这个秘密:
Integer ageSum = persons
.parallelStream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s\n", sum, p);
return sum += p.age;
},
(sum1, sum2) -> {
System.out.format("combiner: sum1=%s; sum2=%s\n", sum1, sum2);
return sum1 + sum2;
});
// accumulator: sum=0; person=Pamela
// accumulator: sum=0; person=David
// accumulator: sum=0; person=Max
// accumulator: sum=0; person=Peter
// combiner: sum1=18; sum2=23
// combiner: sum1=23; sum2=12
// combiner: sum1=41; sum2=35
这个流的并行执行行为会完全不同。现在实际上调用了组合器。由于累加器被并行调用,组合器需要用于计算部分累加值的总和。
下一节我们会深入了解并行流。
并行流
流可以并行执行,在大量输入元素上可以提升运行时的性能。并行流使用公共的ForkJoinPool
,由ForkJoinPool.commonPool()
方法提供。底层线程池的大小最大为五个线程 – 取决于CPU的物理核数。
ForkJoinPool commonPool = ForkJoinPool.commonPool();
System.out.println(commonPool.getParallelism()); // 3
在我的机器上,公共池默认初始化为3。这个值可以通过设置下列JVM参数来增减:
-Djava.util.concurrent.ForkJoinPool.common.parallelism=5
集合支持parallelStream()
方法来创建元素的并行流。或者你可以在已存在的数据流上调用衔接方法parallel()
,将串行流转换为并行流。
为了描述并行流的执行行为,下面的例子向sout
打印了当前线程的信息。
Arrays.asList("a1", "a2", "b1", "c2", "c1")
.parallelStream()
.filter(s -> {
System.out.format("filter: %s [%s]\n",
s, Thread.currentThread().getName());
return true;
})
.map(s -> {
System.out.format("map: %s [%s]\n",
s, Thread.currentThread().getName());
return s.toUpperCase();
})
.forEach(s -> System.out.format("forEach: %s [%s]\n",
s, Thread.currentThread().getName()));
通过分析调试输出,我们可以对哪个线程用于执行流式操作拥有更深入的理解:
filter: b1 [main]
filter: a2 [ForkJoinPool.commonPool-worker-1]
map: a2 [ForkJoinPool.commonPool-worker-1]
filter: c2 [ForkJoinPool.commonPool-worker-3]
map: c2 [ForkJoinPool.commonPool-worker-3]
filter: c1 [ForkJoinPool.commonPool-worker-2]
map: c1 [ForkJoinPool.commonPool-worker-2]
forEach: C2 [ForkJoinPool.commonPool-worker-3]
forEach: A2 [ForkJoinPool.commonPool-worker-1]
map: b1 [main]
forEach: B1 [main]
filter: a1 [ForkJoinPool.commonPool-worker-3]
map: a1 [ForkJoinPool.commonPool-worker-3]
forEach: A1 [ForkJoinPool.commonPool-worker-3]
forEach: C1 [ForkJoinPool.commonPool-worker-2]
就像你看到的那样,并行流使用了所有公共的ForkJoinPool
中的可用线程来执行流式操作。在连续的运行中输出可能有所不同,因为所使用的特定线程是非特定的。
让我们通过添加额外的流式操作sort
来扩展这个示例:
Arrays.asList("a1", "a2", "b1", "c2", "c1")
.parallelStream()
.filter(s -> {
System.out.format("filter: %s [%s]\n",
s, Thread.currentThread().getName());
return true;
})
.map(s -> {
System.out.format("map: %s [%s]\n",
s, Thread.currentThread().getName());
return s.toUpperCase();
})
.sorted((s1, s2) -> {
System.out.format("sort: %s <> %s [%s]\n",
s1, s2, Thread.currentThread().getName());
return s1.compareTo(s2);
})
.forEach(s -> System.out.format("forEach: %s [%s]\n",
s, Thread.currentThread().getName()));
结果起初可能比较奇怪:
filter: c2 [ForkJoinPool.commonPool-worker-3]
filter: c1 [ForkJoinPool.commonPool-worker-2]
map: c1 [ForkJoinPool.commonPool-worker-2]
filter: a2 [ForkJoinPool.commonPool-worker-1]
map: a2 [ForkJoinPool.commonPool-worker-1]
filter: b1 [main]
map: b1 [main]
filter: a1 [ForkJoinPool.commonPool-worker-2]
map: a1 [ForkJoinPool.commonPool-worker-2]
map: c2 [ForkJoinPool.commonPool-worker-3]
sort: A2 <> A1 [main]
sort: B1 <> A2 [main]
sort: C2 <> B1 [main]
sort: C1 <> C2 [main]
sort: C1 <> B1 [main]
sort: C1 <> C2 [main]
forEach: A1 [ForkJoinPool.commonPool-worker-1]
forEach: C2 [ForkJoinPool.commonPool-worker-3]
forEach: B1 [main]
forEach: A2 [ForkJoinPool.commonPool-worker-2]
forEach: C1 [ForkJoinPool.commonPool-worker-1]
sort
看起来只在主线程上串行执行。实际上,并行流上的sort
在背后使用了Java8中新的方法Arrays.parallelSort()
。如javadoc所说,这个方法会参照数据长度来决定以串行或并行来执行。
如果指定数据的长度小于最小粒度,它使用相应的
Arrays.sort
方法来排序。
返回上一节中reduce
的例子。我们已经发现了组合器函数只在并行流中调用,而不在串行流中调用。让我们来观察实际上涉及到哪个线程:
List<Person> persons = Arrays.asList(
new Person("Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12));
persons
.parallelStream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s [%s]\n",
sum, p, Thread.currentThread().getName());
return sum += p.age;
},
(sum1, sum2) -> {
System.out.format("combiner: sum1=%s; sum2=%s [%s]\n",
sum1, sum2, Thread.currentThread().getName());
return sum1 + sum2;
});
控制台的输出表明,累加器和组合器都在所有可用的线程上并行执行:
accumulator: sum=0; person=Pamela; [main]
accumulator: sum=0; person=Max; [ForkJoinPool.commonPool-worker-3]
accumulator: sum=0; person=David; [ForkJoinPool.commonPool-worker-2]
accumulator: sum=0; person=Peter; [ForkJoinPool.commonPool-worker-1]
combiner: sum1=18; sum2=23; [ForkJoinPool.commonPool-worker-1]
combiner: sum1=23; sum2=12; [ForkJoinPool.commonPool-worker-2]
combiner: sum1=41; sum2=35; [ForkJoinPool.commonPool-worker-2]
总之,并行流对拥有大量输入元素的数据流具有极大的性能提升。但是要记住一些并行流的操作,例如reduce
和collect
需要额外的计算(组合操作),这在串行执行时并不需要。
此外我们已经了解,所有并行流操作都共享相同的JVM相关的公共ForkJoinPool
。所以你可能需要避免实现又慢又卡的流式操作,因为它可能会拖慢你应用中严重依赖并行流的其它部分。
到此为止
我的Java8数据流编程教程就此告一段落。如果你对深入了解Java8数据流感兴趣,我向你推荐数据流的Javadoc。如果你希望学到更多底层机制,你可能需要阅读Martin Fowler关于集合流水线的文章。
如果你对JavaScript也感兴趣,你可能希望看一看Stream.js – 一个Java8数据流API的JavaScript实现。你也可能希望阅读我的Java8简明教程,和我的Java8Nashron教程。
我希望你会喜欢这篇文章。如果你有任何的问题都可以在下面评论或者通过 Twitter 给我回复。
祝编程愉快!
Java 8 Nashorn 教程
译者:飞龙
这个教程中,你会通过简单易懂的代码示例,来了解Nashorn JavaScript引擎。Nashorn JavaScript引擎是Java SE 8 的一部分,并且和其它独立的引擎例如Google V8(用于Google Chrome和Node.js的引擎)互相竞争。Nashorn通过在JVM上,以原生方式运行动态的JavaScript代码来扩展Java的功能。
在接下来的15分钟内,你会学到如何在JVM上在运行时动态执行JavaScript。我会使用小段代码示例来演示最新的Nashron语言特性。你会学到如何在Java代码中调用JavaScript函数,或者相反。最后你会准备好将动态脚本集成到你的Java日常业务中。
[外链图片转存中…(img-lnGwtJ7q-1730477818856)]
更新 - 我现在正在编写用于浏览器的Java8数据流API的JavaScript实现。如果你对此感兴趣,请在Github上访问Stream.js。非常期待你的反馈。
使用 Nashron
Nashorn JavaScript引擎可以在Java代码中编程调用,也可以通过命令行工具jjs
使用,它在$JAVA_HOME/bin
中。如果打算使用jjs
,你可能希望设置符号链接来简化访问:
$ cd /usr/bin
$ ln -s $JAVA_HOME/bin/jjs jjs
$ jjs
jjs> print('Hello World');
这个教程专注于在Java代码中调用Nashron,所以让我们先跳过jjs
。Java代码中简单的HelloWorld如下所示:
ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
engine.eval("print('Hello World!');");
为了在Java中执行JavaScript,你首先要通过javax.script
包创建脚本引擎。这个包已经在Rhino(来源于Mozilla、Java中的遗留JS引擎)中使用了。
JavaScript代码既可以通过传递JavaScript代码字符串,也可以传递指向你的JS脚本文件的FileReader
来执行:
ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
engine.eval(new FileReader("script.js"));
Nashorn JavaScript基于ECMAScript 5.1,但是它的后续版本会对ES6提供支持:
Nashorn的当前策略遵循ECMAScript规范。当我们在JDK8中发布它时,它将基于ECMAScript 5.1。Nashorn未来的主要发布基于ECMAScript 6。
Nashorn定义了大量对ECMAScript标准的语言和API扩展。但是首先让我们看一看Java和JavaScript代码如何交互。
在Java中调用JavaScript函数
Nashorn 支持从Java代码中直接调用定义在脚本文件中的JavaScript函数。你可以将Java对象传递为函数参数,并且从函数返回数据来调用Java方法。
下面的JavaScript函数稍后会在Java端调用:
var fun1 = function(name) {
print('Hi there from Javascript, ' + name);
return "greetings from javascript";
};
var fun2 = function (object) {
print("JS Class Definition: " + Object.prototype.toString.call(object));
};
为了调用函数,你首先需要将脚本引擎转换为Invocable
。Invocable
接口由NashornScriptEngine
实现,并且定义了invokeFunction
方法来调用指定名称的JavaScript函数。
ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
engine.eval(new FileReader("script.js"));
Invocable invocable = (Invocable) engine;
Object result = invocable.invokeFunction("fun1", "Peter Parker");
System.out.println(result);
System.out.println(result.getClass());
// Hi there from Javascript, Peter Parker
// greetings from javascript
// class java.lang.String
执行这段代码会在控制台产生三行结果。调用函数print
将结果输出到System.out
,所以我们会首先看到JavaScript输出。
现在让我们通过传入任意Java对象来调用第二个函数:
invocable.invokeFunction("fun2", new Date());
// [object java.util.Date]
invocable.invokeFunction("fun2", LocalDateTime.now());
// [object java.time.LocalDateTime]
invocable.invokeFunction("fun2", new Person());
// [object com.winterbe.java8.Person]
Java对象在传入时不会在JavaScript端损失任何类型信息。由于脚本在JVM上原生运行,我们可以在Nashron上使用Java API或外部库的全部功能。
在JavaScript中调用Java方法
在JavaScript中调用Java方法十分容易。我们首先需要定义一个Java静态方法。
static String fun1(String name) {
System.out.format("Hi there from Java, %s", name);
return "greetings from java";
}
Java类可以通过Java.type
API扩展在JavaScript中引用。它就和Java代码中的import
类似。只要定义了Java类型,我们就可以自然地调用静态方法fun1()
,然后像sout
打印信息。由于方法是静态的,我们不需要首先创建实例。
var MyJavaClass = Java.type('my.package.MyJavaClass');
var result = MyJavaClass.fun1('John Doe');
print(result);
// Hi there from Java, John Doe
// greetings from java
在使用JavaScript原生类型调用Java方法时,Nashorn 如何处理类型转换?让我们通过简单的例子来弄清楚。
下面的Java方法简单打印了方法参数的实际类型:
static void fun2(Object object) {
System.out.println(object.getClass());
}
为了理解背后如何处理类型转换,我们使用不同的JavaScript类型来调用这个方法:
MyJavaClass.fun2(123);
// class java.lang.Integer
MyJavaClass.fun2(49.99);
// class java.lang.Double
MyJavaClass.fun2(true);
// class java.lang.Boolean
MyJavaClass.fun2("hi there")
// class java.lang.String
MyJavaClass.fun2(new Number(23));
// class jdk.nashorn.internal.objects.NativeNumber
MyJavaClass.fun2(new Date());
// class jdk.nashorn.internal.objects.NativeDate
MyJavaClass.fun2(new RegExp());
// class jdk.nashorn.internal.objects.NativeRegExp
MyJavaClass.fun2({foo: 'bar'});
// class jdk.nashorn.internal.scripts.JO4
JavaScript原始类型转换为合适的Java包装类,而JavaScript原生对象会使用内部的适配器类来表示。要记住jdk.nashorn.internal
中的类可能会有所变化,所以不应该在客户端面向这些类来编程。
任何标记为“内部”的东西都可能会从你那里发生改变。
ScriptObjectMirror
在向Java传递原生JavaScript对象时,你可以使用ScriptObjectMirror
类,它实际上是底层JavaScript对象的Java表示。ScriptObjectMirror
实现了Map
接口,位于jdk.nashorn.api
中。这个包中的类可以用于客户端代码。
下面的例子将参数类型从Object
改为ScriptObjectMirror
,所以我们可以从传入的JavaScript对象中获得一些信息。
static void fun3(ScriptObjectMirror mirror) {
System.out.println(mirror.getClassName() + ": " +
Arrays.toString(mirror.getOwnKeys(true)));
}
当向这个方法传递对象(哈希表)时,在Java端可以访问其属性:
MyJavaClass.fun3({
foo: 'bar',
bar: 'foo'
});
// Object: [foo, bar]
我们也可以在Java中调用JavaScript的成员函数。让我们首先定义JavaScript Person
类型,带有属性firstName
和 lastName
,以及方法getFullName
。
function Person(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
this.getFullName = function() {
return this.firstName + " " + this.lastName;
}
}
JavaScript方法getFullName
可以通过callMember()
在ScriptObjectMirror
上调用。
static void fun4(ScriptObjectMirror person) {
System.out.println("Full Name is: " + person.callMember("getFullName"));
}
当向Java方法传递新的Person
时,我们会在控制台看到预期的结果:
var person1 = new Person("Peter", "Parker");
MyJavaClass.fun4(person1);
// Full Name is: Peter Parker
语言扩展
Nashorn定义了多种对ECMAScript标准的语言和API扩展。让我们看一看最新的特性:
类型数组
JavaScript的原生数组是无类型的。Nashron允许你在JavaScript中使用Java的类型数组:
var IntArray = Java.type("int[]");
var array = new IntArray(5);
array[0] = 5;
array[1] = 4;
array[2] = 3;
array[3] = 2;
array[4] = 1;
try {
array[5] = 23;
} catch (e) {
print(e.message); // Array index out of range: 5
}
array[0] = "17";
print(array[0]); // 17
array[0] = "wrong type";
print(array[0]); // 0
array[0] = "17.3";
print(array[0]); // 17
int[]
数组就像真实的Java整数数组那样。但是此外,在我们试图向数组添加非整数时,Nashron在背后执行了一些隐式的转换。字符串会自动转换为整数,这十分便利。
集合和范围遍历
我们可以使用任何Java集合,而避免使用数组瞎折腾。首先需要通过Java.type
定义Java类型,之后创建新的实例。
var ArrayList = Java.type('java.util.ArrayList');
var list = new ArrayList();
list.add('a');
list.add('b');
list.add('c');
for each (var el in list) print(el); // a, b, c
为了迭代集合和数组,Nashron引入了for each
语句。它就像Java的范围遍历那样工作。
下面是另一个集合的范围遍历示例,使用HashMap
:
var map = new java.util.HashMap();
map.put('foo', 'val1');
map.put('bar', 'val2');
for each (var e in map.keySet()) print(e); // foo, bar
for each (var e in map.values()) print(e); // val1, val2
Lambda表达式和数据流
每个人都热爱lambda和数据流 – Nashron也一样!虽然ECMAScript 5.1没有Java8 lmbda表达式的简化箭头语法,我们可以在任何接受lambda表达式的地方使用函数字面值。
var list2 = new java.util.ArrayList();
list2.add("ddd2");
list2.add("aaa2");
list2.add("bbb1");
list2.add("aaa1");
list2.add("bbb3");
list2.add("ccc");
list2.add("bbb2");
list2.add("ddd1");
list2
.stream()
.filter(function(el) {
return el.startsWith("aaa");
})
.sorted()
.forEach(function(el) {
print(el);
});
// aaa1, aaa2
类的继承
Java类型可以由Java.extend
轻易扩展。就像你在下面的例子中看到的那样,你甚至可以在你的脚本中创建多线程的代码:
var Runnable = Java.type('java.lang.Runnable');
var Printer = Java.extend(Runnable, {
run: function() {
print('printed from a separate thread');
}
});
var Thread = Java.type('java.lang.Thread');
new Thread(new Printer()).start();
new Thread(function() {
print('printed from another thread');
}).start();
// printed from a separate thread
// printed from another thread
参数重载
方法和函数可以通过点运算符或方括号运算符来调用:
var System = Java.type('java.lang.System');
System.out.println(10); // 10
System.out["println"](11.0); // 11.0
System.out["println(double)"](12); // 12.0
当使用重载参数调用方法时,传递可选参数类型println(double)
会指定所调用的具体方法。
Java Beans
你可以简单地使用属性名称来向Java Beans获取或设置值,不需要显式调用读写器:
var Date = Java.type('java.util.Date');
var date = new Date();
date.year += 1900;
print(date.year); // 2014
函数字面值
对于简单的单行函数,我们可以去掉花括号:
function sqr(x) x * x;
print(sqr(3)); // 9
属性绑定
两个不同对象的属性可以绑定到一起:
var o1 = {};
var o2 = { foo: 'bar'};
Object.bindProperties(o1, o2);
print(o1.foo); // bar
o1.foo = 'BAM';
print(o2.foo); // BAM
字符串去空白
我喜欢去掉空白的字符串:
print(" hehe".trimLeft()); // hehe
print("hehe ".trimRight() + "he"); // hehehe
位置
以防你忘了自己在哪里:
print(__FILE__, __LINE__, __DIR__);
导入作用域
有时一次导入多个Java包会很方便。我们可以使用JavaImporter
类,和with
语句一起使用。所有被导入包的类文件都可以在with
语句的局部域中访问到。
var imports = new JavaImporter(java.io, java.lang);
with (imports) {
var file = new File(__FILE__);
System.out.println(file.getAbsolutePath());
// /path/to/my/script.js
}
数组转换
一些类似java.util
的包可以不使用java.type
或JavaImporter
直接访问:
var list = new java.util.ArrayList();
list.add("s1");
list.add("s2");
list.add("s3");
下面的代码将Java列表转换为JavaScript原生数组:
var jsArray = Java.from(list);
print(jsArray); // s1,s2,s3
print(Object.prototype.toString.call(jsArray)); // [object Array]
下面的代码执行相反操作:
var javaArray = Java.to([3, 5, 7, 11], "int[]");
访问超类
在JavaScript中访问被覆盖的成员通常比较困难,因为Java的super
关键字在ECMAScript中并不存在。幸运的是,Nashron有一套补救措施。
首先我们需要在Java代码中定义超类:
class SuperRunner implements Runnable {
@Override
public void run() {
System.out.println("super run");
}
}
下面我在JavaScript中覆盖了SuperRunner
。要注意创建新的Runner
实例时的Nashron语法:覆盖成员的语法取自Java的匿名对象。
var SuperRunner = Java.type('com.winterbe.java8.SuperRunner');
var Runner = Java.extend(SuperRunner);
var runner = new Runner() {
run: function() {
Java.super(runner).run();
print('on my run');
}
}
runner.run();
// super run
// on my run
我们通过Java.super()
扩展调用了被覆盖的SuperRunner.run()
方法。
加载脚本
在JavaScript中加载额外的脚本文件非常方便。我们可以使用load
函数加载本地或远程脚本。
我在我的Web前端中大量使用Underscore.js,所以让我们在Nashron中复用它:
load('http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/underscore-min.js');
var odds = _.filter([1, 2, 3, 4, 5, 6], function (num) {
return num % 2 == 1;
});
print(odds); // 1, 3, 5
外部脚本会在相同JavaScript上下文中被执行,所以我们可以直接访问underscore 的对象。要记住当变量名称互相冲突时,脚本的加载可能会使你的代码崩溃。
这一问题可以通过把脚本文件加载到新的全局上下文来绕过:
loadWithNewGlobal('script.js');
命令行脚本
如果你对编写命令行(shell)脚本感兴趣,来试一试Nake吧。Nake是一个Java 8 Nashron的简化构建工具。你只需要在项目特定的Nakefile
中定义任务,之后通过在命令行键入nake -- myTask
来执行这些任务。任务编写为JavaScript,并且在Nashron的脚本模式下运行,所以你可以使用你的终端、JDK8 API和任意Java库的全部功能。
对Java开发者来说,编写命令行脚本是前所未有的简单…
到此为止
我希望这个教程对你有所帮助,并且你能够享受Nashron JavaScript引擎之旅。有关Nashron的更多信息,请见这里、这里和这里。使用Nashron编写shell脚本的教程请见这里。
我最近发布了一篇后续文章,关于如何在Nashron中使用Backbone.js模型。如果你想要进一步学习Java8,请阅读我的Java8教程,和我的Java8数据流教程。
这篇Nashron教程中的可运行的源代码托管在Github上。请随意fork我的仓库,或者在Twitter上向我反馈。
请坚持编程!
Java 8 并发教程:线程和执行器
译者:BlankKelly
欢迎阅读我的Java8并发教程的第一部分。这份指南将会以简单易懂的代码示例来教给你如何在Java8中进行并发编程。这是一系列教程中的第一部分。在接下来的15分钟,你将会学会如何通过线程,任务(tasks)和 exector services来并行执行代码。
- 第一部分:线程和执行器
- 第二部分:同步和锁
- 第三部分:原子变量和 ConcurrentMap
并发在Java5中首次被引入并在后续的版本中不断得到增强。在这篇文章中介绍的大部分概念同样适用于以前的Java版本。不过我的代码示例聚焦于Java8,大量使用lambda表达式和其他新特性。如果你对lambda表达式不属性,我推荐你首先阅读我的Java 8 教程。
Thread
和 Runnable
所有的现代操作系统都通过进程和线程来支持并发。进程是通常彼此独立运行的程序的实例,比如,如果你启动了一个Java程序,操作系统产生一个新的进程,与其他程序一起并行执行。在这些进程的内部,我们使用线程并发执行代码,因此,我们可以最大限度的利用CPU可用的核心(core)。
Java从JDK1.0开始执行线程。在开始一个新的线程之前,你必须指定由这个线程执行的代码,通常称为task。这可以通过实现Runnable
——一个定义了一个无返回值无参数的run()
方法的函数接口,如下面的代码所示:
Runnable task = () -> {
String threadName = Thread.currentThread().getName();
System.out.println("Hello " + threadName);
};
task.run();
Thread thread = new Thread(task);
thread.start();
System.out.println("Done!");
因为Runnable
是一个函数接口,所以我们利用lambda表达式将当前的线程名打印到控制台。首先,在开始一个线程前我们在主线程中直接运行runnable。
控制台输出的结果可能像下面这样:
Hello main
Hello Thread-0
Done!
或者这样:
Hello main
Done!
Hello Thread-0
由于我们不能预测这个runnable是在打印’done’前执行还是在之后执行。顺序是不确定的,因此在大的程序中编写并发程序是一个复杂的任务。
我们可以将线程休眠确定的时间。在这篇文章接下来的代码示例中我们可以通过这种方法来模拟长时间运行的任务。
Runnable runnable = () -> {
try {
String name = Thread.currentThread().getName();
System.out.println("Foo " + name);
TimeUnit.SECONDS.sleep(1);
System.out.println("Bar " + name);
}
catch (InterruptedException e) {
e.printStackTrace();
}
};
Thread thread = new Thread(runnable);
thread.start();
当你运行上面的代码时,你会注意到在第一条打印语句和第二条打印语句之间存在一分钟的延迟。TimeUnit
在处理单位时间时一个有用的枚举类。你可以通过调用Thread.sleep(1000)
来达到同样的目的。
使用Thread
类是很单调的且容易出错。由于并发API在2004年Java5发布的时候才被引入。这些API位于java.util.concurrent
包下,包含很多处理并发编程的有用的类。自从这些并发API引入以来,在随后的新的Java版本发布过程中得到不断的增强,甚至Java8提供了新的类和方法来处理并发。
接下来,让我们走进并发API中最重要的一部——executor services。
Executor
并发API引入了ExecutorService
作为一个在程序中直接使用Thread的高层次的替换方案。Executos支持运行异步任务,通常管理一个线程池,这样一来我们就不需要手动去创建新的线程。在不断地处理任务的过程中,线程池内部线程将会得到复用,因此,在我们可以使用一个executor service来运行和我们想在我们整个程序中执行的一样多的并发任务。
下面是使用executors的第一个代码示例:
ExecutorService executor = Executors.newSingleThreadExecutor();
executor.submit(() -> {
String threadName = Thread.currentThread().getName();
System.out.println("Hello " + threadName);
});
// => Hello pool-1-thread-1
Executors
类提供了便利的工厂方法来创建不同类型的 executor services。在这个示例中我们使用了一个单线程线程池的 executor。
代码运行的结果类似于上一个示例,但是当运行代码时,你会注意到一个很大的差别:Java进程从没有停止!Executors必须显式的停止-否则它们将持续监听新的任务。
ExecutorService
提供了两个方法来达到这个目的——shutdwon()
会等待正在执行的任务执行完而shutdownNow()
会终止所有正在执行的任务并立即关闭execuotr。
这是我喜欢的通常关闭executors的方式:
try {
System.out.println("attempt to shutdown executor");
executor.shutdown();
executor.awaitTermination(5, TimeUnit.SECONDS);
}
catch (InterruptedException e) {
System.err.println("tasks interrupted");
}
finally {
if (!executor.isTerminated()) {
System.err.println("cancel non-finished tasks");
}
executor.shutdownNow();
System.out.println("shutdown finished");
}
executor通过等待指定的时间让当前执行的任务终止来“温柔的”关闭executor。在等待最长5分钟的时间后,execuote最终会通过中断所有的正在执行的任务关闭。
Callable
和 Future
除了Runnable
,executor还支持另一种类型的任务——Callable
。Callables也是类似于runnables的函数接口,不同之处在于,Callable返回一个值。
下面的lambda表达式定义了一个callable:在休眠一分钟后返回一个整数。
Callable<Integer> task = () -> {
try {
TimeUnit.SECONDS.sleep(1);
return 123;
}
catch (InterruptedException e) {
throw new IllegalStateException("task interrupted", e);
}
};
Callbale也可以像runnbales一样提交给 executor services。但是callables的结果怎么办?因为submit()
不会等待任务完成,executor service不能直接返回callable的结果。不过,executor 可以返回一个Future
类型的结果,它可以用来在稍后某个时间取出实际的结果。
ExecutorService executor = Executors.newFixedThreadPool(1);
Future<Integer> future = executor.submit(task);
System.out.println("future done? " + future.isDone());
Integer result = future.get();
System.out.println("future done? " + future.isDone());
System.out.print("result: " + result);
在将callable提交给exector之后,我们先通过调用isDone()
来检查这个future是否已经完成执行。我十分确定这会发生什么,因为在返回那个整数之前callable会休眠一分钟、
在调用get()
方法时,当前线程会阻塞等待,直到callable在返回实际的结果123之前执行完成。现在future执行完毕,我们可以在控制台看到如下的结果:
future done? false
future done? true
result: 123
Future与底层的executor service紧密的结合在一起。记住,如果你关闭executor,所有的未中止的future都会抛出异常。
executor.shutdownNow();
future.get();
你可能注意到我们这次创建executor的方式与上一个例子稍有不同。我们使用newFixedThreadPool(1)
来创建一个单线程线程池的 execuot service。
这等同于使用newSingleThreadExecutor
不过使用第二种方式我们可以稍后通过简单的传入一个比1大的值来增加线程池的大小。
超时
任何future.get()
调用都会阻塞,然后等待直到callable中止。在最糟糕的情况下,一个callable持续运行——因此使你的程序将没有响应。我们可以简单的传入一个时长来避免这种情况。
ExecutorService executor = Executors.newFixedThreadPool(1);
Future<Integer> future = executor.submit(() -> {
try {
TimeUnit.SECONDS.sleep(2);
return 123;
}
catch (InterruptedException e) {
throw new IllegalStateException("task interrupted", e);
}
});
future.get(1, TimeUnit.SECONDS);
运行上面的代码将会产生一个TimeoutException
:
Exception in thread "main" java.util.concurrent.TimeoutException
at java.util.concurrent.FutureTask.get(FutureTask.java:205)
你可能已经猜到俄为什么会排除这个异常。我们指定的最长等待时间为1分钟,而这个callable在返回结果之前实际需要两分钟。
invokeAll
Executors支持通过invokeAll()
一次批量提交多个callable。这个方法结果一个callable的集合,然后返回一个future的列表。
ExecutorService executor = Executors.newWorkStealingPool();
List<Callable<String>> callables = Arrays.asList(
() -> "task1",
() -> "task2",
() -> "task3");
executor.invokeAll(callables)
.stream()
.map(future -> {
try {
return future.get();
}
catch (Exception e) {
throw new IllegalStateException(e);
}
})
.forEach(System.out::println);
在这个例子中,我们利用Java8中的函数流(stream)来处理invokeAll()
调用返回的所有future。我们首先将每一个future映射到它的返回值,然后将每个值打印到控制台。如果你还不属性stream,可以阅读我的Java8 Stream 教程。
invokeAny
批量提交callable的另一种方式就是invokeAny()
,它的工作方式与invokeAll()
稍有不同。在等待future对象的过程中,这个方法将会阻塞直到第一个callable中止然后返回这一个callable的结果。
为了测试这种行为,我们利用这个帮助方法来模拟不同执行时间的callable。这个方法返回一个callable,这个callable休眠指定 的时间直到返回给定的结果。
Callable<String> callable(String result, long sleepSeconds) {
return () -> {
TimeUnit.SECONDS.sleep(sleepSeconds);
return result;
};
}
我们利用这个方法创建一组callable,这些callable拥有不同的执行时间,从1分钟到3分钟。通过invokeAny()
将这些callable提交给一个executor,返回最快的callable的字符串结果-在这个例子中为任务2:
ExecutorService executor = Executors.newWorkStealingPool();
List<Callable<String>> callables = Arrays.asList(
callable("task1", 2),
callable("task2", 1),
callable("task3", 3));
String result = executor.invokeAny(callables);
System.out.println(result);
// => task2
上面这个例子又使用了另一种方式来创建executor——调用newWorkStealingPool()
。这个工厂方法是Java8引入的,返回一个ForkJoinPool
类型的 executor,它的工作方法与其他常见的execuotr稍有不同。与使用一个固定大小的线程池不同,ForkJoinPools
使用一个并行因子数来创建,默认值为主机CPU的可用核心数。
ForkJoinPools 在Java7时引入,将会在这个系列后面的教程中详细讲解。让我们深入了解一下 scheduled executors 来结束本次教程。
ScheduledExecutor
我们已经学习了如何在一个 executor 中提交和运行一次任务。为了持续的多次执行常见的任务,我们可以利用调度线程池。
ScheduledExecutorService
支持任务调度,持续执行或者延迟一段时间后执行。
下面的实例,调度一个任务在延迟3分钟后执行:
ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);
Runnable task = () -> System.out.println("Scheduling: " + System.nanoTime());
ScheduledFuture<?> future = executor.schedule(task, 3, TimeUnit.SECONDS);
TimeUnit.MILLISECONDS.sleep(1337);
long remainingDelay = future.getDelay(TimeUnit.MILLISECONDS);
System.out.printf("Remaining Delay: %sms", remainingDelay);
调度一个任务将会产生一个专门的future类型——ScheduleFuture
,它除了提供了Future的所有方法之外,他还提供了getDelay()
方法来获得剩余的延迟。在延迟消逝后,任务将会并发执行。
为了调度任务持续的执行,executors 提供了两个方法scheduleAtFixedRate()
和scheduleWithFixedDelay()
。第一个方法用来以固定频率来执行一个任务,比如,下面这个示例中,每分钟一次:
ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);
Runnable task = () -> System.out.println("Scheduling: " + System.nanoTime());
int initialDelay = 0;
int period = 1;
executor.scheduleAtFixedRate(task, initialDelay, period, TimeUnit.SECONDS);
另外,这个方法还接收一个初始化延迟,用来指定这个任务首次被执行等待的时长。
请记住:scheduleAtFixedRate()
并不考虑任务的实际用时。所以,如果你指定了一个period为1分钟而任务需要执行2分钟,那么线程池为了性能会更快的执行。
在这种情况下,你应该考虑使用scheduleWithFixedDelay()
。这个方法的工作方式与上我们上面描述的类似。不同之处在于等待时间 period 的应用是在一次任务的结束和下一个任务的开始之间。例如:
ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);
Runnable task = () -> {
try {
TimeUnit.SECONDS.sleep(2);
System.out.println("Scheduling: " + System.nanoTime());
}
catch (InterruptedException e) {
System.err.println("task interrupted");
}
};
executor.scheduleWithFixedDelay(task, 0, 1, TimeUnit.SECONDS);
这个例子调度了一个任务,并在一次执行的结束和下一次执行的开始之间设置了一个1分钟的固定延迟。初始化延迟为0,任务执行时间为0。所以我们分别在0s,3s,6s,9s等间隔处结束一次执行。如你所见,scheduleWithFixedDelay()
在你不能预测调度任务的执行时长时是很有用的。
这是并发系列教程的第一部分。我推荐你亲手实践一下上面的代码示例。你可以从 Github 上找到这篇文章中所有的代码示例,所以欢迎你fork这个仓库,并收藏它。
我希望你会喜欢这篇文章。如果你有任何的问题都可以在下面评论或者通过 Twitter 向我反馈。
- 第一部分:线程和执行器
- 第二部分:同步和锁
- 第三部分:原子变量和 ConcurrentMap